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1. Introduction

We begin by some definitions for a Banach space E over R. Let Br(a) = {x ∈ E | ‖x − a‖ � r}. Let cl A denote the closure
and int A the interior of a subset A ⊂ E . The diameter of a subset A ⊂ E is defined as diam A = supx,y∈A ‖x − y‖. The
Minkowski sum of two sets A, B ⊂ E is the set

A + B = {a + b | a ∈ A, b ∈ B}.
We denote the convex hull of a set A ⊂ E by co A. The supporting function of a subset A ⊂ E is defined as follows

s(p, A) = sup
x∈A

(p, x), ∀p ∈ E∗. (1.1)

The supporting function of any set A is always lower semicontinuous, positively homogeneous and convex. If a set A is
bounded then the supporting function is Lipschitz continuous [1,13]. If a subset A ⊂ E of a reflexive Banach space E is
closed convex and bounded then for any vector p ∈ E∗ the set A(p) = {x ∈ A | (p, x) � s(p, A)} is the subdifferential of the
supporting function s(·, A) at the point p. In this case the set A(p) is nonempty, weakly compact and convex (cf. [1,13]),
A(0) = A.

We denote the inner product in the Hilbert space H by (·,·).
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Definition 1.1. (See [14].) Let E be a Banach space and let a subset A ⊂ E be convex and closed. The modulus of convexity
δA : [0,diam A) → [0,+∞) is the function defined by

δA(ε) = sup

{
δ � 0

∣∣∣ Bδ

(
x1 + x2

2

)
⊂ A, ∀x1, x2 ∈ A: ‖x1 − x2‖ = ε

}
.

Definition 1.2. (See [14].) Let E be a Banach space and let a subset A ⊂ E be convex and closed, A 	= E . If the modulus of
convexity δA(ε) is strictly positive for all ε ∈ (0,diam A), then we call the set A uniformly convex (with the modulus δA(·)).

We proved in [3] that every uniformly convex set is bounded and if the Banach space E contains a nonsingleton uni-
formly convex set then it admits a uniformly convex equivalent norm. We also proved that the function ε → δA(ε)/ε
is increasing (see also [6, Lemma 1.e.8]), and for any uniformly convex set A there exists a constant C > 0 such that
δA(ε) � Cε2.

Definition 1.3. (See [6].) Let E be a Banach space. We call the space E uniformly convex with the modulus δE (ε), ε ∈ [0,2),
if the closed unit ball in E is uniformly convex set with the modulus δE .

In a Banach space E consider a set

A =
⋂
x∈X

B R(x) 	= ∅,

where X ⊂ E is an arbitrary subset. Such sets have been considered by several authors (see [2,9,10,13] for details), they
are called R-convex, or strongly convex of radius R . In particular, strongly convex sets of radius R are closely related to the
classical notions of diametrically maximal sets and constant width sets, see [4,5,7,8,12,13]. It is obvious that if the space E
is uniformly convex with the modulus δE then any strongly convex of radius R set A is uniformly convex with the modulus

δA(ε) � RδE

(
ε

R

)
, ∀ε ∈ [0,diam A).

We want to consider the converse question. Suppose that in a Banach space E a subset A ⊂ E is uniformly convex with
the modulus δA . What can we say about geometric properties of the set A? In particular, is the set A an intersection of
balls of fixed radius?

2. The main result

We give an affirmative answer in the Hilbert space H. Our main result is given in the following theorem.

Theorem 2.1. Let H be the Hilbert space. Suppose that a nonempty closed convex subset A ⊂ H is uniformly convex with the modulus
of convexity of the second order at zero: there exists C > 0 such that

δA(ε) = Cε2 + o
(
ε2), ε → +0.

Then there exists a subset X ⊂ H such that

A =
⋂
x∈X

(
x + 1

8C
B1(0)

)
,

and 1
8C is sharp in the sense that for any r < 1

8C and any subset Y ⊂ H,

A 	=
⋂
x∈Y

Br(x).

3. Preliminary lemmas

The key idea of the proof of Theorem 2.1 is to use the definition of the generating set.

Definition 3.1. (See [2].) Let E be a Banach space. A closed convex bounded subset M ⊂ E is called a generating set, if for
any nonempty subset A ⊂ E such that

A =
⋂
x∈X

(M + x),

where X ⊂ E , there exists another closed convex subset B ⊂ E with A + B = M . The set A above is said to be M-strongly
convex.
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Proposition 3.1. (See [2], [13, Theorem 4.1.3].) Let M be a closed convex bounded set in a reflexive Banach space E. Then M ⊂ E is a
generating set if and only if for any nonempty set A = ⋂

x∈X (M + x) and any unit vector p ∈ E∗ and any xA
p ∈ A(p) there exists a

point xM
p ∈ M(p) with

A ⊂ M + xA
p − xM

p . (3.1)

The inclusion (3.1) is a special supporting principle. Indeed, each closed convex set coincides with the intersection of
supporting half-spaces (see [1,13]). Proposition 3.1 says that if a set M is generating then each M-strongly convex set A
coincides with the intersection of supporting shifts of the set M .

Proposition 3.2. (See [2], [13, Theorem 4.2.7].) A closed ball in the Hilbert space is a generating set.

We wish to point out that for H = R
n the result of Proposition 3.2 was in fact proved in [10].

By Propositions 3.1 and 3.2 we obtain that for any strongly convex set A ⊂ H of radius R and for any unit vector p ∈ H
the following inclusion holds:

A ⊂ B R
(
xA

p − Rp
)
,

{
xA

p

} = A(p). (3.2)

Lemma 3.1. A bounded closed convex set A ⊂ H is strongly convex with the radius R if and only if the function f (p) = R‖p‖− s(p, A)

is convex.

Proof. We conclude from Definition 3.1 and Proposition 3.2 that if a closed set A ⊂ H is strongly convex of radius R > 0
then there exists another convex set B such that A + B = B R(0). Taking the supporting functions, we get f (p) = R‖p‖ −
s(p, A) = s(p, B) which is a convex function.

If the function f (p) = R‖p‖ − s(p, A) is convex then, keeping in mind that f (p) is also continuous and positively
homogeneous, we obtain that f (p) is the supporting function for the set B = {x ∈ H | (p, x) � f (p), ∀p ∈ H}, i.e. f (p) =
s(p, B) [13, Corollary 1.11.2]. Hence s(p, A)+ s(p, B) = s(p, A + B) = R‖p‖ and by the convexity and closedness of the set A
we have A + B = B R(0). Thus A = ⋂

b∈B B R(−b). �
Definition 3.2. (See [11].) For a set A ⊂ H, A ⊂ B R(a), a strongly convex hull of radius R > 0 is defined to be the intersection
of all closed balls of radius R each of which contains A. We denote the strongly convex hull of radius R of a set A by
strcoR A.

Let ‖a−b‖ < 2R . Any intersection of the set strcoR{a,b} ⊂ H by a 2-dimensional plane L, {a,b} ⊂ L, represents the planar
convex set between two smaller arcs of the circles of radius R which pass through the points a and b. Also if 0 < r < R and
strcor A 	= ∅, then strcoR A ⊂ strcor A (see [2], [13, Theorem 4.4.2]). We define the smaller arc of a circle of radius R , the
center z ∈ H and the endpoints x, y ∈ H by D R(z)(x, y).

Lemma 3.2. Let R > 0. Let a subset A ⊂ H be closed, convex and bounded. Suppose that

∃ε0 > 0 ∀a,b ∈ A: ‖a − b‖ � ε0 ⇒ strcoR{a,b} ⊂ A.

Then the set A is strongly convex of radius R.

Proof. The boundary of the set A contains no nondegenerate line segments. By the inclusion strcoR{a,b} ⊂ A, ∀a,b ∈ A and
‖a − b‖ � ε0, and by the property of strongly convex hull of two points we obtain that the set A is uniformly convex with
the modulus

δA(t) � R −
√

R2 − t2

4
, ∀t ∈ (0, ε0).

By Corollary 2.2 of [3], the function ∂ B1(0) 
 p → a(p) = arg maxx∈A(p, x) is uniformly continuous. It is easy to see that
a(p) is also uniformly continuous on each set of the form {p ∈ H | ‖p‖ > r > 0}.

Fix any pair of linear independent vectors p1, p2 ∈ H (i.e. 0 /∈ [p1, p2]). The condition of uniform continuity on the set
[p1, p2] is

∃δ0 > 0 ∀q1,q2 ∈ [p1, p2]: ‖q1 − q2‖ < δ0,
∥∥a(q1) − a(q2)

∥∥ � ε0. (3.3)

Consider f (p) = R‖p‖ − s(p, A), p ∈ [p1, p2]. Fix q1,q2 ∈ [p1, p2] such that ‖q1 − q2‖ < δ0. By formula (3.3) we obtain for
points ai = a(qi), i = 1,2, that ‖a1 − a2‖ � ε0 and using the condition of lemma we have strcoR{a1,a2} ⊂ A. Using the
convexity of the function R‖p‖ − s(p, strcoR{a1,a2}) (Lemma 3.1) we obtain that
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f

(
1

2
(q1 + q2)

)
= R

∥∥∥∥1

2
(q1 + q2)

∥∥∥∥ − s

(
1

2
(q1 + q2), A

)
� R

∥∥∥∥1

2
(q1 + q2)

∥∥∥∥ − s

(
1

2
(q1 + q2), strcoR{a1,a2}

)

� 1

2

(
R‖q1‖ − s

(
q1, strcoR{a1,a2}

)) + 1

2

(
R‖q2‖ − s

(
q2, strcoR{a1,a2}

))
= 1

2

(
R‖q1‖ − (q1,a1)

) + 1

2

(
R‖q2‖ − (q2,a2)

) = 1

2
f (q1) + 1

2
f (q2).

Thus for any q1,q2 ∈ [p1, p2] with ‖q1 − q2‖ < δ0,

f

(
q1 + q2

2

)
� 1

2
f (q1) + 1

2
f (q2).

Let us show that the above condition of convexity holds if we replace δ0 by 2δ0, i.e.

∀q1,q2 ∈ [p1, p2]: ‖q1 − q2‖ < 2δ0, f

(
q1 + q2

2

)
� 1

2
f (q1) + 1

2
f (q2).

Let q3,q4 ∈ [p1, p2]: ‖q3 − q4‖ < 2δ0, p0 = 1
2 (q3 + q4). Let q1 = 1

2 (q3 + p0), q2 = 1
2 (q4 + p0), ‖q1 − q2‖ < δ0. We have

f (p0) � 1
2 ( f (q1) + f (q2)), f (q1) � 1

2 ( f (q3) + f (p0)), f (q2) � 1
2 ( f (q4) + f (p0)). We obtain from the last three inequalities

that f (p0) � 1
4 f (q3) + 1

4 f (q4) + 1
2 f (p0), i.e. f (p0) � 1

2 f (q3) + 1
2 f (q4).

By induction we obtain that for all q1,q2 ∈ [p1, p2],

f

(
1

2
(q1 + q2)

)
� 1

2
f (q1) + 1

2
f (q2).

If p1 and p2 are parallel then the latter inequality holds due to the positive homogeneity of the function f . Finally, by
continuity of the function f we conclude that f is convex. Hence, by Lemma 3.1 the set A is strongly convex of radius R . �
Lemma 3.3. Let a subset A ⊂ H be uniformly convex with the modulus of convexity δA(ε), C > 0, and δA(ε) = Cε2 + o(ε2), ε → +0.
Let 0 < K < C. Then the set A is strongly convex of radius 1

4K .

Proof. By [3, Theorem 2.1] the set A is bounded. Fix any K ∈ (0, C). From the asymptotic equality δA(ε) ∼ Cε2, ε → +0,
we obtain that there exists ε0 > 0 such that for all ε ∈ (0, ε0] we have δA(ε) > Kε2 and δA(ε) < ε

2 . (See Fig. 1.)
Fix an arbitrary pair of points a,b ∈ A with ‖a − b‖ = ε � ε0. Then

B = co

(
{a} ∪ BδA(ε)

(
a + b

2

)
∪ {b}

)
⊂ A.

Consider an arbitrary 2-dimensional affine plane L such that {a,b} ⊂ L. Let w = 1
2 (a + b). Let l ⊂ L be a line such that

a ∈ l and l is a tangent line to the circle L ∩ ∂ BδA(ε)(w) (at the point z). Note that the segment [a, z] is a part of the
boundary ∂ B . Let m ⊂ L be a line such that w ∈ m and m is orthogonal to the line aff{a,b}. Let the point s ∈ m be such that
the line aff{s,a} is orthogonal to the line l. Then the circle L ∩ ∂ B‖a−s‖(s) is tangent to the line l at the point a.

Let the line l1 ⊂ L be symmetric to the line l with respect to the line m. Let the point z1 = l1 ∩ (L ∩ ∂ BδA(ε)(w)) be
symmetric to the point z with respect to the line m. Let R = ‖s − a‖; ‖s − a‖ � ‖a − w‖ = ε

2 > δA(ε). Let x = l ∩ m ∩ l1.
The arc D R(s)(a,b) is the homothetic image of the arc DδA(ε)(w)(z, z1) under the homothety with the center x and the
coefficient k = ‖a−s‖

‖z−w‖ = R
δA(ε)

. So we see that D R(s)(a,b) ⊂ L ∩ B .

By the similarity of the triangles saw and awz we have ‖z−w‖
‖a−w‖ = ‖a−w‖

‖a−s‖ , or

2δA(ε)

ε
= ε

2R
.

Hence, using inequality δA(ε) > Kε2, we obtain that

R � 1

4K
.

By the symmetry of the set B with respect to the line aff{a,b} and the arbitrary choice of L we have

strco 1
4K

{a,b} ⊂ strcoR{a,b} ⊂ co

(
{a} ∪ BδA(ε)

(
a + b

2

)
∪ {b}

)
⊂ A.

By Lemma 3.2 we obtain that the set A is strongly convex of radius 1
4K . �
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Fig. 1.

Lemma 3.4. Let a subset A ⊂ H be uniformly convex with the modulus of convexity δA(ε), C > 0, and δA(ε) = Cε2 + o(ε2), ε → +0.
Let 0 < K < C. Let the set A be strongly convex of radius R > 1

8K . Then the set A is strongly convex of radius

R1 = 2R

8R K + 1
.

Proof. See Fig. 2, where w , l, m, etc., are defined as in the proof of Lemma 3.4.
Fix any K ∈ (0, C). From the asymptotic equality δA(ε) ∼ Cε2, ε → +0, we obtain that there exists such ε0 ∈ (0, 1

100K )

that for all ε ∈ (0, ε0] we have δA(ε) < ε
2 and

δA(ε)

ε2

(
1 − δA(ε)

R

)
> K . (3.4)

Choose any pair of points a,b ∈ A, ‖a − b‖ = ε � ε0. Then

B = strcoR
{{a} ∪ BδA(ε)(w) ∪ {b}} ⊂ A,

where w = a+b
2 .

Let L be any 2-dimensional affine plane, {a,b} ⊂ L. Let m ⊂ L be a line such that w ∈ m and m ⊥ aff{a,b}. Consider
a circle of radius R with a center s ∈ L such that L ∩ B R(s) ⊃ L ∩ BδA(ε)(w), it passes through the point a, tangents to
L ∩ ∂ BδA(ε)(w) and define[

L ∩ ∂ B R(s)
] ∩ [

L ∩ ∂ BδA(ε)(w)
] = {z}.

Such circle exists because R > ε/2.
Let D1 = D R(s)(a, z), D2 is symmetric to the D1 with respect to the line m, D3 and D4 are symmetric to the D1 and D2

with respect to the line aff{a,b}, respectively. We have

L ∩ B ⊃ co
{

D1 ∪ D2 ∪ D3 ∪ D4 ∪ (
L ∩ BδA(ε)(w)

)}
.

Let l be the tangent line to the circle L ∩ ∂ B R(s) at the point a. Let ϕ be the angle between the lines l and aff{a,b};
α be the angle between the lines aff{a,b} and aff{a, s}; ϕ + α = π/2. Consider the triangle aws: ‖a − w‖ = ε

2 , ‖a − s‖ = R ,
‖w − s‖ = R − δA(ε). Hence by the Cosine theorem we get
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Fig. 2.

sinϕ = cosα = ‖a − s‖2 + ‖a − w‖2 − ‖w − s‖2

2‖a − s‖ · ‖a − w‖ = ε

4R
+ 2δA(ε)

ε
− δ2

A(ε)

Rε
= ε

4R
+ 2δA(ε)

ε

(
1 − δA(ε)

R

)
,

and using (3.4) we obtain that

sinϕ = cosα � ε

4R
+ 2Kε. (3.5)

Let the point z1 = D2 ∩ (L ∩ ∂ BδA(ε)(w)) be symmetric to the point z with respect to the line m. Let the lines m0 ⊂ L
and m1 ⊂ L be parallel to the line m, z ∈ m0, z1 ∈ m1. Let � = ε

2 sinϕ and c = m ∩ aff{a, s}. Note that ‖a − c‖ = �. Let
x = D�(c)(a,b) ∩ m0, x1 = D�(c)(a,b) ∩ m1.

The circle L ∩ ∂ B�(c) touches the line l at the point a. Taking into account that K > 1/8R , we get by the formula (3.5)

� = ε

2 sinϕ
� 1

1
2R + 4K

<
1

1
2R + 1

2R

= R.

By the last inequality the points a and s are separated by the line m and the points a, z (and b, z1) are situated in the same
half-plane with respect to the line m. Hence the points x and x1 belong to the disk L ∩ BδA(ε)(w). The arc D�(c)(a, x) lies
between the arc D R(s)(a, z) and the line aff{a,b}, by the symmetry of the arc D�(c)(a,b) with respect to the line m we
have

D�(c)(a, x) ∪ D�(c)(b, x1) ⊂ L ∩ B.

By the inequality � � ε
2 > δA(ε) we have

D�(c)(x, x1) ⊂ L ∩ Bδ (ε)(w).
A
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Thus D�(c)(a,b) ⊂ L ∩ B and � � 1
1

2R +4K
= R1. By the symmetry of the set L ∩ B with respect to the line aff{a,b} and the

arbitrary choice of L we have

strcoR1{a,b} ⊂ strco�{a,b} ⊂ B ⊂ A.

By Lemma 3.2 we obtain that the set A is strongly convex with the radius R1. �
Lemma 3.5. Under the assumptions of Lemma 3.4 the set A is strongly convex of radius r = 1

8K .

Proof. Define inductively the sequence {Rn}∞n=1 as follows: R1 = R , and, for n � 1,

Rn+1 = 2Rn

8Rn K + 1
.

It is not difficult to show that Rn+1 � Rn . After having a look to the function f (x) = 2x
8xK+1 (which is increasing for x � 0),

and using R > 1
8K , it is not difficult to show that also Rn > 1

8K for every n ∈ N. Hence by the Weierstrass theorem we get

Rn → r = 2r
8rK+1 , that is, r = 1

8K .
Using Lemma 3.4 we know that the set A is strongly convex of radius Rn for every n ∈ N. By Lemma 3.2, the latter

assertion means that the functions fn(p) = Rn‖p‖ − s(p, A) are convex for all n ∈ N. Taking the limit of the sequence of the
functions we get that

f (p) = 1

8K
‖p‖ − s(p, A)

is a convex function as well. This shows, again by Lemma 3.2, that A is strongly convex of radius 1
8K . �

4. Proof of Theorem 2.1

Let Kn = C − 1
n . By Lemma 3.3 the set A is strongly convex of radius 1

4Kn
. By Lemma 3.5 the set A is strongly convex of

radius 1
8Kn

. By Lemma 3.1 this is equivalent to the convexity of the function 1
8Kn

‖p‖ − s(p, A) for all natural n. Taking the

limit n → ∞, we obtain the convexity of the function 1
8C ‖p‖ − s(p, A). Hence by Lemma 3.1 the set A is strongly convex of

radius 1
8C .

Suppose that there exist a number r ∈ (0, 1
8C ) and a subset Y ⊂ H such that

A =
⋂
x∈Y

Br(x).

For the ball Br(0) in the Hilbert space we have (cf. [6])

δBr(0)(ε) = rδH

(
ε

r

)
= r −

√
r2 − ε2

4
= ε2

8r
+ o

(
ε2), ε → +0.

Due to the fact that the set A is the intersection of closed balls of the radius r we conclude that Cε2 + o(ε2) = δA(ε) �
rδH( ε

r ) = ε2

8r + o(ε2), for all ε > 0. Hence C � 1
8r . This contradicts the inequality r < 1

8C . �
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