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Abstract

We consider a multiphase spectral problem on a stratified Lie group. We prove the existence
of an eigenfunction of (2, ¢)-eigenvalue problem on a bounded domain. Furthermore, we also
establish a Pohozaev-like identity corresponding to the problem on the Heisenberg group.
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1 Introduction

In this paper, we shall study the following problem

l —Lu + (—A)’u = kllullﬁ_qlul"’Zu on €2, (1.1)

u=0 onG\Q,

where 2 C G is a bounded subdomain of a stratified Lie group G. We shall further assume
the following condition on the exponent ¢

©: 2<0,1<gq<?2%,

where 2* = % and Q is the homogeneous dimension of the group G. This is a new

direction of studying the multiphase eigenvalue problem because the problem is considered
on a stratified Lie group.
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The interest towards the eigenvalue problems like the one in problem (1.1) is not only
restricted to within the mathematical community but is also of interest to physicists since it
has a relation with the spectral optimization theory, bifurcation theory, fluid and quantum
mechanics (see Lé [22], Lindqvist [23]). Interested readers may note that the study of elliptic
PDEs involving the p-Laplacian operator is of interest in the theory of non-Newtonian fluids,
both for the case p > 2 (dilatant fluids) and the case 1 < p < 2 (pseudo-plastic fluids), see
Astarita-Marrucci [3]. It is also of geometrical interest for p > 2, some of which is discussed
in Uhlenbeck [31].

As far as the nonlocal elliptic problems are concerned, we refer to Zhao et al. [34] who
considered a nonlocal elliptic problem driven by a nonlinearity, obeying certain conditions.
Saoudi et al. [30] proved the existence, multiplicity and regularity of solutions of a nonlocal
elliptic PDE, driven by a singular and a power nonlinearity. The reader may also check
Bouabdallah et al. [6], and Zhao et al. [34], to understand the trends in research on nonlocal
elliptic PDEs, driven by nonlinearities of various types, which were naturally motivated by
the literature in the local case. For the latter, we point out for example, Zeddini [32]. However,
since our paper is purely of mathematical interest, we further refer the reader to Sect.2 for
the work due to Dipierro-Valdinoci [12], to learn more about the theory of phase transitions
and the associated mathematics involved.

Interesting contributions related to (1.1) can be found in the literature, see e.g., Alves-
Covei [1], Corréa et al. [11]. For example, in Alves and Covei [1], the sub-supersolution
method was applied to establish the existence of solutions for

{ —a(fqu) Au=hi(x,u)f (folul?)+ ha(x,u)g (fqlul") on A, (12)
u=0 on dA, ’

where A C R” is a bounded smooth domain, and a, f, g, h; (i = 1,2) are given functions
with sufficient regularity. In the case of the p—Laplacian, Corréa et al. [11] combined the
sub-supersolutions method with a classical theorem due to Rabinowitz [28]. As a result, they
were able to prove the existence of solutions for the quasilinear problem

{—Apu = lul§s” on @, »)

u=0 on 092,

where « is a nonnegative function defined on Q. The works of Arora-Ridulescu [2],
Bahrouni-Réidulescu [4], Garain et al. [16], Gou-Rédulescu [19], Razani-Behboudi [29] and
Zhang-Rédulescu [33], where the multiphase problems were studied, are also of interest here.

We now state the first main results of the paper:

Theorem 1.1 Let 0 < s < land 1 < g < 2*. Assume that .. > 0 and u € X\{0} is an
eigenvalue and the corresponding eigenfunction. Then u is bounded. Furthermore, if u is
nonnegative on 2, then u > 0 on Q2. Moreover, for every relatively compact subset o C <2,
there exists a positive constant c(w) such thatu > ¢ > 0 on w.

Our second main result is a Pohozaev-like identity for the Brezis-Nirenberg problem,
albeit on a Heisenberg group H", which is a particular type of stratified Lie group.

Theorem 1.2 The following Pohozaev-like identity corresponding to (1.1) holds

0 0-2 0-2 ;
E/QG(u)dx—<T>/Q|VHnu|2dx—< 5 s)/ﬂ|(—A)‘u}2dx

1
= 7/ Vil (Z, R)dS.
2 Joq

(1.3)

@ Springer



A multiphase eigenvalue problem on a stratified Lie group 2535

We complete the introduction by describing the structure of the paper. In Sect. 2, we review
the fundamentals of stratified Lie groups. We also prove an embedding result in the Lie group
setup. In Sect. 3, we introduce two key operators A and B, which are necessary for the proof
of the first main result. In Sect.4, we prove the first main result (Theorem 1.1). In Sect.5,
we establish the second main result (Theorem 1.2). For all fundamental material used in this
paper we refer the reader to the comprehensive monograph by Papageorgiou et al. [27].

2 Stratified Lie groups

A quick sneak into the basics of stratified Lie groups may be useful to the reader (see
Choudhuri-Repovs [9], Choudhuri et al. [10], Folland et al. [14], Ghosh et al. [18], Mont-
gomery [26], and the references therein). This is why we now recall some fundamental
definitions from this topics.

Definition 2.1 A Lie group G on R”, is said to be homogeneous, if for every § > 0 there
exists an automorphism 75 : G — G defined by

Ts(x) = (8" x1,8™x2,...,8™x,), foreveryr; >0,i=1,2,...,n.
The map Ty is called a dilation on G. Here, x = (x1, x2, ..., X,).

The number n represents the fopological dimension of G, whereas the number M =
r1+r2 + - - -+ r, represents the homogeneous dimension of the homogeneous Lie group G.
We shall denote Haar measure by the symbol dx, which is the standard Lebesgue measure
on R". The following is the definition of a stratified Lie group.

Definition 2.2 A homogeneous Lie group G = (R", -) is called a stratified Lie group (or a
homogeneous Carnot group) if the following two conditions hold:

(i) The decomposition R” = R" x R"2 x ... x R holds for some natural numbers

ni,na,...,ng such that ny + ny + --- + nx = n. Furthermore, for every § > 0
there exists a dilation of the form Ts(x) = (8'x(,82x@, ..., 8kx®) which is an
automorphism of the group G. Here, x) € R foreveryi = 1,2, ..., k.

(ii) Letny be the same as in the above decomposition of R"”, and let £y, £, ..., L,, be the
left invariant vector fields on G such that £; (0) = Bix,' |ofori =1,2,...,n;. Then the
Hormander rank condition holds for every x € R”, i.e., rank(Lie{L1, Lo, ..., Ly, }) =
n. Roughly speaking, the Lie algebra corresponding to the Lie group G is spanned by
the iterated commutators of L1, Lo, ..., Ly,.

Together, the structure (R”, -, Ty) is called a stratified Lie group. The number k is called the
step of the homogeneous Carnot group. In the case of a stratified Lie group, the homogeneous
dimension becomes

k
0= Zini
i=1

Let & be a Lie algebra associated to a Lie group G. A stratification of & with step k is a
direct sum decomposition

S=VioWnd oV
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2536 D. Choudhuri et al.

of & with the property that V; # {0} and [V, V] =V, forevery j = 1,2, ..., k, where
we set Vi1 = {0}. Here [V, W] :=span{[X,Y]: X e V,Y € W}.

Throughout the paper, we set n = n in Definition 2.2. The operators £ and (—A)* are
the Laplacian and the fractional Laplacian, respectively that are defined as follows:

ni
Lv = Z Xl-zv,
i=1

(—=A)v = P.V./G Iyl x |25 dy,

(2.1)

where for every i the vector field X; are left invariant. The subgradient is the 7{-dimensional
vector given by

Veu(z) = (X1v, Xav, ..., Xn, v).

The operators £ and Vg are left invariant differential operators. For each real §, the naturally
associated dilation with a stratified Lie group is given by

Ts(z) = (SIZ(I), 8279 ..., Skz(k)), for every z € R™ x R™ x ... x R%,
The fractional Sobolev space W* ’Z(Q), 0 < s < 1, is defined by
[v(x) —v(y)|

W2(Q) := {u e L*(Q) :
ly= x| 5+

e LX(Q x sz)}

and is equipped with the norm

|u(x>—u<y)|2
[vllys2 () = (/ |u|2dx+//m e 9 dy>

However, in order to study the mixed problem we shall consider the space

= {ue W2G) : ulg € Wy*(Q), u=0ae. on G\,

1/2

endowed with the norm

v(x) —v(y)
lull := Ve vz + | — 012 ,
y=" - xI727 [ 2exe)

which is more appropriate for our study.
The continuous and compact embedding theorems also hold (see Hastasz-Koskela [20,
Theorem 8.1]). We can now state the result collectively as follows.

Theorem 2.3 Let @ C G be a bounded domain and 1 < p < Q. Then Wol’p(Q) is con-
tinuously embedded in L9(2) for every 1 < q < p* := % Moreover, the embedding is
compact for every 1 < g < p*.

We now prove the embedding result along the lines of Buccheri et al. [7].

Theorem 2.4 For every p € (1,00) and s € (0, 1), there exists a constant C = C(N, s, Q)
such that Cp, = C,(Q,s5,2) — C € (0,00) as p — oo and

[v(x) — v(y)l"
// e =8I 4y < 190l
axa |ly7 - x| !
foreveryv € W(;’p(SZ), where v is the extension of v to 0 in Q.

@ Springer
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Proof Let v be an extension of v € Wol’p(Q) by 0. This implies that VOl r@®r) =
IVV]lLr (). Consider,

[o(x) —v(MI? // IU(X) —uI?
———————dxdy =2 ————dxd
//GXG |y ! )C|Q+pA QxQC x|Q+173 e

|v<x)—v(y>|P
— " dxdy.
f/szg y— T xj@tps

We shall estimate only the first term since the second one can be estimated similarly. Let
B, (x) denote the ball centered at x € € with radius p. Then we have:

// [0(x) — v(y)l" /f [0(x) — v(y)|pdxdy
QxQeNB,@) 1Y Jy=T-x|QFps X|Q+‘” QxB,(0) |y~ x[2FPs
— 5L P
// Iv(X) lU(Q+ ()| dxdz
QxB,(0) |eFps
FU(Ly o T, dt|P
/‘/ If (Lx o T1(2)) ldxdz
Qx B, (0) |z|9FPs

_// / Ved(Ly o T,
Qpr(O)

xoT;

(2.2)

A

————dtdxdz

B
=112 r (1—s)—1
wQ||vGu||L,,(G)/ pp=-1g,
0

w9 p(l—s) —P
=—p IVeolly g (2.3)
p(l —s) Lr©

where L, T, respectively, stand for translation by z and multiplication by ¢, and wg stands
for the volume of a unit ball in a stratified Lie group whose homogeneous dimension is Q.
On the other hand, we have by the Poincaré inequality that

_ .
// 7“)(:) vQ(i)l dxdy < // 7'1)961) UQ();)l dxdy
QxQenB, e [y~ - x[eTPs QxB,(x)c |y - x[CTPS

IA

WO wo(C(82, )P _ ¢
sp—fp P wllf g < QT PVl g
24
This completes the proof of Theorem 2.4. O

Remark 2.5 X is areal separable and reflexive Banach space (see Ghosh et al. [18]).

Remark 2.6 For fine bounds on the best constants of the Sobolev embedding Wé P(Q) —
L4(£2) in the Euclidean setup one may refer to Cassini-Du [8].

3 OperatorsA: X — X*and B : L1(Q) — (L1(Q))*

We define an eigenpair for problem (1.1).

@ Springer



2538 D. Choudhuri et al.

Definition 3.1 We say that (A, u) € R x X\{0} is an eigenpair for problem (1.1) if for every
¢ € X, we have

(u(x) —u(y)(p(x) —¢(y)) _
/QVGM - Veodx + //(GxG [y=1 - x|2+2s dxdy = Alu ||Lq(9)f lu|? 2u¢dx.
3.1

Note that Theorem 2.4 guarantees that eigenpairs are well-defined. Next, we define the
operators A : X — X* by

(Av,w):/ Veu - VGwdx—l—// (”(x)_v(y))(w(x) wOD eay, (2)
GxG .

|Q+2\“

and B : L1(Q2) — (L9(2))* by
(Bv, w) = / lul?2uwdx, (3.3)
Q

where the symbols X*, (L9(£2))* denote the dual of X, L9(2), respectively. We prove the
following theorem about their properties.

Theorem 3.2 The operators A : X — X* and B : L1(2) — (L1(2))* are continuous.
Moreover, A is bounded, coercive, and monotone.

Proof Continuity: Suppose that v; € X is such that v; — v in the norm of X. Thus, a
combination of Egoroff’s theorem and the Sobolev embedding, we have up to a subsequence
Vgvj(x) — Vgu(x) ae. in . We note that

IVevjlirz@) = ¢ (34
for some constant ¢ > 0 independent of j. Therefore, up to a subsequence, we have
Veuj—Veuin L*(Q). (3.5)
In addition, we also have

vi(x) —vi(y)  wvx) —v(y)
P e P Rl

on LX(R"), (3.6)

and since this weak limit is independent of the choice of the subsequence, it follows by (3.5)
and (3.6) that

lim (Av;, ¢) = (Av, ¢), forevery ¢ € X.

J—)OO

This proves that A is continuous. It follows by a similar argument that B is also continuous.

@ Springer



A multiphase eigenvalue problem on a stratified Lie group 2539

Boundedness: By the Cauchy—Schwarz and the Holder inequalities, we have

(Av. 6) :/ Vv - Vepdx +// (w(x) —v(y)(Px) — ¢(Y))d
Q GxG

|y—1 x|Q+2s

<[Vull2lI Vel
(// e — )P )”2 (// 100 — WP )”2
Gxg |y~1-x|0F2 XIQ+25 GxG |yl x|@+2s Y
_ 2 1/2
(”V”””(//G,Xg 'fy(x) fg(ﬁ)zld dy) )||¢||X

1/2
() — v(y) P ? B
vl +( [ | o merdx ey Igllx = ollx .

3.7
hence,
[Avlxs = sup [(Av, ¢} < |vlixlollx < llvix,
l¢llx=<1
therefore A is bounded.
Coercivity: We notice that
2 [v(x) — U()’)|2 _ 2
(Av, v) / \Zexd! dx—i—//GXG T x| ———>—dxdy = ||v|}, 3.8)
which provides that A is coercive.
Monotonicity: For u € X, let
o _ du — dxdy
(u(x,y) =ulx) —uy), dp= Iy T x|0
Considering the following
(Av— A, v —¢) = / Vv — Veol*dx
¢ (3.9)
+ //G G(O(v(x, M) — Ow(x, y))((vx) —w(x)) — (v(y) —w(y))du = 0,
X
we conclude that A is monotone. This completes the proof of Theorem 3.2. O

4 Proof of Theorem 1.1

We shall need the following results in the sequel.

Theorem4.1 Let 0 < s < 1 and 1 < g < 2*. Then the following properties hold:

1. There exists a sequence (w;) C X N L9(Q) such that |wj|re@) = 1 and for every
¢ € X, we have

[ Sews Vopan+ [ O ZmONGD 000,
Q GxG

ly—1.x|QF2

2— _
=un||wj||m?m/9|w,-|‘f 2w pdx, @.1)
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2540 D. Choudhuri et al.

where

_ 2
mf{f IV«;ulzdx+// lu@) —uOI dy :ueXNLUKR), ullLq = 1).
Gxg |y~ x|O+2s

2. The sequences (i ;) and (|wj1111?) satisfying (4.1) are nonincreasing and they converge
to the same limit , which is bounded below by L. Moreover, there exists a subsequence
(nj) such that both (wj;) and (wj,, ) converge in X to the same limit w € X N L9(2)
with [[wllpe() = 1, and (., w) is an eigenpair for problem (1.1).

Proof One can follow the argument of the proof of Garain-Ukhlov [17, Theorem 2.2]. O

Theorem4.2 Let0 < s < land 1 < q < 2*. Suppose that (u;) C X N L9(Q) is such that
lujllLe) = 1 and lim |lu;||P = A. Then there exists a subsequence (u ;) which converges
j—00

weakly in X tou € X N19(Q) with ||ul|Le() = 1 such that

|u(x) — u(y)|?
— p
A= / |Vgul dx+//@x<(; =T x[0+2 —————dxdy.

Moreover, (A, u) is an eigenpair for problem (1.1) and every associated eigenfunction of A
is a scalar multiple of the vector at which ) is reached.

Proof One can follow the argument of the proof of Garain-Ukhlov [17, Theorem 2.2]. How-
ever, we prefer to apply Ercole [13, Proposition 2] in place of Ercole [13, Theorem 1]. O

We are now in a position to prove our first main result.

Proof of Theorem 1.1 Since (1.1) is homogeneous, we can without loss of generality, let
llull; = 1. Furthermore, for every k > 1, let € :={x € Q: u(x) > k}and v := (u — k)4
be a test function for (3.1). With these choices we obtain

f|%u|2dx+// @) —u) (@ =k () = =010
Qe GxG

—1. 10+2s
=l 4.2)
= A/ ul ' — k)ydx.
Q
The second term on the left hand side of (4.2) is nonnegative and hence
/ |Veu|*dx < A/ ul N — k)4 dx. 4.3)
QU Q
We split the proof into two parts.
First case: g < 2. Since k > 1, we have wi!' < uon Q. From (4.3) we have
/ |Vou|?dx < Af u(u —kydx = x/ Qu — k) + 2k(u — k))dx, (4.4)
Qk Q Qk

where the last inequality is obtained using a + b < 2(a + b). Using the Sobolev inequality
we get

(=25l [ @ irdr <P [ w- o 45)
Qe Qe

where S is the best Sobolev constant. Note that |u||; > k|| and therefore, for every
k > ke = (4S0) 7 |lull;, we have

2850QK)| T <

N =
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Using (4.4), for every k > max{k,, 1}, we obtain

/ (u — k)2dx < 40k T | (u — k)dx, (4.6)
L(k) o)
and invoking the Holder inequality and the estimate (4.6), we find
(u —k)dx < (4S)»)k|§2k|l+%, 4.7
Qe

so taking into account (4.7), we conclude by invoking Ladyzhenskaya-Ural’tseva [21, Lemma
5.1] (which holds irrespective of the group structure on R"), to get u € L°°(2).
Second case: ¢ > 2. Using the inequality
(a+b)¥ 1 <2071 (q? 1 4 p71, for every a,b > 0,
in (4.1), we get
/ IVoul?dx <& | Q97 u—k)7) + 297 %9 (u — k))dx (4.8)
Qk Qe

and using the Sobolev inequality with » = ¢ in estimate (4.8), we find

2
q 1
( (u—k)qu)qsSA|9k|2($‘%+N> Q1w — k)7 + 297k (e — k))dx,
Qe Q

(4.9)

where S > 0 is the Sobolev constant. Since

(u—k)dx < |lullf =1
1973

and g > 2, the quantity on the left-hand side of (4.9) can be estimated from below as follows:

2 2;‘1_;’_1
< - k)%) f o < - k)qu) s | w—ntdx. (410
Qe Qe

Qe
Using (4.10) in (4.9), we get

1 1 1
a- szq—1|szk|”<rf+ﬁ))/ (u —k)dx
Qe

1 1 1
< $A29 kN PA TN | (u — k)dx. @.11)
Qe
Let
1 1 n 1
a=2l-—-=-4+—=,
qg 2 N
and note that it is positive since 1 < g < 2*. Choose K| = (SAZEI)é llu]l1. Then since
k|Q%k| < |lull1, for every k > k,, we have
1
§2297 11 < 5

Using this property in (4.11), we obtain

/ (u —k)ldx < s,\zqkq—1|L(k)|“/ (u — k)dx, (4.12)
L(k) L(k)
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2542 D. Choudhuri et al.

so by the Holder inequality and the estimate (4.12), we arrive at the following estimate
1 o
/ (u—k)dx < (S)\zq)ilk|L(k)|l+qj. (4.13)
L(k)

Taking into account (4.13) and invoking Ladyzhenskaya-Ural’tseva [21, Lemma 5.1], we get
u e L*(Q).

The other assertion follows by Garain-Kinnunen [15, Theorem 8.4] which considers the
following problem:

—Apu+ (—A, x)'u=0in Q, (4.14)

where 1 < p < oo and

(=Ap,k)'u=PV. /R" lu(x) — uIP 2 @ (x) — u(y)K (x, y)dy,

here P.V. denotes the principle value. The weak Harnack inequality proved in Garain-
Kinnunen [15] also works for the Dirichlet boundary condition u|3q = 0. In addition, we
note that the proof of Garain-Kinnunen [15, Theorem 8.4] works even for a sub-Laplacian
L that acts on functions defined on a stratified Lie group since the group structure does not
affect the proof of the result. Let us denote v to be a nonnegative solution of problem (1.1).
On subtracting the weak formulation of (4.14) (for p = 2) from (1.1) we get

/ Ve —u) - Ve(v —u) " dx
Q
+ //;2 Q((U —u)(x) — (W =W —u)”(x) — —u)" )]y~ - x[79 Hdx

=l /Q v (v —w)~dx,
4.15)

which implies

(v—u) X)) —@—u)~?
0>_f V(v —u)~|Pdx — //ng ST dx

=A||u||§“’/9v‘f—‘(v—u)—dx > 0,

(4.16)

hence the Lebesgue measure of the set {x € Q2 : v(x) < u(x)} is zero and therefore v > u
a.e. in Q. By [15], we already have u > 0 on any compact subset of &2 and hence we have
the same conclusion for v. This completes the proof of Theorem 1.1. O

5 Proof of Theorem 1.2

A natural question to raise at this juncture is what happens when ¢ = 2*? Of course, it is
impossible to figure out the answer for a general stratified Lie group involving a fractional
Laplacian - owing to the unavailability of the derivative of the distance function. However, in
order to be able to answer this question, we shall study the Brezis-Nirenberg type of problem
on a Heisenberg group G := H" (see Molica Bisci-Repovs [25]) for which we shall establish
a Pohozaev-like identity. The problem is as follows:
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A multiphase eigenvalue problem on a stratified Lie group 2543

{ —Lu+ (=AY u = Alu) 37 w2 =: gu) on Q 5.0)

u=0 onR"\Q.
Let

Gu) = /u g(t)dt
0

be the primitive of the continuous function g. The vector fields

0 0 0 i 0 0
Xi———& i=—+ﬁ—, = —, wherei =1,2,...,n
0x; 2 9z’ ay; 2 0z 0z

generate the Lie algebra corresponding to the Heisenberg group H” of topological dimension
2n + 1. The corresponding group law for (a, b, ¢), (@, b'c’) € R* x Ris

(a,b,c)o @, b)YV =@+d,b+b,c+c +27 b — ba)).

Under this group law, the inverse is (a, b, c)_1 = (—a, —b, —c) and the identity is (0, 0, 0).
The distance function for a Heisenberg group is defined as

l(a, b, ¢)| = [(lal* + [b*)* + |14

However, before we establish a Pohozaev-like identity, we need to prove Theorem 5.1.

Theorem 5.1 Suppose that uy, u» € WH1(H") have disjoint compact supports, say 1, 2,
respectively. Then

(% - Vgnup) (=AY urdx +/ (% - Vgnuz) (=AY urdx
Q) Q0

_ (2s—Q>/ ul(_A)su2dx+<M)/ ur(— A uydx, (5.2)
2 Q 2 &

where x = (x(l) xél), .. x](\}l) rx{r), rxér), .. rxN)) and Vyn is the subgradient

corresponding to the Helsenberg group H".

Proof of Theorem 5.1 We first claim that

(=AY (% - Vinuj) =% - (=AY Vapuj + 2s(—A)*u; in H'\Q;, foreveryi =1,2.
(5.3)

Clearly, we have u; = 0 on H"\£2; and hence using the definition of (—A)* for x € H"\;,
we obtain

=y - Varui(y)
|y—l ox|Q+25 y

Sy S ke — Wt o)

(—A)Y(F - Vipui (¥)) = e fQ

=N /g y T ox| 0¥ @
o
D k=1 Zz jl kx( )a d<k>“i(y)
tens ];2 ! Ox|Q+2v dy

ro N ® _ ®
(" =y 0 -
E E ; (—=A)* Vgnu;
-/szl _10le+2¥ ayl(k)ul(y)ntx (=A)" Vi ui (x)
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2s _
=CN,s Li —WW(}’) +X - (=A)*Vanu;(x)
= 25(—=A)’u; (y) + x - (—A)’ Vnu; (x), foreveryi =1, 2, (5.4)

hence

(X - Vinu)(=A) urdx =— Q u1(—A)urdx —/ u1x - Vg (—A)*usdx,

Q1 Q) Q
(5.5)
so integrating by parts along with (5.4), we obtain
/ u1x - Vign (—=A)* urdx :/ ui (=AY (& - Vignuo)dx — 2s/ w1 (—A) urdx
o o o (5.6)
(=AY uy(x - Vinup)dx — 25/ ui(—A)’urdx,
Q[ QI
therefore by (5.5) and (5.6),
& - Vrru)(=A)uzdx =— | (=A)’ui(x - Vipua)dx + 2s — Q) | ui(—=A) uzdx,
Q Q1 Q
5.7
thus, by again integrating by parts,
1 1
/ U (=AY urdx == / U (=AY urdx + - / ur(—A)urdx, (5.8)
ol 2 Jo, 2 Jg,
and the equality (5.2) follows. This completes the proof of Theorem 5.1 O

Proof of Theorem 1.2 We shall follow the standard technique of deriving the identity - by
multiplying the PDE in (5.1) by

roonj

_ (j) du
Zu : ZZZX ax;])

j=li=1

We note of that divZ = Q. Invoking Bonfiglioli et al. [5, Proposition 1.6.1] and integrating
by parts, we get

—/ AGuZudx—i—/(—A)suZudx:/ g(u)Zudx
Q Q

/ lel—G(u)dx = —9 G(u)dx. (5.9)

Combining (5.9) with Theorem 5.1 and Louidice [24, Equation (4.15) in Theorem 4.1], the
identity can be stated as follows:

Qf Guydx — (Q—_ZN |Vt — (Q_Zs)/ [(—A) ul?dx
2 Q 2 Q 2 Q

1
=5 [ Waubiz.ias. (5.10)
2 Jyq
This completes the proof of Theorem 1.2. O
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Remark 5.2 Using Theorem 1.2, one can show that problem (5.1) when defined on a star-
shaped domain €2, has no nontrivial solutions for any A < 0. This is because Eq. (5.2)
yields

0< 1/ \Voul*(Z, 7)dS = g/ G (u)dx — 9[ g(wudx
2 Joa 2 Jo 2 Jo

+</ |VHnu|2dx+s/ |(—A)Su|2dx)
Q Q

< %/;ZG(u)dx—%/Qg(u)udx

+</ Vil + [ |(—A>Su|2dx)
Q Q

= g/ G(u)dx — gf g(u)udx—i—/ g(u)udx
2 Q 2 Q Q

= Q/ Gu)dx + (l — g)/ gw)udx < 0. (5.11)
2 Jo 2 ) Ja

This is absurd and hence there exists no nontrivial solution to the problem if A < 0 and the
domain €2 is star-shaped.
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