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Codimensions of identities of solvable Lie superalgebras

M. V. Zaicev and D. D. Repovš

Abstract. We study identities of Lie superalgebras over a field of char-
acteristic zero. We construct a series of examples of finite-dimensional
solvable Lie superalgebras with non-nilpotent commutator subalgebra for
which the PI-exponent of codimension growth exists and is an integer num-
ber.
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§ 1. Introduction

We study identities of Lie superalgebras over a field F of characteristic
zero. The existence of a non-trivial identity of an algebra plays a important role in
the study of its properties and structure. For example, if A is an associative finitely
generated PI-algebra, then its Gelfand–Kirillov dimension Gkdim(A) is finite,
and the Jacobson radical J(A) is nilpotent. Moreover, if A is simple, then
dimA < ∞. If A and B are two finite-dimensional simple algebras (not neces-
sarily associative) over an algebraically closed field, then they are isomorphic if
and only if A and B satisfy the same polynomial identities.

Analysis of numerical invariants is one of the fundamental directions in the study
of identity relations. One of the most significant numerical invariants that charac-
terize the quantity of identities of algebra A is the sequence cn(A), n = 1, 2, . . . ,
called the codimension sequence. In the general case, the sequence {cn(A)} has
an overexponential growth. For example, if A is a free assocative algebra of count-
able rank, then cn(A) = n!. For a free Lie algebra, we have cn(A) = (n−1)!. Even if
a Lie algebra L satisfies the sufficiently strong identity [[x1, x2, x3], [y1, y2, y3]] ≡ 0,
its codimension sequence {cn(L)} grows like

√
n! (see [1]). Nevertheless, for a wide

class of algebras, the codimension sequence is exponentially bounded. So, for any
associative PI-algebra A, there is a constant a such that cn(A) < an for all n ⩾ 1
(see [2], and also [3]). If A is an arbitrary finite-dimensional algebra, dimA = d,
then cn(A) ⩽ dn+1 (see [4] or [5]). If L is an infinite-dimensional simple Lie alge-
bra of Cartan type or a Virasoro algebra, then cn(A) < an (see [6]). A similar
restriction holds also for any affine Kac–Moody algebra (see [7]). If L is a Lie
superalgebra with nilpotent commutator subalgebra, (L2)t+1 = 0, then the codi-
mension sequence {cn(L)} grows asymptotically not faster than (2t)n (see [8]). For
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any Novikov algebra, A the codimension sequence is also exponentially bounded,
cn(A) ⩽ 4n (see [9]).

In the 1980s, S. Amitsur posed a conjecture that the limit of the sequence
{ n
√
cn(A) } exists and is a non-negative integer for any associative PI-algebra A.

This conjecture was confirmed in [10], [11], and the limit

exp(A) = lim
n→∞

n
√

cn(A), (1)

was called the PI-exponent of algebra A. Later on, the existence and integral-
ity of the limit (1) was proved for any finite-dimensional Lie algebra [12], Jor-
dan algebra [13], and some other algebras. It turned out that in the case of
finite-dimensional associative, Lie, or Jordan algebra over an algebraically closed
field, the PI-exponent of A is equal to dimA if and only if A is simple.

If A is graded by a group G, one can also study, along with usual identities,
G-graded identities of A and their numerical invariants. Graded identities form
a more precise charateristic than ordinary identities. For example, if G = Z2,
then any multilinear identity of degree n is equivalent to the system of 2n graded
identities. Therefore, it is reasonable in the Lie superalgebra case to consider both
graded and non-graded identities.

It turned out that, in the super Lie case, the situation differs significantly from
the ordinary Lie or associative case. In [14]–[16], examples of finite-dimensional Lie
superalgebras are given for which graded and ordinary PI-exponent exist but they
are not integer numbers. It was also shown that the PI-exponent of a simple Lie
superalgebra L can be less than dimL.

In the above mentioned examples, the finite-dimensional Lie superalgebras are
not solvable. So, the natural question arises: Is it true that graded and non-graded
exponents exist for any finite-dimensional solvable Lie superalgebra L? If the com-
mutator subalgebra of L is nilpotent, then the answer is affirmative (see [8]). On
the other hand, for solvable Lie superalgebra L = L0 ⊕L1 with non-zero odd com-
ponent L1, its ideal L2 can be non-nilpotent. In [17], a series of finite-dimensional
solvable Lie superalgebras S(t), t ⩾ 2, with non-nilpotent commutator subalgebras
was constructed. It was also shown that exp(S(2)) = expgr(S(2)) = 4. In the
present paper, we prove existence and integrality of graded PI-exponent for any
superalgebra S(t), t ⩾ 3. We also compute the value of this exponent.

All the necessary information about polynomial identities and their numerical
invariants can be found in the monographs [18]–[20].

§ 2. Preliminaries

Let F be a field of characteristic zero and let F{X,Y } be an absolutely free
algebra over F with two infinite sets of generators X and Y . The algebra F{X,Y }
can be naturally endowed with Z2-grading F{X,Y } = F{X,Y }0 ⊕F{X,Y }1 if we
define all generators from X as even and all from Y as odd. If L = L0⊕L1 is some
Z2-graded algebra over F , then a non-associative polynomial f = f(x1, . . . , xm,
y1, . . . , yn) ∈ F{X,Y } is called a graded identity of algebra L if f = f(a1, . . . , am,
b1, . . . , bn) = 0 for any a1, . . . , am ∈ L0, b1, . . . , bn ∈ L1. The set of all identities
Idgr(L) forms a graded ideal of F{X,Y } invariant under all endomorphisms of
F{X,Y } preserving grading, that is, it is a T-ideal.
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Denote by Pk,m the subspace of all multilinear polynomials of degree n = k+m
of x1, . . . , xk ∈ X, y1, . . . , ym ∈ Y . It is well-known that the family of all subspaces
Pr,m ∩ Idgr(L), k,m ⩾ 1, uniquely defines Idgr(L) as a T-ideal. Let also

Pk,n−k(L) =
Pk,n−k

Pk,n−k ∩ Idgr(L)
.

In this case, the value
ck,n−k(L) = dimPk,n−k(L)

is called the partial (k, n− k)-graded codimension, whereas the value

cgrn (L) =

n∑
k=0

(
n

k

)
ck,n−k(L)

is called the nth graded codimension of L.
As in the non-graded case, the sequence of graded codimensions of a finite-dimen-

sional algebra L is exponentially bounded (see [4]). This implies the existence of
the limits

exp gr(L) = lim sup
n→∞

n

√
cgrn (L), expgr(L) = lim inf

n→∞
n

√
cgrn (L),

which are called the upper and the lower graded PI-exponents of L, respectively.
If the ordinary limit

expgr(L) = lim
n→∞

n

√
cgrn (L),

exists, it is called the (ordinary) graded PI-exponent of L.
Representation theory of symmetric groups is the main tool in the study of

numerical characteristics of polynomial relations. The permutation group Sn acts
naturally on multilinear expressions

σ ◦ f(z1, . . . , zn) = f(zσ(1), . . . , zσ(n)).

Let us recall some elements of the symmetric groups required in what follows.
All the required details of the representation theory of permutation groups can be
found in [21].

Denote by R = FSm the group algebra of group Sm. Recall the construction
of minimal left ideals of R. Let λ ⊢ m be a partition of m, that is, an ordered
set of integers (λ1, . . . , λk) such that λ1 ⩾ · · · ⩾ λk > 0, λ1 + · · · + λk = m. To
this partition there corresponds the so-called Young diagram, that is, the tableau
consisting of m cells, where λ1 cells stay in the first row, λ2 cells stay in the second
row, etc. In this case, the Young tableau Tλ is the Young diagram Dλ filled up by
integers 1, . . . ,m.

Given a Young tableau Tλ in FSm, one can construct two subgroups RTλ
and CTλ

in Sm. The first one is called the row stabilizer and consists of those σ ∈ Sm which
move integers only within rows of Tλ. The second one is called the column stabilizer
and consists of permutations which move numbers 1, 2, . . . ,m only within columns
of Tλ. Given Young tableau Tλ, one can associate with it the element

eTλ
=

( ∑
σ∈RTλ

σ

)( ∑
τ∈CTλ

(−1)ττ

)
, (2)
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of group ring called the Young symmetrizer. It is well-known that Young sym-
metrizer is quasi-idempotent, that is, e2Tλ

= γeTλ
where γ ∈ Q is a non-zero scalar.

Moreover, the left ideal ReTλ
is minimal. Its character is denoted by χλ. Any

irreducible left R-module M is isomorphic to some ReTλ
. In this case, its char-

acter χ(M) is equal to χλ. Recall also that ReTλ
and ReTµ

are isomorphic as
FSm-modules if and only if λ = µ.

Any finite-dimensional Sm-module M can be decomposed into a direct sum of
irreducible components M = M1 ⊕ · · · ⊕Mt. In this case, the expression

χ(M) =
∑
λ⊢m

mλχλ (3)

means that among M1, . . . ,Mt there are exactly mλ summands with character χλ.
The sum of multiplicities mλ in decomposition (3) (that is, the number t) is called
the length of the module M .

When we study identities of Z2-graded algebras, we need to use the action
of the direct product of two symmetric groups on multilinear components of the
direct product of two symmetric groups. The group Sk × Sn−k acts on the space
Pk,n−k. The intersection Pk,n−k ∩ Idgr(L) is invariant under this action for any
algebra L0 ⊕ L1. Hence Pk,n−k(L) is also an (Sk × Sn−k)-module. Any irreducible
Sk × Sn−k-module is isomorphic to the tensor product M ⊗ N of irreducible Sk-
and Sn−k-modules, respectively. The character of this module is denoted by χλ,µ,
where χλ = χ(M), χµ = χ(N). In this notation, the decomposition of Pk,n−k(L)
into irreducible components has the form

χk,n−k(L) = χ(Pk,n−k(L)) =
∑
λ⊢k

µ⊢n−k

mλ,µχλ,µ, (4)

where mλ,µ is the multiplicity of χλ,µ in the decomposition of χn(L). Hence

ck,n−k(L) =
∑
λ⊢k

µ⊢n−k

mλ,µdλdµ, (5)

where dλ and dµ are, respectively, the dimensions of irreducible Sk- and Sn−k

representations with characters χλ and χµ, respectively.
There is another important series of numerical invariants for estimating the

growth of codimensions. The value lk,n−k(L)

lk,n−k(L) =
∑
λ⊢k

µ⊢n−k

mλ,µ,

is called the partial colength of L. Here, mλ,µ is an integer on the right-hand side
of (4). The total sum

lgrn (L) =

n∑
k=0

lk,n−k(L) =

n∑
k=0

∑
λ⊢k

µ⊢n−k

mλ,µ

is called the graded colength.
An important role is played by the estimate of colength obtained in [22].
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Lemma 1 (see [22; Theorem 1]). Let L = L0⊕L1 be a finite-dimensional Z2-graded
algebra, dimL = d. Then

lgrn (L) ⩽ d(n+ 1)d
2+d+1.

§ 3. Upper estimates for codimension growth

In this section, we obtain an upper bound estimate for codimension growth of
Lie superalgebras close to finite-dimensional. We shall need a technical statement
related to the choice of generators in (Sk × Sn−k)-submodules in Pk,n−k.

Lemma 2. Let M be an irreducible (Sk×Sn−k )-submodule in Pk,n−k with character
χλ,µ , λ = (λ1, . . . , λp) ⊢ k , µ = (µ1, . . . , µq) ⊢ (n − k). Then there exist 0 ̸= f =
f(x1, . . . , xk, y1, . . . , yn−k) ∈ M and decompositions {x1, . . . , xk}=X1 ∪ · · · ∪Xλ1

,
{y1, . . . , yn−k}=Y1∪· · ·∪Yµ1 into disjoint subsets such that f is skew symmetric on
each of the subsets X1, . . . , Xλ1 , Y1, . . . , Yµ1 . Here, the cardinality |Xi| of each Xi ,
1 ⩽ i ⩽ λ1 is equal to the height of the ith column of Young diagram Dλ , whereas
the cardinality of each |Yj |, 1 ⩽ j ⩽ µ1 is equal to the height of the jth column
of the diagram Dµ .

Proof. By the hypotheses of the lemma, M is isomorphic to FSkeTλ
⊗ FSn−keTµ

,
where λ ⊢ k, µ ⊢ (n−k). In particular, M is generated, as an F [Sk×Sn−k]-module,
by elements of type (eTλ

⊗ eTµ
)h, where h = h(x1, . . . , xk, y1, . . . , yn−k) is a mul-

tilinear polynomial. Denote h′ = eTλ
h. If eTλ

has the form (2), and then we
take

h′′(x1, . . . , xk, y1, . . . , yn−k) =

( ∑
σ∈CTλ

(−1)σσ

)
h′.

Let X1 ⊆ {x1, . . . , xk} consist of all xi such that indices i are in the first column
of the tableau Tλ, X2 ⊆ {x1, . . . , xk} consists of all xi such that indices i are in
the second column of Tλ, and so on. Then {x1, . . . , xk} = X1 ∪ · · · ∪Xλ1 , and h′′

is skew symmetric on each of the sets X1, . . . , Xλ1 . Besides, h′′ ̸= 0, since e2Tλ
̸= 0,

and ( ∑
ρ∈RTλ

ρ

)
h′′ = eTλ

h′ = e2Tλ
h.

Next, we set

f =

( ∑
τ∈CTµ

(−1)ττ

)
h′′

and decompose {y1, . . . , yn−k} into the union Y1 ∪ · · · ∪ Yµ1
according to the distri-

bution of the indices yi’s among the columns of Tµ. We have f ̸= 0, and Y1, . . . , Yµ1

satisfy all the required conditions. This completes the proof of Lemma 2.

Recall that any ideal of a Lie superalgebra is by definition homogeneous in
Z2-grading. For an upper bound of codimension growth, we need the following
observation.

Lemma 3. Let L=L0 ⊕L1 be a Lie superalgebra and I0 ⊕ I1 be its nilpotent ideal
of L of finite codimension, Im+1 = 0. Let also d0 = dim(L0/I0), d1 = dim(L1/I1).
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If λ = (λ1, . . . , λp) ⊢ k , µ = (µ1, . . . , µq) ⊢ (n − k) are two partitions such that
mλ,µ ̸= 0 in the decomposition (4) for L, then λd0+1 + · · · + λp ⩽ m and µd1+1 +
· · ·+ µq ⩽ m.

Proof. We fix a basis u1, u2, . . . of L0 such that u1, . . . , ud0
are linearly independent

modulo I0, whereas all the remaining ui lie in I0. Similarly, we choose a basis
v1, v2, . . . in L1 such that v1, . . . , vd1 are linearly independent modulo I1 and vj ∈ I1,
j > d1.

Consider an irreducible Sk × Sn−k-submodule in Pk,n−k with character χλ,µ

and take in M a generator f = f(x1, . . . , xk, y1, . . . , yn−k) and distributions
X1, . . . , Xλ1

, Y1, . . . , Yµ1
constructed in Lemma 2. Suppose that λd0+1+ · · ·+λp ⩾

m + 1. In order to check whether f is an identity of L or not, it is sufficient to
replace variables with elements of fixed bases of corresponding parity. Let exactly
t first columns of the diagram Dλ have the height strictly greater than d0, that is,
|X1|, . . . , |Xt| > d0, |Xt+1| ⩽ d0. If we substitute instead of variables from one of
the sets Xi, 1 ⩽ i ⩽ t, more than d0 basis vectors uj with j ⩽ d0, we get zero value
of f due to skew symmetry. Otherwise, we need to substitute at least

N = (|X1| − d0) + · · ·+ (|Xt| − d0)

basis elements from I. But since

N = λd0+1 + · · ·+ λp ⩾ m+ 1,

and Im+1 = 0, we again obtain zero value for f . Analogously, f ≡ 0, provided
that µd1+1 + · · ·+ µq ⩾ m+ 1. Since the inequality mλ,µ ̸= 0 implies that f is not
an identity of L, the proof of Lemma 3 is completed.

We now estimate the dimensions of irreducible components in the decomposition
of Pk,n−k(L).

Lemma 4. Let λ = (λ1, . . . , λp) ⊢ n be a partition of n such that p ⩾ d + 1 and
λd+1 + · · ·+ λp ⩽ m. Then, given, p and m, the inequality dλ ⩽ nmdn holds.

Proof. Consider a partition ν = (λ1, . . . , λd) of the integer n′ = λ1+· · ·+λd. Hence
n−n′ ⩽ m, and, by Lemma 6.2.4 in [20], dλ ⩽ nmdν and by Corollary 4.4.7 in [20],
we have dν ⩽ dn

′
.

Proposition 1. Let L0 ⊕ L1 be a finite-dimensional Lie superalgebra dimL= d
and let I = I0 ⊕ I1 be a nilpotent ideal in L, Im+1 = 0, dim(L0/I0) = d0 ,
dim(L1/I1) = d1 . Then there exists a polynomial φ(n) depending only on m, d,
d0 and d1 such that

ck,n−k(L) ⩽ φ(n)dk0d
n−k
1 for all 0 ⩽ k ⩽ n. (6)

In particular,
cgrn (L) ⩽ φ(n)(d0 + d1)

n. (7)

Proof. Consider expression (5) for ck,n−k(L). Since all multiplicities mλ,µ are
bounded from above by lgrn (L), we have, by Lemma 1,

ck,n−k(L) = d(n+ 1)d
2+d+1

∑
λ⊢k

µ⊢n−k

dλdµ. (8)
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Skew symmetry considerations applied in the proof of Lemma 3 allow us to claim
that the height of partitions λ and µ (that is, the height of corresponding Young
diagram) does not exceed d. Clearly, the number of such partitions is < nd. Hence,
applying Lemma 3 and 4, we deduce from (8) the bound (6) for some polyno-
mial φ(n). Now inequality (7) follows from (6) and the definition of the graded
codimension. This completes the proof of the proposition.

§ 4. Lie superalgebras of the series S(t)

In this section, we define an infinite series of finite-dimensional solvable Lie
superalgebras with non-nilpotent commutator subalgebra. We will use the following
agreements. If A is a Lie superalgebra, then we denote the product of elements
of A by an ordinary commutator bracket [x, y]. If A is an associative algebra, then
[x, y] = xy − yx. If A = A0 ⊕ A1 is an associative algebra with Z2-grading and x
and y are homogeneous elements from A, then

[x, y] = xy − (−1)|x| |y|yx,

where |x| is the parity of x, that is, 0 or 1. We agree to omit the brackets in the
case of left-normed arrangement, that is, [x1, . . . , xk+1] = [[x1, . . . , xk], xk+1] for all
k ⩾ 2.

First, let R be an arbitrary associative algebra with involution ∗ :R → R. Con-
sider the associative algebra Q = M2(R),

Q =

{(
A B
C D

) ∣∣∣∣ A,B,C,D ∈ R

}
,

and endow Q with the Z2-grading Q = Q0 ⊕Q1 by setting

Q0 =

{(
A 0
0 D

)}
, Q1 =

{(
0 B
C 0

)}
.

It is well-known that Q with the product [ · , · ] is a Lie superalgebra. Given
an associative algebra R with involution, we denote by R+ and R− the subspaces
of symmetric and skew elements of R, respectively:

R+ = {x ∈ R | x∗ = x}, R− = {x ∈ R | x∗ = −x}.

Hence the subspace

L =

{(
x y
z −x∗

) ∣∣∣∣ x ∈ R, y ∈ R+, z ∈ R−
}

(9)

is also a Lie superalgebra with the same product as in R where

L0 =

{(
x 0
0 −x∗

)}
, L1 =

{(
0 y
z 0

)}
.

Remark 1. In fact, one of the series of simple Lie superalgebras, namely p(t), is
constructed in this way (see, for example, [23]).
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Remark 2. For the Lie superalgebra L constructed above, the following conditions
are equivalent:

1) L is solvable,
2) L0 is a solvable Lie algebra,
3) R is Lie solvable,
4) the maximal semisimple subalgebra of R is commutative.

Thus, the proposed construction gives us a wide class of finite-dimensional
solvable Lie superalgebras with non-nilpotent (as a rule) commutator subalge-
bra. As an example, we can take the algebra of upper triangular (t × t)-matrices
R = UTt(F ), the finite-dimensional incidence algebra, or any associative subalgebra
in UTt(F ). We restrict ourselves to the case R = UTt(F ).

Recall the description of involutions on UTt(F ). One of them ◦ : R → R
is the reflection along the secondary diagonal. That is, e◦ij = et+1−j,t+1−i (eij are
the matrix units). It is defined for all t ⩾ 2. We will call it orthogonal. Another
one if defined only for even t. Let t = 2m. We set

D =

(
E 0
0 −E

)
,

where E is the identity (m×m)-matrix. The map s : R → R,

Xs = DX◦D−1,

is also an involution on R. It is said to be symplectic. If we write X as

X =

(
U V
0 W

)
,

then
Xs =

(
W ◦ −V ◦

0 U◦

)
.

Proposition 2 (see [24; Proposition 2.5]). Any involution on UTt(F ) is equivalent
to ◦ or s.

Definition. A Lie superalgebra (S(t), ∗), t ⩾ 2, is algebra (9), where R = UTt(F )
and ∗ = ◦ or s, is the orthogonal or symplectic involution on R.

Sometimes we will denote both (S(t), ◦) and (S(t), s) just by S(t). We need
multiplication formulas in L:[(

A 0
0 −A∗

)
,

(
0 B
0 0

)]
=

(
0 AB +BA∗

0 0

)
, (10)[(

A 0
0 −A∗

)
,

(
0 0
C 0

)]
=

(
0 0

−A∗C − CA 0

)
, (11)[(

A 0
0 −A∗

)
,

(
B 0
0 −B∗

)]
=

(
AB −BA 0

0 −(AB −BA)∗

)
, (12)[(

0 B
0 0

)
,

(
0 0
C 0

)]
=

(
BC 0
0 CB

)
. (13)



Codimensions of identities of solvable Lie superalgebras 647

Let us introduce a few more notation. First, we note that both involutions ◦
and s act similarly on diagonal matrix units: e∗ii = et+1−i,t+1−i. Now, for even
t = 2m ⩾ 2 or for odd t = 2m+ 1 ⩾ 3, we denote

Xi =

(
eii − e∗ii 0

0 eii − e∗ii

)
, Yi =

(
0 eii + e∗ii
0 0

)
, Zi =

(
0 0

eii − e∗ii 0

)
for all i = 1, . . . ,m, and

Eij =

(
eij 0
0 −e∗ij

)
, 1 ⩽ i < j ⩽ t, I =

(
E 0
0 −E

)
, Y0 =

(
0 E
0 0

)
,

where E is the identity (t × t)-matrix. The following relations follow from multi-
plication formulas (10)–(13):

[Xi.Yj ] = [Xi, Zj ] = [Xi, Xj ] = 0, [Yi, Zj ] = δijZi, 1 ⩽ i, j ⩽ m, (14)

where δij is the Kronecker delta. We also have

[Eik, Ekj ] = Eij , 1 ⩽ i < k < j ⩽ 2m,

[Ek,k+1, Xk+1] = −[Ek,k+1, Xk] = Ek,k+1,

[Ek,k+1, Xj ] = 0, j ̸= k, k + 1, [I, Eij ] = 0, [I, Y0] = 2Y0. (15)

To conclude this section, we give a lower bound for the PI-exponent.

Proposition 3. Let L be a Lie superalgebrra of type S(t). Then exp gr(L) ⩽ 2t
for even t or exp gr(L) ⩽ 2t− 1 for odd t.

Proof. We first note that, in addition to Z2-grading, the algebra L is also endowed
with Z-grading of type L = L(0)⊕· · ·⊕L(t−1). The initial algebra R has Z-grading
R = R(0) ⊕ · · · ⊕R(t−1), where

R(k) = Span{eij | j − i = k}.

Now, if we put

L(k) =

{(
A B
C −A∗

) ∣∣∣∣ A ∈ R(k), B ∈ R+ ∩R(k), C ∈ R− ∩R(k)

}
,

then the multiplication rules (10)–(13) show that L = L(0) ⊕ · · · ⊕ L(t−1) is the
required Z-decomposition. All the subspaces L(j) are homogeneous in Z2-grading,
hence L(1) ⊕ · · · ⊕ L(t−1) is an ideal of L of codimension 2t. Since this ideal is
nilpotent, Proposition 1 completes the proof for even t.

Now let t = 2m+ 1. In order to apply Proposition 1 again, it is enough to show
that I = ⟨b⟩+ L(1) ⊕ · · · ⊕ L(t−1) is a nilpotent ideal of L, where

b =

(
0 Em+1,m+1

0 0

)
∈ L1 ∩ L(0).

First, we need to check that [a, b] ∈ I if a is an even or odd element from L(0). If a is
even, then [a, b] = αb, α ∈ F , as follows from (10) and the definition of L(0). If

a =

(
0 c
0 0

)
, (16)
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then [ab] = 0, since the product of any two elements of type (16) is zero. On the
other hand, if

a =

(
0 0
c 0

)
,

then c is a diagonal matrix with zero entry at the (m+1)th position. Hence [a, b] = 0
according to (13).

Now let us prove that I4t = 0. Let a = [b1, . . . , b4t] be a left-normed commutator
of elements which are homogeneous both in Z2- and in Z-gradings. If, among bi’s,
there appear at least t factors from L(1) ⊕ · · · ⊕L(t−1), then a = 0, as follows from
Z-grading arguments. On the other hand, if the number of such factors is smaller
than t, then b appears at least three times in a row, since I(0) = ⟨b⟩. In this case, we
also have a = 0, since (ad b)3 = 0, and since adx is the operator of the right-hand
side multiplication on x. We have

dim(L/I) = 2m+ 1 + 2m = 2t− 1,

and now the required result follows again from Proposition 1. This proves Propo-
sition 3.

§ 5. Exponents of superalgebras of series S(t)

For a lower bound of codimension growth, we need to consider multialternat-
ing polynomials. It will be convenient to use the following agreement. If some
expression depends on skew symmetric set of arguments, then instead of alternat-
ing sum we will mark these arguments from above by some common symbol (line,
tilde, etc.). For example,

x̃1 · · · x̃n =
∑
σ∈Sn

xσ(1) · · ·xσ(n)

is the standard polynomial in an associative algebra,

xyzt = xyzt− xtzy,

and
x yzx y = xyzxy − yyzxx = xyzxy − xxzyy − yyzxx+ yxzyx.

We first consider superalgebras S(t) with even t.

Lemma 5. Let S(t) be a Lie superalgebra defined by orthogonal or symplectic invo-
lution ∗ and t = 2m. Then expgr(L) ⩾ 4m.

Proof. In the algebra of upper triangular matrices UT2m, we have the following
relation:[

[e12, e11], . . . , [em,m+1, emm]
]
=

[
[e12, e11], . . . , [em,m+1, emm]

]
= (−1)me1,m+1.

It follows that

a1 =
[
[E12, E11], . . . , [Em,m+1, Emm]

]
=

[
[E12, E11], . . . , [Em,m+1, Emm]

]
= (−1)mE1,m+1. (17)
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The expression a1 contains an alternating set of even elements E11, . . . , Emm. Let
us complicate its construction by adding m-alternating odd set. Since [Yi, Zi] = Xi,
[Yi, Zj ] = 0 if i ̸= j (see (14)) and [Ek,k+1, Xk+1] = [Ek,k+1, Ek+1,k+1] (see (15)),
we have [[

E12, [Ỹ1, Z1]
]
, . . . , [Em,m+1,

[
Ỹm, Zm]

]]
=

[[
E12, [Y1, Z1]

]
, . . . ,

[
Em,m+1, [Ym, Zm]

]]
= (−1)m[E12, . . . , Em,m+1] = (−1)mE1,m+1.

Now let us double the number of alternating odd elements. We put

a2 =
[[
E12, [Ỹ1, Z1], [Y1, Z̃1]

]
, . . . ,

[
Em,m+1, [Ỹm, Zm], [Ym, Z̃m]

]]
.

Since [Zi, Zj ] = 0 if i ̸= j, we can omit an alternation in a2 not changing the value
of whole expression, that is

a2 =
[[
E12, [Y1, Z1], [Y1, Z1]

]
, . . . ,

[
Em,m+1, [Ym, Zm], [Ym, Zm]

]]
.

Finally, we put

a3 =
[[
E12, E11, [Ỹ1, Z1], [Y1, Z̃1]

]
, . . . ,

[
Em,m+1, Emm, [Ỹm, Zm], [Ym, Z̃m]

]
,

[Em+1,m+2, Em+1,m+1], . . . , [E2m−1,2m, E2m−1,2m−1], [Y0, I]
]
.

It follows from the multiplication formulas (14), (15) that one can omit both alter-
nations in a3 preserving the value. In particular,

a3 =
[
E1,2m−1, [Y0, I]

]
= 2[E1,2m−1, Y0] = 2

(
0 e1,2m−1 ± e2,2m
0 0

)
, (18)

where the plus or minus sign on the right-hand side of (18) depends on the choice
of the involution ∗.

The construction of the element a3 allows us to replicate skew symmetric sets
of even factors {Ei,i, I} as well as odd factors {Yi, Zi} of A. Namely, we set

A
(0)
i =

[
Ei,i+1,

[
Y

(1)
i , Z

(0)
i

]]
,

A
(1)
i =

[
A0

i ,
[
Y

(2)
i , Z

(1)
i

]]
,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

A
(p)
i =

[
Ap−1

i ,
[
Y

(p+1)
i , Z

(p)
i

]]
.

Here, all Y (j)
i are copies of the element Yi. We use the upper index only for further

indication of the alternation set in which it will be included. A similar remark
holds also for Z

(j)
i .

Further, we set

A
(p,1)
i =

[
A

(p)
i , E

(1)
ii

]
, . . . , A

(p,q)
i =

[
A

(p,q−1)
i , E

(q)
ii

]
,
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and, for j = m+ 1, . . . , 2m− 1, we define

A
(0)
j = Ej,j+1,

A
(1)
j =

[
A

(0)
j , E

(1)
jj

]
,

. . . . . . . . . . . . . . . . . . . . .

A
(q)
j =

[
A

(q−1)
j , E

(q)
jj

]
.

Finally,
A

(1)
2m = [Y0, I

(1)], . . . , A
(q)
2m =

[
A

(q−1)
2m , I(q)

]
.

Now let
W (p,q) =

[
A

(p,q)
1 , . . . , A(p,q)

m , A
(q)
m+1, . . . , A

(q)
2m

]
for all p, q ⩾ 1. Note that for computing the value of the product W (p,q) it is
useful to remember that the right-hand multiplication by Eii commutes with the
right-hand multiplication by [Yi, Zi] = Xi.

The commutator W (p, q) depends on
• p sets of odd elements Y

(i)
1 , . . . , Y

(i)
m , Z(i)

1 , . . . , Y
(i)
m , 1 ⩽ i ⩽ p, of size 2m;

• q sets of even elements E
(j)
11 , . . . , E

(j)
2m−1,2m−1, I

(j), 1 ⩽ j ⩽ q, of size 2m;
• and also on 4m factors E12, . . . , E2m−1,2m, Y0, Z

(0)
1 , . . . , Z

(0)
m , Y

(p+1)
1 , . . . ,

Y
(p+1)
m outside these sets.

Applying to W (p,q) the alternation on the sets of order 2m, we get the expression

W̃ (p,q) = Alt
(0)
1 · · ·Alt(0)q Alt

(1)
1 · · ·Alt(1)p (W (p,q)).

Here, Alt(0)j is the alternation on E
(j)
11 , E(j)

2m−1,2m−1 and I(j), whereas Alt
(1)
i is the

alternation on Y
(i)
1 , . . . , Y

(i)
m , Z(i)

1 , . . . , Z
(i)
m .

As in computing expressions a1, a2 and a3, alternation in W̃ (p,q) does not play
any role, that is,

W̃ (p,q) = W (p,q) = ±2q[E1,2m−1, Y0] ̸= 0. (19)

Now we construct w̃(p,q) in F{X,Y } using the same procedure as for the product
W̃ (p,q), only changing E12, . . . , E2m−1,2m by the even generators x12, . . . , x2m−1,2m,
changing E

(j)
11 , . . . , E

(j)
2m−1,2m−1, I

(j) by the even generators x(j)
1 , . . . , x

(j)
2m,2m, chang-

ing Y
(i)
1 , . . . , Y

(i)
m by odd y

(i)
1 , . . . , y

(i)
m , changing Z

(i)
1 , . . . , Z

(i)
m by odd z

(i)
1 , . . . , z

(i)
m ,

and replacing Y0 with odd y0.
The element w̃(p,q) includes q skew symmetric sets of even variables X(j) =

{x(j)
1 , . . . , x

(j)
2m}, 1 ⩽ j ⩽ q, and p skew symmetric sets of odd variables Y (i) =

{y(i)1 , . . . , y
(i)
m , z

(i)
1 , . . . , z

(i)
m }. In addition to these variables, w̃(p,q) contains 4m vari-

ables x12, . . . , x2m−1,2m, y0, y
(p+1)
1 , . . . , y

(p+1)
m , z

(0)
1 , . . . , z

(0)
m not participating in

alternations.
Fixing now n = 2mp + 2mq + 4m and k = 2mq + 2m − 1, we have n − k =

2mp + 2m + 1. The subgroup H = S2mq × S2mp of Sk × Sn−k acts on the space
Pk,n−k. The left factor S2mq acts on X = X(1) ∪ · · · ∪ X(q), whereas S2mp acts
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on Y = Y (1) ∪ · · · ∪ Y (p). Relation (11) means that w̃(p, q) is not an identity
of L. Moreover, φ(w̃(p, q)) ̸= 0 for the evaluation φ such that φ(X) ⊆ V0, φ(Y ) ⊆
(V1), where V0 = L0 ∩ L(0), V1 = L1 ∩ L(0) are subspaces of dimension 2m. It
follows from the structure of essential idempotent (see (2)) and skew symmetry of
w̃(p, q) that the decomposition of the FH-submodule in Pk,n−k generated by w̃(p, q)
involves only irreducible components with character χλ,µ, where

λ = (q2m) = (q, . . . , q︸ ︷︷ ︸
2m

), µ = (p2m) = (p, . . . , p︸ ︷︷ ︸
2m

)

are two rectangular partitions. Hence ck,n−k(L) ⩾ degχλ,µ = dλdµ.
It is well-known that the dimension of an irreducible representation with rect-

angular Young diagram is exponential, where the ratio of exponent is the height of
the diagram. For example, by Lemma 5.10.1 in [20], for ν = sd ⊢ N = sd for all s
large enough,

dν > N−d(d−1)/2dN

provided that d is fixed. In our case, for k = N + 2m− 1, N = 2mq, we have

dλ >
1

Nm(m−1)
(2m)k−2m+1 >

1

nm(m−1)

(2m)k

(2m)2m−1
.

Similarly,

dµ >
1

nm(m−1)

(2m)n−k

(2m)2m+1
.

Hence we have proved the inequality

ck,n−k >
1

n2m(m−1)(2m)2m
(2m)n (20)

for k = 2mq + 2m− 1, n− k = 2mp+ 2m+ 1.
To obtain an analogous lower bound estimate for ck,n−k for arbitrary k and n−k

large enough, we note that[
W̃ (p,q), E11, . . . , E11︸ ︷︷ ︸

r

]
̸= 0,

[
W̃ (p,q), [Y1, Z1], . . . , [Y1, Z1]︸ ︷︷ ︸

r

]
̸= 0

in L for any r ⩾ 1. Hence the polynomial

[w̃(p,q), x1, . . . , xi, y1, . . . , yj ] (21)

is not a graded identity of L.
Now, for an arbitrary pair k, n, we can find 0 ⩽ i, j ⩽ 2m − 1, p and q such

that k = k0 + i, n = n0 + j, where k0 = 2mq + 2m − 1, n0 − k0 = 2mp + 2m + 1.
Proceeding with polynomial (21) as for w̃(p,q), we obtain the lower bound

dimPk,n−k(L) ⩾ dλdµ ⩾
(2m)k0

n
m(m−1)
0 (2m)2m−1

(2m)n0−k0

n
m(m−1)
0 (2m)2m+1

⩾
(2m)n0

n2m(m−1)(2m)4m
=

(2m)n

n2m(m−1)(2m)4m+j
.
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Hence, taking into account (20), we get the restriction

ck,n−k(L) ⩾
(2m)n

n2m(m−1)(2m)8m

for all k and n− k large enough. Hence

cgrn (L) ⩾
(2m)n

n2m(m−1)(2m)8m

n−C∑
k=C+1

(
n

k

)
, (22)

where C is some constant depending only on m. Since the sum of the binomial
coefficients is 2n, we obtain from (22) the estimate

expgr(L) ⩾ 4m

for the lower limit, thereby completing the proof of Lemma 5.

Now consider the case of odd t.

Lemma 6. Let t = 2m + 1 and l = s(t) = (S(t), ◦). Then expgr(L) ⩾ 2t − 1 =
4m+ 1.

Proof. The proof in this case largely repeats that of Lemma 5, we omit the
repetitive details. The values A

(p)
i and A

(p,q)
i , 1 ⩽ i ⩽ m, remain the same

under the above notation. Also, A
(1)
j , . . . , A

(q)
j , m + 1 ⩽ j ⩽ 2m − 1 do not

change. The elements A
(1)
2m, . . . , A

(q)
2m are defined inductively: A

(1)
2m = E

(1)
2m,2m+1,

. . . , A
(q)
2m = [A

(q−1)
2m , E

(q)
2m,2m], and A

(q)
2m+1 is defined as A

(q)
2m in Lemma 5. In the

expression for W (p,q), we need to replace the last factor A
(q)
2m by A

(q)
2m+1.

The modified element w̃(p,q) depends on q skew symmetric sets of even variables
of order 2m + 1, depends on p skew symmetric of odd sets variables of order 2m,
and has total degree n = 2mp+(2m+1)q+4m+1. The lower bounds for dλ and dµ
are slightly different:

dλ >
1

nm(2m+1)

(2m+ 1)k

(2m+ 1)2m
, dµ >

1

nm(2m+1)

(2m)n−k

(2m)2m+1
,

where λ = (q2m+1), µ = (p2m); for ck,n−k(L), we have

ck,n−k(L) ⩾
(2m+ 1)k(2m)n−k

n2m(2m+1)(2m+ 1)8(m+1)
.

Therefore, the lower bound estimate for graded codimension takes the form

cgrn (L) ⩾
1

n2m(2m+1)(2m+ 1)8(m+1)

n−C∑
k=C+1

(
n

k

)
(2m+ 1)k(2m)n−k,

which implies
expgr(L) ⩾ 4m+ 1,

This completes the proof of Lemma 6.
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The main result of the paper is now immediate from Lemmas 5, 6, and Propo-
sition 3.

Theorem 1. Let L = (S(t), ∗) be a Lie superalgebra of type S(t), where ∗ is the
orthogonal or symplectic involution. Then the graded PI-exponent of L exists, and

• expgr(L) = 2t if t is even;
• expgr(L) = 2t− 1 if t is odd.
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[17] D. D. Repovš and M. V. Zaicev, “Codimension growth of solvable Lie

superalgebras”, J. Lie Theory 28:4 (2018), 1189–1199.
[18] Yu. A. Bahturin, Identical relations in Lie algebras, Utrecht, VNU Science Press,

b.v. 1987.
[19] V. Drensky, Free algebras and PI-algebras. Graduate course in algebra, Springer-

Verlag, Singapore 2000.

https://doi.org/10.1007/BF00968976
https://doi.org/10.1007/BF00968976
https://doi.org/10.1007/BF00968976
https://doi.org/10.1007/BF02762615
http://mi.mathnet.ru/eng/rm5097
http://mi.mathnet.ru/eng/rm5097
https://doi.org/10.1016/S0024-3795(02)00356-7
https://doi.org/10.1016/S0024-3795(02)00356-7
https://doi.org/10.1090/S0002-9947-09-04865-X
https://doi.org/10.1090/S0002-9947-09-04865-X
https://doi.org/10.1070/RM1990v045n06ABEH002710
https://doi.org/10.1070/RM1990v045n06ABEH002710
https://doi.org/10.1007/BF02356067
https://doi.org/10.1007/BF02356067
https://doi.org/10.1007/s10469-008-9022-0
https://doi.org/10.1007/s10469-008-9022-0
https://doi.org/10.1080/00927870903386494
https://doi.org/10.1080/00927870903386494
https://doi.org/10.1006/aima.1998.1766
https://doi.org/10.1006/aima.1998.1766
https://doi.org/10.1006/aima.1998.1790
https://doi.org/10.1006/aima.1998.1790
https://doi.org/10.1070/IM2002v066n03ABEH000386
https://doi.org/10.1070/IM2002v066n03ABEH000386
https://doi.org/10.1016/j.aam.2010.04.007
https://doi.org/10.1016/j.aam.2010.04.007
https://doi.org/10.1112/jlms/jdr059
https://doi.org/10.1112/jlms/jdr059
https://doi.org/10.1007/s10468-013-9453-8
https://doi.org/10.1007/s10468-013-9453-8
https://doi.org/10.1016/j.jalgebra.2014.08.042
https://doi.org/10.1016/j.jalgebra.2014.08.042
https://zbmath.org/?q=an:1441.17006
https://zbmath.org/?q=an:1441.17006
https://zbmath.org/?q=an:0691.17001
https://zbmath.org/?q=an:0691.17001
https://zbmath.org/?q=an:0936.16001
https://zbmath.org/?q=an:0936.16001


654 M. V. Zaicev and D. D. Repovš
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