ON A FAMILY OF HYPERBOLIC BRUNNIAN LINKS AND THEIR VOLUMES

DUŠAN D. REPOVŠ AND ANDREI YU. VESNIN

ABSTRACT. An *n*-component link L is said to be *Brunnian* if it is non-trivial but every proper sublink of L is trivial. The simplest and best known example of a hyperbolic Brunnian link is the 3-component link known as "Borromean rings". For $n \geq 2$, we introduce an infinite family of n-component Brunnian links with positive integer parameters $Br(k_1, \ldots, k_n)$ that generalize examples constructed by Debrunner in 1964. We are interested in hyperbolic invariants of 3-manifolds $S^3 \setminus Br(k_1, \ldots, k_n)$ and we obtain upper bounds for their volumes. Our approach is based on Dehn fillings on cusped manifolds with volumes related to volumes of ideal right-angled hyperbolic antiprisms.

1. INTRODUCTION

If a link L in S^3 is nontrivial, yet every proper sublink of L is trivial, we say that L is Brunnian (or that L has the Brunnian property). Links with this property were studied by Milnor [\[18\]](#page-7-0) who called them *almost trivial* links. In 1961 Debrunner [\[9\]](#page-7-1) renamed them as Brunnian links, in honor of Hermann Brunn whose early contributions [\[8\]](#page-7-2) to knot theory also included examples of such links. In recent decades, Brunnian links have been under investigation from several points of views. In particular, we refer to Bai [\[5\]](#page-6-0), Bai and Ma [\[6\]](#page-6-1), Bai and Wang [\[7\]](#page-6-2), and Kanenobu [\[14,](#page-7-3) [15\]](#page-7-4) for hyperbolic and satellite properties of Brunnian links, Lei, Wu and Zhang [\[17\]](#page-7-5) for intersecting subgroups of Brunnian link groups, and Habiro and Meilhan [\[13\]](#page-7-6) for finite-type invariants and Milnor invariants of Brunnian links. We would also like to mention molecular Borromean rings considered by Wang and Stoddart [\[22\]](#page-7-7) and a possible physical realization of higher-order Brunnian structures studied by Baas $[4]$.

The simplest and best known example of a 3-component Brunnian link is the 3-component link 6^3 in Rolfsen's notations [\[19\]](#page-7-8) which is also known as the "Borromean rings". We denote it by β . It is well-known from Thurston [\[21,](#page-7-9) Chapter 3] that link β is hyperbolic, the complement $S^3 \setminus \mathcal{B}$ can be decomposed into two copies of an ideal right-angled octahedron, and vol $(S^3 \setminus \mathcal{B}) = 7.327724$, up to six digits.

We recall that a polyhedron in a hyperbolic 3-space \mathbb{H}^3 is said to be *ideal* if all of its vertices belong to $\partial \mathbb{H}^3$, and it is called *right-angled* if all of its dihedral angles are equal to $\pi/2$. By virtue of the Andreev theorem [\[3\]](#page-6-4), every ideal right-angled hyperbolic polyhedron

Date: February 25, 2024.

²⁰²⁰ Mathematics Subject Classification. 57K10, 57K32, 52B10.

Key words and phrases. Hyperbolic Brunnian link, Adams move, augmented link, ideal right-angled antiprism.

D.R. was supported by the Slovenian Research and Innovation Agency (program P1-2029 and grants J1-4031, J1-4001, N1-0278, N1-0114, and N1-0083). A.V. was supported by the Ministry of Science and Higher Education of Russia under agreement no. 075-02-2023-943.

is determined by its 1-dimensional skeleton, up to an isometry of \mathbb{H}^3 . An initial list of ideal right-angled hyperbolic polyhedra and their volumes was presented by Egorov and Vesnin [\[10,](#page-7-10) [11\]](#page-7-11), and the upper volume bounds depending only of number of vertices were obtained by Alexandrov, Bogachev, Vesnin, and Egorov [\[2\]](#page-6-5).

In the present chapter, we introduce for every $n \geq 2$, an infinite family of *n*-component Brunnian links which generalize examples constructed in 1961 by Debrunner [\[9\]](#page-7-1). We are interested in the hyperbolic structure on the complements of these links. By using decompositions of complements of fully augmented links into pairs of ideal right-angled polyhedra by a method from an appendix by Agol and Thurston in Lackenby [\[16\]](#page-7-12), and the Dehn filling theorem, we provide upper bounds for volumes of such hyperbolic Brunnian links.

The chapter is organized as follows: In Section [2](#page-1-0) we introduce a family of $(3n + 2)$ component links L_n , for every $n \geq 2$, and demonstrate that their complement $S^3 \setminus L_n$ can be decomposed into four ideal right-angled antiprisms A_{2n} . Then we apply Thurston's formula from [\[21,](#page-7-9) Chapter 6] for volumes of antiprisms to obtain a formula for $vol(S^3 \setminus L_n)$ (see Theorem [2.1\)](#page-3-0). Next, applying Adams moves to 2n vertical components of L_n , we construct links L'_n with 3n components such that $vol(S^3 \setminus L'_n) = vol(S^3 \setminus L_n)$. In Section [3,](#page-4-0) we construct by Dehn fillings on $2n$ components of L'_n , a family of *n*-component links $Br(k_1, \ldots, k_n)$, depending on the filling parameters k_1, \ldots, k_n (see Theorems [3.1](#page-4-1) and [3.4\)](#page-6-6). In particular, when all k_i are equal to 1, we get the Brunnian links from Debrunner [\[9\]](#page-7-1), whose hyperbolicity was established by Bai [\[5\]](#page-6-0).

2. Hyperbolic links and ideal right-angled antiprisms

Recall that a knot or a link $K \subset S^3$ is said to be *hyperbolic* if its complement $S^3 \backslash K$ admits a complete metric of constant curvature -1. Equivalently, the 3-manifold $S^3 \setminus K = \mathbb{H}^3/G$ is hyperbolic, where \mathbb{H}^3 is the hyperbolic 3-space and G is a discrete, torsion-free group of isometries, isomorphic to $\pi_1(S^3 \setminus K)$.

For $n \geq 2$, let us denote a link with $3n + 2$ components by L_n , where each component is a circle and the components are linked in the same manner as shown in Figure [1](#page-1-1) for the case $n = 3$.

FIGURE 1. Link L_n with $3n + 2$ components, case $n = 3$.

By using the computer program SnapPy $[20]$, one can see that the 8-component link L_2 is hyperbolic and has vol $(S^3 \setminus L_2) = 24.092184$, up to six digits. To demonstrate hyperbolicity

of L_n for arbitrary $n \geq 2$ and find the volume formula for $S^3 \setminus L_n$, we shall use the approach from Lackenby [\[16\]](#page-7-12) (see also Futer and Purcell [\[12\]](#page-7-14)). In the terminology of Lackenby [\[16\]](#page-7-12), the link L_n is augmented, with $2n$ "vertical" components (colored in red in Figure [1\)](#page-1-1), and $S^3 \setminus L_n$ admits a decomposition into two ideal polyhedra P_n and P'_n with faces identified in pairs. The polyhedra P_n and P'_n are identical. By the construction each vertical component of L_n gives to a pair of triangles in P_n with a common vertex like a bowtie, as presented in Figure [2](#page-2-0) where common vertices are red.

FIGURE 2. Associating bowties to vertical components of L_n , case $n = 3$.

FIGURE 3. 1-skeleton of the polyhedron P_n , case $n = 3$.

At the last step, in order to obtain the polyhedron P_n , we shall compress black edges which connect two vertices of valence three, to obtain a new vertex of valence four. There are $4n$ such edges which give us $2n$ black vertices, as presented in Figure [3](#page-2-1) (to complete the construction, it is necessary to identify the vertices A and B , as well as the vertices C and D). As a result, P_n is an ideal right-angled polyhedron with 6n vertices, where $2n$ red vertices correspond to bowties and 4n black vertices appeared after compressing black edges. Moreover, P_n has two 2n-gonal faces as its top and bottom, 2n triangles incident to the top, $2n$ triangles incident to the bottom, and $4n$ quadrilaterals on the middle level. By cutting P_n along the middle line passing through quadrilaterals, we shall see that P_n can be decomposed into two identical ideal right-angled $2n$ -gonal antiprisms A_{2n} . Recall that A_n has $2n+2$ faces, where two *n*-gonal faces can be considered as the top and the bottom, and $2n$ triangular faces on the lateral surface, see Figure [4](#page-3-1) for the antprism A_4 .

FIGURE 4. 1-skeleton of antiprism A_4 .

Volumes of right-angled antiprisms are given by the following formula obtained by Thurston [\[21,](#page-7-9) Example 6.8.7, where an antiprism was named a *drum with triangles*,

(1)
$$
\operatorname{vol}(A_n) = 2n \left[\Lambda \left(\frac{\pi}{4} + \frac{\pi}{2n} \right) + \Lambda \left(\frac{\pi}{4} - \frac{\pi}{2n} \right) \right].
$$

Here, $\Lambda(\theta)$ is the Lobachevsky function defined in [\[21,](#page-7-9) Chapter 7] as

$$
\Lambda(\theta) = -\int_0^{\theta} \log|2\sin(t)|dt.
$$

In particular, up to six digits, we have the following volumes of ideal right-angled antiprisms:

$$
vol(A_3) = 3.663863,
$$

\n
$$
vol(A_4) = 6.023046,
$$

\n
$$
vol(A_5) = 8.137885,
$$

\n
$$
vol(A_6) = 10.149416.
$$

Theorem 2.1. For every $n \geq 2$, the following formula holds:

$$
\text{vol}(S^3 \setminus L_n) = 16n \left[\Lambda \left(\frac{\pi}{4} + \frac{\pi}{4n} \right) + \Lambda \left(\frac{\pi}{4} - \frac{\pi}{4n} \right) \right].
$$

Proof. Indeed, from the above considerations we obtain

$$
vol(S3 \setminus L_n) = 2 vol(P_n) = 4 vol(A_{2n}),
$$

so the assertion follows by formula (1) . \Box

The following was proved by Adams [\[1,](#page-6-7) Corollary 5.1].

Theorem 2.2 (see [\[1\]](#page-6-7)). Let J be a link in S^3 such that $S^3 \setminus J$ is hyperbolic and J has a projection for which some part appears as in Figure $5(a)$ $5(a)$. Let J' be the link obtained by replacing that part by the projection of J appearing in Figure $5(a)$ $5(a)$ with the one appearing in Figure [5\(](#page-4-2)b). Then $S^3 \setminus J'$ is hyperbolic with the same volume as $S^3 \setminus J$.

We shall call the replacement presented in Figure [5](#page-4-2) and its inverse the Adams moves. Let us apply Adams moves to each of 2n parts of related vertical components of the hyperbolic link L_n . The resulting link L'_n with 3n components is depicted in Figure [6](#page-4-3) for the case $n=3$.

Theorems [2.1](#page-3-0) and [2.2](#page-3-3) now yield the following result.

FIGURE 5. Replacing the part of the projection by Theorem [2.2.](#page-3-3)

FIGURE 6. Link L'_n with 3n components, case $n = 3$.

Corollary 2.3. For every $n \geq 2$, the following formula holds:

(2)
$$
\text{vol}(S^3 \setminus L'_n) = 16n \left[\Lambda \left(\frac{\pi}{4} + \frac{\pi}{4n} \right) + \Lambda \left(\frac{\pi}{4} - \frac{\pi}{4n} \right) \right].
$$

3. A family of hyperbolic Brunnian links

Suppose that M is a compact orientable 3-manifold with ∂M a collection of tori, and that the interior $M \subset \overline{M}$ admits a complete hyperbolic structure. Then M is referred to as a cusped manifold. For any $n \geq 2$, the complement $S^3 \setminus L'_n$ is a cusped manifold by construction.

For every $n \geq 2$ and every positive integers k_1, \ldots, k_n , we define an *n*-component link $Br(k_1, \ldots, k_n)$ with a diagram having 2n blocks of twist regions as follows: Consider n top blocks consisting of $2k_i + 1$ positive half-twists and n bottom blocks consisting of $2k_i + 1$ negative half-twists for $i = 1, ..., n$. A diagram of $Br(1, 2, 1)$ is presented in Figure [7.](#page-5-0) By Rolfsen [\[19\]](#page-7-8), $Br(k_1, \ldots, k_n)$ can be considered as a result of Dehn fillings with slopes $1/k_i$ and $-1/k_i$ for $i = 1, ..., n$ on $2n$ cusps corresponding to vertical components of $S^3 \setminus L'_n$ in Figure [6.](#page-4-3) Thus, in total we get 2n twist regions with $2k_i + 1$ positive and negative half-twists, $i = 1, \ldots, n$.

If all k_i are equal to some k, then $Br(k, k, \ldots, k)$ admits a cyclic rotation symmetry of order n. The links $Br(1,1,\ldots,1)$ appeared already in Debrunner [\[9,](#page-7-1) Fig. 2] and were denoted by L_F . It was demonstrated in [\[9\]](#page-7-1) that L_F is unsplittable, but any proper sublink of L_F is completely splittable. The 5-component link presented in Rolfsen [\[19,](#page-7-8) p. 69] is link $Br(1, 1, 1, 1, 1)$ in our notation. By the same argument as in [\[9\]](#page-7-1), the following result holds.

Theorem 3.1. For every n, $Br(k_1, \ldots, k_n)$ is an n-component Brunnian link.

FIGURE 7. Link $Br(1, 2, 1)$.

Proof. It is easy to see that after removing one component of $Br(k_1, \ldots, k_n)$, all other components can be transformed to trivial ones by a sequence of simplifying underpassing moves from (a) to (b) shown in Figure [8.](#page-5-1) \Box

FIGURE 8. The simplifying underpassing move.

A practical method to check the hyperbolicity of Brunnian links was presented by Bai [\[5\]](#page-6-0) who proved that for $n \geq 2$ with $k_i = 1, i = 1, \ldots, n$, the link $Br(k_1, \ldots, k_n)$ is hyperbolic [\[5,](#page-6-0) Theorem 1.3. The smallest one is a 2-component link $Br(1,1)$ with 12 crossings and vol $(S^3 \setminus Br(1, 1)) = 12.528922$, up to six digits. Moreover, it can be recognized by using SnapPy [\[20\]](#page-7-13) that $Br(1, 1) = L12n1180$, a non-alternating link with 12 components. At the same time, for $k_i \geq 3$, twisted regions in the diagram of $Br(k_1, \ldots, k_n)$ have more than 6 crossings. Therefore, the following result from Futer and Purcell [\[12,](#page-7-14) Theorem 1.7] can be applied.

Theorem 3.2 (see [\[12\]](#page-7-14)). Let K be a link in S^3 with a prime, twist-reduced diagram $D(K)$. Suppose that every twist region of $D(K)$ contains at least 6 crossings and that each component of K passes through at least 7 twist regions (counted with their multiplicity). Then every non-trivial Dehn filling of all the components of K is hyperbolic.

The relation between volumes of cusped manifold and hyperbolic manifolds obtained by Dehn filling is due to Gromov and Thurston [\[21,](#page-7-9) Theorem 6.5.6].

Theorem 3.3 (see [\[21\]](#page-7-9)). Suppose M is a complete hyperbolic manifold of finite volume and that $N \neq M$ is a complete hyperbolic manifold obtained topologically by replacing certain cusps of M by solid tori. Then $vol(N) < vol(M)$.

Theorem 3.4. For hyperbolic links $Br(k_1, \ldots, k_n)$, the following upper bound holds:

$$
\text{vol}(S^3 \setminus B(k_1,\ldots,k_n)) < 16n \left[\Lambda \left(\frac{\pi}{4} + \frac{\pi}{4n} \right) + \Lambda \left(\frac{\pi}{4} - \frac{\pi}{4n} \right) \right].
$$

Proof. Since $Br(k_1, \ldots, k_n)$ can be obtained by Dehn filling on $2n$ cusps of the hyperbolic link L'_n , the result follows by Corollary [2.3](#page-4-4) and Theorem [3.3.](#page-6-8)

Corollary 3.5. For every $n \geq 2$, the value $\beta_n = 16n \left[\Lambda \left(\frac{\pi}{4} + \frac{\pi}{4n} \right) \right]$ $\left(\frac{\pi}{4n}\right)+\Lambda\left(\frac{\pi}{4}-\frac{\pi}{4n}\right)$ $\left(\frac{\pi}{4n}\right)$ is the limit point for volumes of hyperbolic Brunnian links with n components.

We conclude the chapter by the following open problems concerning hyperbolic Brunnian links.

Problem 3.1. What is the smallest volume hyperbolic Brunnian link with n components?

It is well known that the link "Borromean rings" is arithmetic [\[21,](#page-7-9) Chapter 7].

Problem 3.2. Which Brunnian links are arithmetic?

Also, the following interesting problem was formulated by Bai and Ma [\[6,](#page-6-1) Problem 7.0.8].

Problem 3.3 (see [\[6\]](#page-6-1)). Let $B(n)$ be the number of Brunnian links with n or fewer crossings, $B_h(n)$ the number of hyperbolic Brunnian links with n or fewer crossings, and denote

$$
\limsup_{n \to \infty} \frac{B_h(n)}{B(n)} = a, \qquad \liminf_{n \to \infty} \frac{B_h(n)}{B(n)} = b.
$$

Is then $a = b$, $b = 0$, or $a < 1$?

Acknowledgements. We thank the editors and referees for comments and suggestions.

REFERENCES

- [1] C. Adams, Thrice-punctured spheres in hyperbolic 3-manifolds, Transactions of the American Mathematical Society 287 (1985), 645-656.
- [2] S. Alexandrov, N. Bogachev, A. Vesnin, A. Egorov, On volumes of hyperbolic right-angled polyhedra, Sbornik: Mathematics 214:2 (2023), 148–165. <https://doi.org/10.4213/sm9740e> Preprint version is available at <https://arxiv.org/abs/2111.08789>
- [3] E. M. Andreev, On convex polyhedra of finite volume in Lobachevskii space, Mathematics of the USSR-Sbornik 12:2 (1970), 255-259.
- [4] N. A. Baas, New states of matter suggested by new topological structures, International Journal of General Systems 42:2 (2013), 137-169. <https://doi.org/10.1080/03081079.2012.728403> Preprint version is available at <https://arxiv.org/abs/1012.2698>.
- [5] S. Bai, Hyperbolic Brunnian links, Preprint available at <https://arxiv.org/abs/2104.12637>.
- [6] S. Bai, J. Ma, Satellite constructions and geometric classification of Brunnian links, Journal of Knot Theory and Its Ramifications 30:10 (2021), art. no. 2140005. [https://doi.org/10.1142/](https://doi.org/10.1142/S0218216521400058) [S0218216521400058](https://doi.org/10.1142/S0218216521400058) Preprint version is available at <https://arxiv.org/abs/1906.01253>.
- [7] S. Bai, W. Wang, New criteria and constructions of Brunnian links, Journal of Knot Theory and Its Ramifications 29:13 (2020), art. no. 2043008. <https://doi.org/10.1142/S0218216520430087> Preprint version is available at <https://arxiv.org/abs/2006.10290>.
- [8] H. Brunn, Uber Verkettung, Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Math.-Naturwiss. Klasse 22 (1892), 77-99.
- [9] H. Debrunner, Links of Brunnian type, Duke Mathematical Journal 28 (1961), 17-23.
- [10] A. Vesnin, A. Egorov, Ideal right-angled polyhedra in Lobachevsky space, Chebyshevskii Sbornik 21:2 (2020), 65–83. (in Russian) <https://doi.org/10.22405/2226-8383-2020-21-2-65-83> English preprint version is available at <https://arxiv.org/abs/1909.11523>
- [11] A. Egorov, A. Vesnin, Volume estimates for right-angled hyperbolic polyhedra, Rendiconti dell'Istituto di Matematica dell'Università di Trieste 52 (2020), 565-576. [https://doi.org/10.13137/2464-8728/](https://doi.org/10.13137/2464-8728/30958) [30958](https://doi.org/10.13137/2464-8728/30958) Preprint version is available at <https://arxiv.org/abs/2010.11147>
- [12] D. Futer, J. S. Purcell, Links with no exceptional surgeries, Commentarii Mathematici Helvetici 82 (2007), 629-664. <https://doi.org/10.4171/CMH/105>
- [13] K. Habiro, J.-B. Meilhan, Finite type invariants and Milnor invariants for Brunnian links, International Journal of Mathematics 19:6 (2008), 747-766. <https://doi.org/10.1142/S0129167X08004820>
- [14] T. Kanenobu, Satelite links with Brunnian properties, Archiv der Mathematik 44 (1984), 369-372.
- [15] T. Kanenobu, Hyperbolic links with Brunnian properties, Journal of the Mathematical Society of Japan 38:2 (1986), 295-308.
- [16] M. Lackenby, The volume of hyperbolic alternating link complements. With an appendix by I. Agol and D. Thurston, Proceedings of the London Mathematical Society 88 (2004), 204-224. [https://doi.](https://doi.org/10.1112/S0024611503014291) [org/10.1112/S0024611503014291](https://doi.org/10.1112/S0024611503014291)
- [17] F. Lei, J. Wu, Y. Zhang, On intersecting subgroups of Brunnian link groups, Algebraic and Geometric Topology 16 (2016), 1043-1061. <https://doi.org/10.2140/agt.2016.16.1043>
- [18] J. Milnor, Link groups, Annals of Mathematics 59 (1954), 177-195.
- [19] D. Rolfsen, Knots and Links, Corrected reprint of the 1976 original, Mathematics Lecture Series Vol. 7, Publish or Perish, Houston, TX, 1990.
- [20] SnapPy, Version 3.1 (May 2023). <https://snappy.math.uic.edu>
- [21] W. P. Thurston, The Geometry and Topology of Three-Manifolds, Collected Works of William P. Thurston with Commentary, Vol. IV, With a preface by S P. Kerckhoff, Edited by B. Farb, D. Gabai and S. P. Kerckhoff, American Mathematical Society, Providence, RI, 2022. ISBN: 9781470463915; 9781470451646
- [22] Y. Wang, J. F. Stoddart, Molecular Borromean rings: from controlled construction to potential applications, Chem 3:1 (2017), 17-18. <https://doi.org/10.1016/j.chempr.2017.06.009>

Faculty of Education, Faculty of Mathematics ad Physics, University of Ljubljana & Institute of Mathematics, Physics and Mechanics, Ljubljana, 1000, Slovenia <https://orcid.org/0000-0002-6643-1271>

Email address: dusan.repovs@guest.arnes.si

Sobolev Institute of Mathematics, Russian Academy of Sciences, Novosibirsk, 630090 & Regional Mathematical Center, Tomsk State University, Tomsk, 634050, Russia <https://orcid.org/0000-0001-7553-1269>

Email address: vesnin@math.nsc.ru