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EXTRA MASS SUPERCRITICAL NONLINEARITY

© JIABIN ZUO, YUYOU ZHONG, DUŠAN D. REPOVŠ

This paper is concerned with the existence of normalized ground state so-
lutions for the mass supercritical fractional nonlinear Schrödinger equation
involving a critical growth in the fractional Sobolev sense. The compact-
ness of Palais–Smale sequences will be obtained by a special technique,
which borrows from the ideas of Soave (J. Funct. Anal. 279 (6) (2020),
art. 1086102020). This paper represents an extension of previously known
results, both in the local and the nonlocal cases.

§1. Introduction

This paper is devoted to the following fractional Sobolev critical nonlinear
Schrödinger equation (NLSE) in RN (N > 2):{

(−∆)su = µu+ |u|2∗s−2u+ η|u|p−2u,
‖u‖2L2 = m2,

(1.1)

where s ∈ (0, 1), µ ∈ R is an unknown real number (which will appear as
a Lagrange multiplier), 2∗s is the fractional Sobolev critical exponent, η > 0,
p ∈ (2 + 4s

N , 2
∗
s), m > 0 is a finite parameter, and (−∆)s is the fractional

Laplace operator defined by

(−∆)su(x) = C(N, s) lim
ε→0+

∫
RN\Bε(x)

u(x)− u(y)

|x− y|N+2s
dy,

where C(N, s) is the dimensional constant, which depends on N and s (for
more details we refer the interested reader to Di Nezza et al. [6]).

The fractional Schrödinger equation originated from Laskin’s paper [10], and
in recent years, the interest in its study has grown considerably. It is worthwhile
and very interesting to look for normalized solutions to such equations that
have a prescribed L2-norm, because they represent the physical view of the
conservation of mass.

Ключевые слова: normalized solutions; fractional Schrödinger equation; mass supercrit-
ical; Sobolev critical.
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The existence and properties of normalized solutions for certain problems
strongly depend on the behavior of the combined nonlinearity g(u) = |u|q−2u+
η|u|p−2u, where 2 < p < q < 2∗s. Zhang et al. (see [13]) investigated a class
of Sobolev subcritical fractional NLSEs where the parameters p and q are in
different order, and they obtained several interesting results concerning the
existence of normalized solutions. In particular, when the degree of nonlinear-
ity g(u) exceeds the mass critical index 2 + 4s/N , the functional turns out
to be unbounded from below, which makes it impossible to adopt the direct
variational method.

Secchi and Appolloni [2] studied the existence and multiplicity of ground
state normalized solutions for the fractional mass supercritical NLSEs by using
the min-max theory under more general assumptions, but in the Sobolev sub-
critical sense. Under certain conditions on the potential, Peng et al. (see [14])
showed that NLSE has at least one normalized solution, with the help of a
new min-max argument and the splitting lemma for nonlocal version also in
the case when the mass is supercritical and Sobolev subcritical.

However, to the best of our knowledge, there are very few papers on normal-
ized solutions of fractional NLSEs. Moreover, they only consider the Sobolev
subcritical case. Therefore it is natural to inquire what difficulties appear when
a fractional Sobolev critical nonlinearity is considered. For example, Zhen and
Zhang [18] investigated a critical fractional NLSE with an L2-supercritical
perturbation, but their coefficient of perturbation was not allowed to be suffi-
ciently large. While in the present paper, η can be large because η ∈ [η∗,+∞).
Very recently, almost at the time of our study, Li and Zou [11] considered the
same problem using the concentration compactness principle for overcoming
the lack of compactness. With the above methods and techniques, Zuo and
Rǎdulescu [20] investigated the existence and nonexistence of normalized solu-
tions for a class of fractional mass supercritical nonlinear Schrödinger coupled
systems with Sobolev critical nonlinearities. In response to this difficulty, we
consider a technical analysis method combined with the Brézis-Lieb lemma,
which comes from the ideas of Soave [16].

Of course, in the case when s→ 1, the fractional Laplacian (−∆)s reduces to
the classical Laplace operator −∆, the literature on the relevant problem (1.1)
is very large. Here we shall only mention some key papers, which are relevant to
our study. Brézis and Nirenberg [4] presented a pioneering work. Later, many
researchers made important progress in this field. For L2-supercritical pertur-
bation η|u|p−2u, Soave [16] made the first contribution concerning the existence
of normalized solutions for NLSEs in the Sobolev critical case. Next, Alves et
al. in [1] obtained a similar result for this kind of NLSEs when dimension N is
at least 5, and η is sufficiently large. In particular, under weaker, more general
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conditions, Jeanjean and Lu (see [9]) proved the existence of ground states
and established the asymptotic behavior of the ground state energy with mass
change. They also obtained infinitely many radial solutions when N > 2, and
established the existence and multiplicity of nonradial sign-changing solutions
for every N > 4.

Inspired by the work mentioned above, in this paper we consider the problem
of existence for ground state normalized solutions of fractional Sobolev critical
NLSEs with a mass supercritical nonlinearity. Compactness can be restored by
combining some of the main ideas of Brézis and Nirenberg [4] and Jeanjean [8].
In order to introduce the main result of this paper, we first define a fractional
Sobolev space:

Hs(RN ) =

u ∈ L2(RN )
∣∣ [u]2Hs =

∫ ∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dxdy <∞

 ,

in which the norm is defined by

‖u‖ = (‖u‖2L2 + [u]2Hs)
1
2 .

For convenience, we shall simply denote the norm of the Lebesgue space Lp(RN )
by ‖u‖p for p ∈ [1,∞). A standard method for investigating problem (1.1) is
to find critical points of the following energy functional:

Iη(u) =
1

2
[u]2Hs −

1

2∗s
‖u‖2

∗
s

2∗s
− η

p
‖u‖pp,

restricted to the set

S(m) =
{
u ∈ Hs(RN )

∣∣‖u‖22 = m2
}
.

Obviously, Iη is of class C1 in Hs(RN ).
Now, we can state our main result.

Theorem 1.1. Assume that N > 2 and p ∈ (2 + 4s
N , 2

∗
s). Then for every

m > 0, there exists η∗ = η∗(m) > 0 such that for every η > η∗, problem (1.1)
admits a radial normalized solution ũ whose associated Lagrange multiplier µ
is negative.

Remark 1.1. Our conclusion can be regarded as an extension of Alves et
al. [1, Theorem 1.1].

Remark 1.2. According to Theorem 1.1 and Zhen and Zhang [18, Theorem
1.3:(1)–(2)], we know that the existence of a radial normalized ground state is
possible when η is sufficiently small or sufficiently large, however it remains an
open problem for the rest of the range of η.
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Remark 1.3. If N = 4s or p
p−12s < N < 4s or 2s < N < p

p−12s, we
can get our conclusion without any restriction on η, see Zhen and Zhang [18,
heorem 1.3(3)]. If we further assume that N2 > 8s2, then we can also arrive
at a similar conclusion, but in this case we view the mass m as the parameter
instead of η, see Zhang and Han [17, Theorem 1.3].

The paper is organized as follows. §2 contains the proofs of some important
lemmas, which play a key role in the proof of the compactness condition. In
§3, we prove the strong convergence of the Palais-Smale sequence at some level
set, using a special technique. In §4, we prove Theorem 1.1.

§2. Main lemmas

Although the study of normalized solutions is convenient for applications, it
also presents some difficulties. For example, the Nehari manifold method can-
not be used because the constant µ is unknown. This also makes it difficult to
verify the boundedness of Palais–Smale sequences by employing some common
methods.

To this end, following Soave [16], let

ζp = (Np− 2N)/2ps, for every p ∈ (2, 2∗s], (2.1)

(it is easy to see that ζp ∈ (0, 1]) and define the Pohozaev manifold

Pη,m = {u ∈ S(m)|Pη(u) = 0}, where Pη(u) = [u]2Hs − ‖u‖2
∗
s

2∗s
− ηζp‖u‖pp,

where the definition of ζp is related to (2.4). It is well known that any critical
point of Iη|S(m) stays in Pη,m, as a consequence of Zhen and Zhang [18, Propo-
sition 2.1 and Remark 2.1].

In order to get the mountain pass geometry, we are going to introduce a
scaling transformation. For u ∈ S(m) and ξ ∈ R, we let

(ξ ? u)(x) = e
Nξ
2 u(eξx) = v(x), for a.e. x ∈ RN ,

which is based on a very interesting idea from Jeanjean [8]. A careful analysis
shows that the transformed functional Ĩη = Iη(ξ ? u) has the same mountain
pass geometry and mountain pass level as the original functional Iη(u).

For the reader’s convenience, we give the proof of the following lemma, which
can also be found in Li and Zou [11].

Lemma 2.1. Assume that u ∈ S(m) is arbitrary but fixed. Then we have:
(1) [ξ ? u]2Hs → 0 and Iη(ξ ? u)→ 0, as ξ → −∞;
(2) [ξ ? u]2Hs → +∞ and Iη(ξ ? u)→ −∞, as ξ → +∞.
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Proof. By direct calculation, we get

[ξ ? u]2Hs = e2ξs

∫ ∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dxdy = e2ξs[u]2Hs ,

‖ξ ? u‖ββ = e
(β−2)Nξ

2 ‖u‖ββ, for every β > 2.

(2.2)

On the basis of (2.2), we have

[ξ ? u]2Hs → 0, as ξ → −∞,

Iη(ξ ? u) =
1

2
[ξ ? u]2Hs −

1

2∗s
‖ξ ? u‖2

∗
s

2∗s
− η

p
‖ξ ? u‖pp → 0, as ξ → −∞,

thereby demonstrating (1).
On the other hand, from (2.2) it follows that [ξ ?u]2Hs → +∞, as ξ → +∞.

Moreover

Iη(ξ ? u) =
1

2
e2ξs[u]2Hs −

1

2∗s
e

(2∗s−2)Nξ

2 ‖u‖2
∗
s

2∗s
− η

p
e

(p−2)Nξ
2 ‖u‖pp → −∞,

as ξ → +∞, because p ∈ (2 + 4s
N , 2

∗
s), which in turn demonstrates (2). This

completes the proof of Lemma 2.1. �

The following two inequalities (the fractional Sobolev inequality (2.3) and
the fractional Gagliardo–Nirenberg inequality (2.4)) play an important role in
our proof of the main result in §4.

Thanks to Servadei and Valdinoci [15], there exists a optimal fractional
critical Sobolev constant S > 0 such that

S‖u‖22∗s 6 [u]2Hs , for every u ∈ Hs(RN ). (2.3)

Also, according to Frank et al. [7], there exists an optimal constant C(N, p, s)
such that for every p ∈ (2, 2∗s), we have

‖u‖pp 6 Cp(N, p, s)[u]
pζp
Hs ‖u‖p(1−ζp)

2 for every u ∈ Hs(RN ), (2.4)

where ζp is given by (2.1).
In the following lemma, we give a specific value of ρ(m, η) and analyze

the asymptotic behavior of ρ(m, η) when η is sufficiently large, which is more
detailed than in Luo and Zhang [13, Lemma 5.2].

Let

Sr(m) = S(m)
⋂
Hs

rad(RN ) = {u ∈ S(m) : u(x) = u(|x|)}.

Lemma 2.2. There exists a sufficiently small ρ(m, η) > 0 such that

0 < inf
u∈X

Iη(u) 6 sup
u∈X

Iη(u) < inf
u∈Y

Iη(u),
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with

X =
{
u ∈ Sr(m), [u]2Hs 6 ρ(m, η)

}
, Y =

{
u ∈ Sr(m), [u]2Hs = 2ρ(m, η)

}
.

Moreover, ρ(m, η)→ 0 as η →∞.
Proof. In view of (2.3) and (2.4), we get

1

2∗s
‖v‖2

∗
s

2∗s
+
η

p
‖v‖pp 6

1

2∗sS
2∗s
2

([v]2Hs)
2∗s
2 +

ηCp(N, p, s)

p
([v]2Hs)

Np−2N
4s m

2sp−Np+2N
2s .

(2.5)
Then for every u ∈ Sr(m), fixing [u]2Hs 6 ρ(m, η) and [v]2Hs = 2ρ(m, η), where
ρ(m, η) is a positive number that depends on m and η, one has

Iη(v)− Iη(u) >
1

2
[v]2Hs −

1

2
[u]2Hs −

1

2∗s
‖v‖2

∗
s

2∗s
− η

p
‖v‖pp

>
1

2
ρ(m, η)− 2

2∗s
2

2∗sS
2∗s
2

(ρ(m, η))
2∗s
2

− ηCp(N, p, s)

p
2
Np−2N

4s (ρ(m, η))
Np−2N

4s m
2sp−Np+2N

2s .

Thus, choosing

ρ(m, η)

= min


(

p

8ηCp(N, p, s)2
Np−2N

4s m
2sp−Np+2N

2s

) 4s
Np−2N−4s

,

(
2∗s
8

)N−2s
2s
(
S
2

)N
2s

 ,

(2.6)

we can deduce that

1

2
ρ(m, η)− 2

2∗s
2

2∗sS
2∗s
2

(ρ(m, η))
2∗s
2

− ηCp(N, p, s)

p
2
Np−2N

4s (ρ(m, η))
Np−2N

4s m
2sp−Np+2N

2s > 0.

Now, by (2.5) and the definition of ρ(m, η) in (2.6), we get

Iη(u) >
1

2
[u]2Hs −

2
2∗s
2

2∗sS
2∗s
2

[u]
2∗s
Hs −

ηCp(N, p, s)

p
2
Np−2N

4s m
2sp−Np+2N

2s [u]
Np−2N

2s
Hs > 0,

which means that the inequality in Lemma 2.2 holds true. Finally, the re-
lation lim

η→∞
ρ(m, η) = 0 also follows from (2.6). This completes the proof of

Lemma 2.2. �
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Next, fix u0 ∈ Sr(m). It follows from Lemma 2.1 and Lemma 2.2 that there
exist numbers ξ1 = ξ1(m, η, u0) < 0 and ξ2 = ξ2(m, η, u0) > 0 such that the
functions u1,η = ξ1 ? u0, u2,η = ξ2 ? u0 satisfy

[u1,η]
2
Hs <

ρ(m, η)

2
, [u2,η]

2
Hs > 2ρ(m, η), Iη(u1,η) > 0, and Iη(u2,η) < 0.

Now, in a way similar to the discussion in Jeanjean [8] or Luo and Zhang [13,
Proposition 5.3], we fix the minimax

Eη(m) = inf
ψ∈Γ

max
t∈(0,1]

Iη(ψ(t)),

where

Γ = {ψ ∈ C([0, 1], Sr(m)) : [ψ(0)]2Hs < ρ(m, η)/2, Iη(ψ(1)) < 0}.
By virtue of Lemma 2.2, we know that

[ψ(1)]2Hs > ρ(m, η), for every ψ ∈ Γ.

Therefore there exists t0 ∈ (0, 1) such that

[ψ(t0)]2Hs = ρ(m, η)/2 and max
t∈[0,1]

Iη(ψ(t)) > Iη(ψ(t0)) > inf
u∈X

Iη(u) > 0,

therefore Eη(m) > 0.
The following lemma is a key step to analyze the level value of the mountain

pass, so we present a more detailed calculation process (in comparison with Li
and Zou [11]).

Lemma 2.3. lim
η→∞

Eη(m) = 0.

Proof. Fix u0 ∈ Sr(m), and consider the path ψ0(t) = [(1−t)ξ1 +tξ2]?u0 ∈ Γ.
We have

Eη(m) 6 max
t∈[0,1]

Iη(ψ0(t)) 6 max
r>0

{
1

2
r2[u0]2Hs −

η

p
r
Np−2N

2s ‖u0‖pp
}
.

Thus, setting C1 = [u0]2Hs and C2 = ‖u0‖pp, we consider the maximum value of
the following function

f(r) =
1

2
C1r

2 − η

p
C2r

Np−2N
2s , for any r > 0.

Letting

f
′
(r) = C1r −

(
Np− 2N

2s

)
η

p
C2r

Np−2N−2s
2s = 0,

we get the maximum of f(r) at

rmax =

(
2spC1

(Np− 2N)ηC2

) 2s
Np−2N−4s

.
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Hence,

max
r>0

{
1

2
r2[u0]2Hs −

η

p
r
Np−2N

2s ‖u0‖pp
}

=
1

2

(
2spC1

(Np− 2N)ηC2

) 4s
Np−2N−4s

C1 −
η

p

(
2spC1

(Np− 2N)ηC2

) Np−2N
Np−2N−4s

C2

6
1

2

(
2spC1

(Np− 2N)ηC2

) 4s
Np−2N−4s

C1,

so there exists C > 0 that is independent of η > 0 such that

Eη(m) 6 C

(
1

η

) 4s
Np−2N−4s

→ 0 as η →∞,

because p > 2 + 4s/N . This completes the proof of Lemma 2.3. �

In accordance with the pattern of Luo and Zhang [13, Propositions 5.3–5.4],
for {ξn} ⊂ R we know that Iη(un) and Iη(ξn?un) have the same mountain pass
level value. Moreover, there is a certain relationship between their Palais–Smale
sequences.

Lemma 2.4. Let {ξn ? un} ⊂ Sr(m) be a Palais–Smale sequence for Iη at the
level Eη(m), i.e.,

Iη(ξn ? un)→ Eη(m) > 0 and I
′
η(ξn ? un)→ 0 as n→∞.

Then
lim
n→∞

Pη(ξn ? un) = 0.

Proof. We first have

Iη(ξn ? un) =
1

2
[ξn ? un]2Hs −

1

2∗s
‖ξn ? un‖2

∗
s

2∗s
− η

p
‖ξn ? un‖pp

=
1

2
e2ξns[un]2Hs −

1

2∗s
e

(2∗s−2)Nξn
2 ‖un‖2

∗
s

2∗s
− η

p
e

(p−2)Nξn
2 ‖un‖pp,

and Iη(ξn ? un) is C1 with respect to ξn. Now, by taking the derivative
∂

∂ξn
Iη(ξn ? un) = 2se2ξns[un]2Hs − se

(2∗s−2)Nξn
2 ‖un‖2

∗
s

2∗s
− sηζpe

(p−2)Nξn
2 ‖un‖pp,

and observing that

Pη(ξn ? un) = 2e2ξns[un]2Hs − e
(2∗s−2)Nξn

2 ‖un‖2
∗
s

2∗s
− ηζpe

(p−2)Nξn
2 ‖un‖pp,

we see that
∂

∂ξn
Iη(ξn ? un) = sPη(ξn ? un).
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Thus, the conclusion of Lemma 2.4 is a consequence of the following limit

lim
n→∞

∂

∂ξn
Iη(ξn ? un) = 0,

because I ′η(ξn?un)→ 0 as n→∞. This completes the proof of Lemma 2.4. �

Lemma 2.5. Let {un} ⊂ Sr(m) be a Palais–Smale sequence for Iη with the
level Eη(m). If lim

n→∞
Pη(un) = 0, then {un} is bounded in Sr(m).

Proof. We note that ζpp > 2, because p > 2 + 4s/N . From the relation
lim
n→∞

Pη(un) = 0, it follows that

Iη(un) =
η

2p
(ζpp− 2)‖un‖pp +

s

N
‖un‖2

∗
s

2∗s
+ o(1),

and from the boundedness of Iη(un), it follows that {‖un‖pp} and {‖un‖2
∗
s

2∗s
}

are both bounded, therefore {[un]2Hs} is bounded. This completes the proof of
Lemma 2.5. �

§3. Compactness condition

In this section we give a very important proof of the compactness conditions,
inspired by the ideas of Soave [16].

Proposition 3.1. Let {un} ⊂ Sr(m) be a Palais–Smale sequence for Iη with
the level

0 < Eη(m) <
sS

N
2s

N
,

where S is the best fractional Sobolev constant defined in (2.3). If lim
n→∞

Pη(un) =

0, then one of the following properties holds:
(1) either up to a subsequence, un ⇀ ũ converges weakly in Hs(RN ) but not

strongly, where ũ 6≡ 0 is a solution of the first equation of (1.1) for some µ < 0,
and

Iη(ũ) < Eη(m)− sS
N
2s

N
;

(2) or up to a subsequence, un → ũ converges strongly in Hs(RN ), Iη(ũ) =
Eη(m), and ũ is a solution of (1.1) for some µ < 0.

Proof. In general, the embedding Hs(RN ) ↪→ Lp(RN ) is not compact for any
p ∈ (2, 2∗s), so we need to restore compactness in the radial function space.
According to Lemma 2.5, we know that the sequence {uu} is bounded and
the embedding Hs

rad(RN ) ↪→ Lp(RN ) is compact for every p ∈ (2, 2∗s) (see
Lions [12, Proposition I.1]). Therefore there exists ũ ∈ Hs

rad(RN ) such that up
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to a subsequence, un ⇀ ũ converges weakly in Hs(RN ), un → ũ converges
strongly in Lp(RN ), and a.e. in RN . Since {un} is a Palais–Smale sequence for
Iη |S(m), by the Lagrange multipliers rule there exists {µn} ⊂ R such that for
every φ ∈ Hs(RN ), we have∫ ∫

R2N

(un(x)− un(y))(φ(x)− φ(y))

|x− y|N+2s
dx dy

−
∫
RN

(
µnunφ+ |un|2

∗
s−2unφ+ η|un|p−2unφ

)
dx = o(1)‖φ‖, (3.1)

as n → ∞. Setting φ = un, we infer that {µn} is also bounded, and therefore
up to a subsequence, µn → µ ∈ RN . By invoking the relation lim

n→∞
Pη(un) = 0,

the compactness of the embedding Hs
rad(RN ) ↪→ Lp(RN ), and the fact that

ζp < 1, we get

µm2 = lim
n→∞

µn‖un‖22 = lim
n→∞

(
[un]2Hs − ‖un‖2

∗
s

2∗s
− η‖un‖pp

)
= lim
n→∞

η(ζp − 1)‖un‖pp = η(ζp − 1)‖ũ‖pp 6 0, (3.2)

where µ = 0 if and only if ũ ≡ 0.
Now, we show that

ũ 6≡ 0. (3.3)

Suppose to the contrary that ũ ≡ 0. Since {un} is bounded in Hs(RN ), it
follows that up to a subsequence, [un]2Hs → γ ∈ R. Since Pη(un) → 0 and un
converges strongly to 0 in Lp(RN ), it follows that

‖un‖2
∗
s

2∗s
= [un]2Hs − ηζp‖un‖pp → γ,

therefore by (2.3), γ > Sγ
2
2∗s . Furthermore, we can infer that

either γ = 0 or γ > S
N
2s .

If γ > S
N
2s , then due to Iη(un)→ Eη(m) and lim

n→∞
Pη(un) = 0, we get

Eη(m) + o(1) = Iη(un) =
s

N
[un]2Hs −

η

p

(
1− ζpp

2∗s

)
‖un‖pp + o(1)

=
s

N
[un]2Hs + o(1) =

γs

N
+ o(1),

so Eη(m) = γs
N , thereby Eη(m) > sS

N
2s

N , which contradicts our conditions.
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If instead, we have γ = 0, we note that [un]2Hs → 0, ‖un‖2
∗
s

2∗s
→ 0 and

‖un‖pp → 0. Therefore Iη(un)→ 0, which is a contradiction as well. So (3.3) is
proved. Furthermore, from (3.2) and (3.3) it follows that µ < 0. Invoking the
limit weak convergence in (3.1), we get

(−∆)sũ = µũ+ |ũ|2∗s−2ũ+ η|ũ|p−2ũ in RN , (3.4)

and thus by the Pohozaev identity (see Chang and Wang [5, Proposition 4.1])
and related explanations in Zhen and Zhang [18, Proposition 2.1 and Re-
mark 2.1], we have Pη(ũ) = 0. We know that wn = un − ũ ⇀ 0 in Hs(RN ),
and according to Zuo et al. [19, Lemma 2.4] and the Brézis–Lieb lemma [3],
we have

[un]2Hs = [ũ]2Hs + [wn]2Hs + o(1),

‖un‖2
∗
s

2∗s
= ‖ũ‖2

∗
s

2∗s
+ ‖wn‖2

∗
s

2∗s
+ o(1).

(3.5)

Thus, by lim
n→∞

Pη(un) = 0 and since un → ũ converges strongly in Lp, we
obtain

[ũ]2Hs + [wn]2Hs = ηζp‖ũ‖pp + ‖ũ‖2
∗
s

2∗s
+ ‖wn‖2

∗
s

2∗s
+ o(1).

In view of Pη(ũ) = 0, we also have

[wn]2Hs = ‖wn‖2
∗
s

2∗s
+ o(1).

We claim that up to a subsequence

lim
n→∞

[wn]2Hs = lim
n→∞

‖wn‖2
∗
s

2∗s
= γ > 0, ⇒ γ > Sγ

2
2∗s

thanks to (2.3). Hence, either γ = 0 or γ > S
N
2s .

If γ > S
N
2s 3 then from (3.5), we obtain

Eη(m) = lim
n→∞

Iη(un) = lim
n→∞

(
Iη(ũ) +

1

2
[wn]2Hs −

1

2∗s
‖wn‖2

∗
s

2∗s

)
= Iη(ũ) +

sγ

N
> Iη(ũ) +

sS
N
2s

N
,

whence the alternative (1) in the assertion of the proposition follows, i.e., up
to a subsequence, un converges weakly to ũ in Hs(RN ) but not strongly, where
ũ 6≡ 0 is a solution of the first equation of (1.1) for some µ < 0, and

Iη(ũ) < Eη(m)− sS
N
2s

N
.

If instead, we have γ = 0, then we claim that un → ũ in Hs(RN ). Indeed,
we have lim

n→∞
[wn]2Hs = 0, so from wn = un − ũ it follows that [un − ũ]2Hs → 0.
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Next, it suffices to verify that un → ũ in L2. Choosing φ = un − ũ in (3.1),
invoking (3.4) with un → ũ, and subtracting, we get

[un − ũ]2Hs −
∫
RN

(µnun − µũ) (un − ũ) dx

=

∫
RN

(
|un|2

∗
s−2un − |ũ|2

∗
s−2ũ

)
(un − ũ) dx

+

∫
RN

(
|un|p−2un − |ũ|p−2ũ

)
(un − ũ) dx+ o(1).

We note that lim
n→∞

‖wn‖2
∗
s

2∗s
= 0. From (3.5), it follows that ‖un‖2

∗
s

2∗s
→ ‖ũ‖2

∗
s

2∗s
,

therefore, in the formula above, the first term, the third term, and the fourth
term converge to 0. As a result,

0 = lim
n→∞

∫
RN

(µnun − µũ) (un − ũ) dx = lim
n→∞

µ

∫
RN

(un − ũ)2 dx.

Thus also assertion (2) of Proposition 3.1 has been established, i.e., up to a
subsequence, un converges strongly to ũ in Hs(RN ), Iη(ũ) = Eη(m), and ũ is a
solution of (1.1) for some µ < 0. The proof of Proposition 3.1 is complete. �

§4. Proof of Theorem 1.1

Lemma 2.4 and [13, Propositions 5.3–5.4] imply that for a given Palais–
Smale sequence {un}⊂Sr(m) for Iη with the level Eη(m), if lim

n→∞
Pη(ξn?un)=0,

then the sequence {ξn ? un} ⊂ Sr(m) is also a Palais–Smale sequence for Iη
with the same level, thus we can apply Lemma 2.5. In order to prove our main

result, it remains to verify the condition Eη(m) < sS
N
2s

N of Proposition 3.1,
which is a consequence of Lemma 2.3.

Therefore, we know that one of the two conclusions of Proposition 3.1 must
be true. We show that the conclusion (1) fails. Indeed, otherwise, ũ would be
a nontrivial solution of (1.1), i.e., up to a subsequence un converges weakly to
ũ in Hs(RN ) but not strongly, where ũ 6≡ 0 is a solution of the first equation
of (1.1) for some µ < 0, and

Iη(ũ) < Eη(m)− sS
N
2s

N
< 0.
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However, since Pη(ũ) = 0 by the Pohozaev identity and ζpp > 2, we also get

Iη(ũ) =
η

2p
(ζpp− 2)‖un‖pp +

s

N
‖un‖2

∗
s

2∗s
> 0,

which is a contradiction.
Therefore, the conclusion (2) must be true and ũ is a radial normalized

solution of (1.1) for some µ < 0. This completes the proof of Theorem 1.1.
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