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1. Introduction

All topological spaces will be assumed to be Tychonoff. For a space X and its compactification bX the 
complement bX \X is called a remainder of X.
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The study of the interplay between covering properties of Tychonoff spaces and those of their remainders 
takes its origin in the seminal work of Henriksen and Isbell [16]. Being highly homogeneous objects, topo-
logical groups restrict the properties of their remainders in a special, strong way, unlike general topological 
spaces. The study of this phenomenon in our context was started by Arhangel’skii [1,2] and further pursued 
in his joint works with Choban, van Mill, and others, see [3,4,6,5] and the references therein.

This motivated the study in [8] of topological groups whose remainders have combinatorial covering 
properties which lie between the σ-compactness and Lindelöf property. Recall from [26] that a space X is 
said to be Menger (or has the Menger property) if for any sequence 〈Un : n ∈ ω〉 of open covers of X one 
can pick finite sets Vn ⊂ Un in such a way that {

⋃
Vn : n ∈ ω} is a cover of X. A family {Wn : n ∈ ω} of 

subsets of X is called an ω-cover of X, if for every F ∈ [X]<ω, the set {n ∈ ω : F ⊂ Wn} is infinite. The 
property of Scheepers is defined in the same way as the Menger property, the only difference being that we 
additionally demand that {

⋃
Vn : n ∈ ω} is a ω-cover of X. It is immediate that

σ-compact ⇒ Scheepers ⇒ Menger ⇒ Lindelöf.

Through a sequence of reductions it was proved in [8] that there exists a Scheepers ultrafilter if and only 
if there exists a topological group G such that βG \G is Scheepers and not σ-compact if and only if there 
exists a topological group G such that all finite powers of βG \G are Menger and are not σ-compact. Here, 
P(ω) is as usually identified with the Cantor space 2ω via characteristic functions, and subsets of P(ω) are 
considered with the subspace topology. Thus the existence of a topological group G such that βG \ G is 
Scheepers (resp. has all finite powers Menger) and not σ-compact is independent from ZFC: Such a group 
exists under d = c, and its existence yields P -points, see [8] and the references therein. Furthermore, it was 
proved in [8] that the existence of a topological group G such that (βG \G)2 is Menger but not σ-compact 
is independent from ZFC as well.

Since the same approach does not allow to solve the question whether consistently every Menger remainder 
of a topological group is σ-compact,1 it was asked in [8] whether the Scheepers and Menger properties 
can be distinguished by remainders of topological groups at all, and whether a Menger remainder of a 
topological group can have a non-Menger square. In case of a negative answer outright in ZFC this would 
give the consistency of all Menger remainders of topological groups being σ-compact, simply by applying 
the aforementioned results. However, we provide here two alternative proofs that both of these questions 
have consistently the affirmative answer, by constructing counterexamples using different approaches, see 
Theorems 2.4, 3.1, and Corollary 2.5. Our topological groups are actually non-meager P -filters on ω, hence 
metrizable, 0-dimensional, totally bounded, and hereditarily Baire by [23]. Since the Menger property is 
preserved by finite products of metrizable spaces in the Miller model [29] and coincides with the Scheepers 
property under u < g by [28] (this inequality holds in the Miller model by [10, Theorem 2] combined with the 
results of [11]), filters like in Theorems 2.4 and 3.1 cannot be obtained in ZFC. Theorem 3.2 is a variation 
of Theorem 3.1 motivated by the question whether the density one filter can be diagonalized by a (proper) 
poset adding no dominating reals.

As discussed above, Theorem 2.4 (stating that there exists a filter F such that among other properties, 
both F and F+ are Menger, and hence F cannot be meager by [28, Prop. 2]), cannot be proved in ZFC. 
In section 4 we investigate how far the assumptions on F can be weakened so that it is still impossible 
to get such a filter in ZFC. In this context let us recall that there are Menger non-meager filters in ZFC, 
see [25]. On the other hand, the existence of a filter F in ZFC such that F+ is Menger is unknown and 
constructing such a filter without additional set-theoretic assumptions (if it is possible at all) would be 
extremely difficult: If F+ is Menger then F is non-meager and P , see Corollary 2.3, and it is a famous open 

1 This question remains open.
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problem to construct a non-meager P -filter in ZFC. In Theorem 4.3 we show that consistently there are no 
Menger filters F such that F+ is Menger as well.

Let us note that the properties of Menger, Scheepers, having Menger square, etc., are preserved by perfect 
maps in both directions. This implies that if one of the remainders of a space X has one of these covering 
properties, then all other also have it, see the beginning of [8, §3] for more detailed explanations.

All undefined topological notions can be found in [13]. For the definitions and basic properties of cardinal 
characteristics used in this paper we refer the reader to [9].

2. The main result

We need to recall some standard as well as introduce some ad-hoc notation and terminology. A family 
H ⊂ [ω]ω is called a semifilter if for every H ∈ H, n ∈ ω, and X ⊃ H \ n we have X ∈ H. For a set 
F ⊂ P(ω) and n ∈ ω we denote by 〈F〉n the set {

⋂
F ′ : F ′ ∈ [F ]≤n}, and 〈F〉 stands for

{X ⊂ ω : ∃n∃Y ∈ 〈F〉n(Y \ n ⊂ X)}.

F is said to be centered if 〈F〉n ⊂ [ω]ω for all n ∈ ω, i.e., if the intersection of any finite subfamily of F is 
infinite. In this case, 〈F〉 is the smallest free filter on ω containing F . Let us note that if F is compact then 
so is 〈F〉n for any n ∈ ω, being a continuous image of Fn. Similarly, by 〈F〉s we shall denote the smallest 
semifilter containing F , i.e.,

〈F〉s = {X ⊂ ω : ∃F ∈ F∃n ∈ ω(F \ n ⊂ X)}.

For a family F of subsets of P(ω) (i.e., F ⊂ P(P(ω))) we define the 〈〉∗-saturation of F as the smallest 
subfamily F1 ⊃ F of P(P(ω)) such that 〈

⋃
F′〉n ∈ F1 for any F′ ∈ [F1]<ω and n ∈ ω. It is easy to write the 

〈〉∗-saturation of a family F in a precise way, thus proving that the 〈〉∗-saturation of an infinite F has the 
same cardinality as F, and it consists of compact subsets of 〈

⋃
F〉 if each F ∈ F is compact. We say that F

is 〈〉∗-saturated if it coincides with its 〈〉∗-saturation.
Given families F , H of subsets of ω, we denote by F ∧H the family {F ∩H : F ∈ F , H ∈ H}. Again, if 

F , H are compact, then so is F ∧ H. For F, H ⊂ P(ω) we define the (F, ∧)-saturation of H as the smallest 
subfamily H1 ⊃ H of P(P(ω)) such that F ∧H ∈ H1 for any F ∈ F and H ∈ H1. Again, it is straightforward 
to write the (F, ∧)-saturation of H in the precise way, thus proving that it is a subfamily of P(〈

⋃
F〉 ∧

⋃
H) of 

size at most max{ω, |F|, |H|}, and it consists of compact sets if so do F and H. We call H to be (F, ∧)-saturated
if it coincides with its (F, ∧)-saturation.

The next easy auxiliary fact is very similar to [14, Prop. 7] and can be derived from the latter one in a 
rather straightforward way. However, for reader’s convenience we give a direct proof.

Lemma 2.1. Let F be a family of compact subsets of [ω]ω of size |F| < min{d, r} and φ : ω → ω a finite-to-one 
surjection. Then there exists Z ⊂ ω such that

|φ−1[Z] ∩ F | = |(ω \ φ−1[Z]) ∩ F | = ω

for all F ∈
⋃

F.

Proof. Let us first assume that φ is monotone and consider the strictly increasing number sequence 〈kn :
n ∈ ω〉 with k0 = 0 such that φ−1(n) = [kn, kn+1) for all n ∈ ω.

For every F ∈ F let hF : ω → ω be a strictly increasing function such that [hF (n), hF (n + 1)) ∩ F �= ∅
for all F ∈ F and n ∈ ω. Since |F| < d, there exists a strictly increasing h ∈ ωω such that
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IF := {n ∈ ω : (|[h(n), h(n + 1)) ∩ hF [ω]| ≥ 2)}

is infinite for all F ∈ F. Without loss of generality we may assume that h[ω] ⊂ {kn : n ∈ ω}, and hence for 
every (infinite) I ⊂ ω there exists (an infinite) Z ⊂ ω such that 

⋃
n∈I [h(n), h(n + 1)) = φ−1[Z].

Since |F| < r there exists I ⊂ ω such that |I ∩ IF | = |IF \ I| = ω for all F ∈ F. We claim that

∣∣ ⋃
n∈I

[h(n), h(n + 1)) ∩ F
∣∣ =

∣∣ ⋃
n∈ω\I

[h(n), h(n + 1)) ∩ F
∣∣ = ω

for all F ∈
⋃

F. Indeed, let us find F ∈ F containing F and pick n ∈ I ∩ IF . Then there exists m ∈ ω such 
that [h(n), h(n + 1)) ⊃ [hF (m), hF (m + 1)), and hence

∅ �= F ∩ [hF (m), hF (m + 1)) ⊂ F ∩ [h(n), h(n + 1)) ⊂ F ∩
⋃
n∈I

[h(n), h(n + 1)) ∩ F.

The case of ω \ I is analogous.
Now suppose that φ is arbitrary finite-to-one surjection from ω to ω. Fix a bijection θ : ω → ω such that 

φ ◦ θ is a monotone surjection. It follows from the above that there exists Z ⊂ ω such that

∣∣(φ ◦ θ)−1[Z] ∩ θ−1[F ]
∣∣ =

∣∣(ω \ (φ ◦ θ)−1[Z]) ∩ θ−1[F ]
∣∣ = ω

for all F ∈
⋃

F, i.e.,

∣∣θ−1[φ−1[Z]] ∩ θ−1[F ]
∣∣ =

∣∣(ω \ θ−1[φ−1[Z]]) ∩ θ−1[F ]
∣∣ = ω

and thus also

|φ−1[Z] ∩ F | = |(ω \ φ−1[Z]) ∩ F | = ω

for all F ∈
⋃

F because θ is a bijection. �
A semifilter F is called a P -semifilter if for every sequence 〈Fn : n ∈ ω〉 of elements of F there exists a 

sequence 〈Kn : n ∈ ω〉 such that Kn ∈ [Fn]<ω for all n ∈ ω and 
⋃

n∈ω Kn ∈ F . If F+ = {X ⊂ ω : ∀F ∈
F(X ∩ F �= ∅)} is a P -semifilter, then we also say that F is a P+-semifilter. Each semifilter F on ω gives 
rise to the semifilter F (<ω) on [ω]<ω \ {∅} generated by the family {[F ]<ω \ {∅} : F ∈ F}. If F is a filter 
we shall call F+ the coideal of F .

Next, we put together several known facts about Menger semifilters established in [12] and [14] and get 
a potentially useful characterization.

Theorem 2.2. Let F be a semifilter on ω. Then the following statements are equivalent:

(1) F is Menger;
(2) For every sequence 〈Kn : n ∈ ω〉 of compact subsets of F+ there exists an increasing sequence 〈mn :

n ∈ ω〉 ∈ ωω with the property 
⋃

n∈ω(Kn ∩mn) ∈ F+ for any 〈Kn : n ∈ ω〉 ∈
∏

n∈ω Kn;
(3) For every sequence 〈Kn : n ∈ ω〉 of compact subsets of F+ there exists an increasing sequence 〈mn :

n ∈ ω〉 ∈ ωω with the property 
⋃

n∈ω

(
Kn ∩ [mn−1, mn)

)
∈ F+ for2 any 〈Kn : n ∈ ω〉 ∈

∏
n∈ω Kn; and

(4) F (<ω) is a P+-semifilter.

2 We set here m−1 = 0.
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Proof. The equivalence (1) ⇔ (4) was established in [12, Claim 2.4], and its proof works verbatim also for 
semifilters. The implication (1) → (3) was obtained in [12, Prop. 3.4], its proof again works for semifilters 
without any changes, while (3) → (2) is straightforward. Thus it remains to prove (2) → (4). Let 〈En : n ∈ ω〉
be a sequence of elements of (F (<ω))+. For each n set Kn = {X ⊂ ω : ∀e ∈ En(X ∩ e �= ∅)} and note that 
Kn ⊂ F+: If K ∩ F = ∅ for some K ∈ Kn and F ∈ F , then there is no e ∈ En ∩ [F ]<ω, which contradicts 
our choice of En. Let 〈mn : n ∈ ω〉 be as in (2). We claim that 

⋃
n∈ω En ∩ P(mn) ∈ (F (<ω))+, which will 

imply (4). Indeed, otherwise there exists F ∈ F such that e \ F �= ∅ for each e ∈ En ∩ P(mn) and n ∈ ω. 
Thus

Kn :=
⋃

{e \ F : e ∈ En, e ⊂ mn} ∪ (ω \mn) ∈ Kn

for all n. However,

F ∩
⋃
n∈ω

(Kn ∩mn) = F ∩
⋃
n∈ω

⋃
{e \ F : e ∈ En, e ⊂ mn} =

=
⋃
n∈ω

(F ∩
⋃

{e \ F : e ∈ En, e ⊂ mn}) = ∅,

and hence 
⋃
{Kn ∩mn : n ∈ ω} /∈ F+, which contradicts (2). �

Corollary 2.3. Each Menger semifilter is P+.

Theorem 2.2 will be crucial for the proof of the following fact, which is the main result of the paper.

Theorem 2.4. (r = d = c). There exists a filter G on ω such that

(1) G and G+ are Menger;
(2) For every finite-to-one surjection φ : ω → ω there exists X ⊂ ω such that φ−1[X], φ−1[ω \X] ∈ G+.

Proof. Let us fix the following enumerations:

• {〈Kα
n : n ∈ ω〉 : α < c}=: the family of all sequences of compact subsets of [ω]ω;

• {φα : α < c}=: the family of all finite-to-one surjections from ω → ω.

By recursion over α < c we shall construct a sequence 〈〈Fα, Hα〉 : α < c〉 such that

(a) Fα, Hα are families of compact subsets of [ω]ω of size < c with F0 = H0 = {{ω}};
(b)

⋃
Fα is centered and Fα is 〈〉∗-saturated;

(c) Fα ⊂ Fα′ ∩ Hα′ and Hα ⊂ Hα′ for any α ≤ α′;
(d)

⋃
Hα ⊂ 〈

⋃
Fα〉+, and Hα is (Fα, ∧)-saturated;

(e) If 
⋃

n∈ω Kα
n ⊂ 〈

⋃
Fα〉, then there exists an increasing number sequence 〈mα

n : n ∈ ω〉 such that Fα+1 �
Kα, where Kα =

{⋃
n∈ω(Kn ∩mα

n) : 〈Kn : n ∈ ω〉 ∈
∏

n∈ω Kα
n

}
;

(f) If 
⋃

n∈ω Kα
n �⊂ 〈

⋃
Fα〉, then there exists Kα ∈

⋃
n∈ω Kα

n such that {ω \Kα} ∈ Hα+1;
(g) If 

⋃
n∈ω Kα

n ⊂ 〈
⋃

Hα〉s, then there exists an increasing number sequence 〈lαn : n ∈ ω〉 such that Hα+1 �
Lα, where Lα =

{⋃
n∈ω(Kn ∩ lαn) : 〈Kn : n ∈ ω〉 ∈

∏
n∈ω Kα

n

}
;

(h) If 
⋃

n∈ω Kα
n �⊂ 〈

⋃
Hα〉s, then there exists Lα ∈

⋃
n∈ω Kα

n such that {ω \ Lα} ∈ Fα+1;
(j) There exists Zα ⊂ ω such that {φ−1

α [Zα], φ−1
α [ω \ Zα]} ∈ Hα+1.
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First, let us assume that we have constructed a sequence 〈〈Fα, Hα〉 : α < c〉 satisfying (a)-(j). We claim that

G :=
〈⋃

{
⋃

Fα : α < c}
〉

is as required. It follows that G+ equals

G1 :=
〈⋃

{
⋃

Hα : α < c}
〉
s
.

Indeed, G1 ⊂ G+ follows directly from (d). To prove that G+ ⊂ G1 let us fix any X /∈ G1. Let α < c be such 
that Kα

n = {X} for every n ∈ ω and note that 〈Kα
n : n ∈ ω〉 satisfies the premises of (h). Therefore there 

exists Lα ∈
⋃

n∈ω Kα
n = {X} (i.e., Lα = X) such that {ω \ Lα} ∈ Fα+1, and hence ω \X ∈ G which yields 

X /∈ G+.
Next, we shall establish that both G and G+ are Menger. Let 〈Kn : n ∈ ω〉 be a sequence of compact 

subsets of G and α be such that Kα = Kα
n for all n ∈ ω. It follows that 

⋃
n∈ω Kα

n ⊂ 〈
⋃

Fα〉. Indeed, 
otherwise by (f) there exists Kα ∈

⋃
n∈ω Kα

n such that {ω \Kα} ∈ Hα+1, and therefore ω \Kα ∈ G+, which 
contradicts Kα ∈ G. Thus 〈Kα

n : n ∈ ω〉 fulfills the premises of (e), which yields an increasing sequence 
〈mn : n ∈ ω〉 ∈ ωω with the property 

⋃
n∈ω(Kn ∩ mn) ∈ G for any 〈Kn : n ∈ ω〉 ∈

∏
n∈ω Kα

n . Applying 
Theorem 2.2, we conclude that G+ is Menger.

To see that also G is Menger let us consider a sequence 〈Kn : n ∈ ω〉 of compact subsets of G+ and find 
α such that Kα = Kα

n for all n ∈ ω. It follows that 
⋃

n∈ω Kα
n ⊂ 〈

⋃
Hα〉s. Indeed, otherwise by (h) there 

exists Lα ∈
⋃

n∈ω Kα
n such that {ω \ Lα} ∈ Fα+1, and therefore ω \ Lα ∈ G, which contradicts Lα ∈ G+. 

Thus 〈Kα
n : n ∈ ω〉 fulfills the premises of (g), which yields an increasing sequence 〈ln : n ∈ ω〉 ∈ ωω with 

the property 
⋃

n∈ω(Kn ∩ ln) ∈ G+ for any 〈Kn : n ∈ ω〉 ∈
∏

n∈ω Kα
n . Applying Theorem 2.2, we conclude 

that G is Menger.
Finally, we show how to construct a sequence as above satisfying (a)-(j). Limit stages are straightforward, 

so suppose that we have already constructed 〈〈Fβ, Hβ〉 : β ≤ α〉 satisfying (e)-(j) for all β < α, (a), (b) and 
(d) for all β ≤ α, and (c) for all β ≤ β′ ≤ α. Two cases are possible.

1). 
⋃

n∈ω Kα
n ⊂ 〈

⋃
Fα〉. Then for every H ∈ Hα we can find an increasing sequence 〈mH

n : n ∈ ω〉 ∈ ωω

such that

K ∩H ∩ (mH
n \ n) �= ∅

for every K ∈ 〈Kα
n〉n, H ∈ H, and n ∈ ω. Such an mH

n exists because of the compactness of the involved 
sets and H ⊂

⋃
Hα ⊂ 〈

⋃
Fα〉+. Since |Hα| < d, there exists an increasing sequence 〈mα

n : n ∈ ω〉 ∈ ωω such 
that |{n ∈ ω : mH

n ≤ mα
n}| = ω for all H ∈ Hα. Set

Kα =
{ ⋃

n∈ω

(Kn ∩mα
n) : 〈Kn : n ∈ ω〉 ∈

∏
n∈ω

Kα
n

}
,

and Fα+1 to be the 〈〉∗-saturation of Fα ∪ {Kα}. Since |Fα+1| < c, Lemma 2.1 yields Zα ⊂ ω such that 
{φ−1

α [Zα], φ−1
α [ω \ Zα]} ∈ 〈

⋃
Fα+1〉+. We define Hα+1 to be the (Fα+1, ∧)-saturation of

Hα ∪
{
{φ−1

α [Zα], ω \ φ−1
α [Zα]}

}
.

We are left with the task of checking that conditions (a)-(j) are satisfied. Indeed, (a), (c), and (e)-(j) hold 
immediately by the construction, in case of (f) and (h) because of the premises being violated.

Proof of (b), (d) for α+1: By (b) and (d) for α it suffices to prove that 〈Kα〉k ∧H ⊂ [ω]ω for any H ∈ Hα

and k ∈ ω. Let us fix
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{
〈Ki

n : n ∈ ω〉 : i ≤ k
}
⊂

∏
n∈ω

Kα
n

and H ∈ H, and find n ≥ k such that mH
n ≤ mα

n. Then 
⋂

i≤k K
i
n ∈ 〈Kα

n〉n and therefore

∅ �=
⋂
i≤k

Ki
n ∩H ∩ (mH

n \ n) ⊂
⋂
i≤k

Ki
n ∩H ∩ (mα

n \ n) ⊂

⊂
( ⋂

i≤k

⋃
{Ki

n ∩mα
n : n ∈ ω} ∩H

)
\ n,

which proves (b) and (d) for α + 1 and thus completes this case.
2). 

⋃
n∈ω Kα

n �⊂ 〈
⋃

Fα〉. Two subcases of 2) are possible.
20). 

⋃
n∈ω Kα

n �⊂ 〈
⋃

Hα〉s. It follows that there exists Lα ∈
⋃

n∈ω Kα
n such that ω \ Lα ∈ 〈

⋃
Hα〉+s ⊂

〈
⋃

Fα〉+, which allows us to define Fα+1 as the 〈〉∗-saturation of Fα∪
{
{ω \Lα}

}
. Lemma 2.1 yields Zα ⊂ ω

such that {φ−1
α [Zα], φ−1

α [ω \ Zα]} ⊂ 〈
⋃

Fα+1〉+. Let Hα+1 be the (Fα+1, ∧)-saturation of

Hα ∪ {{φ−1
α [Zα], ω \ φ−1

α [Zα]}}.

Conditions (a)-(c), and (e)-(j) hold for α+1 immediately by the construction, in case of (e) and (g) because 
of the premises being violated, and for (f) we can simply take Kα to be Lα. Regarding (d) for α + 1, by 
(b) and (d) for α it suffices to prove that F0 ∩ F1 ∩ (ω \ Lα) ∩ X is infinite for any F0, F1 ∈

⋃
Fα and 

X ∈ {φ−1
α [Zα], ω \ φ−1

α [Zα]}, which again has been guaranteed in the course of the construction above.
21). 

⋃
n∈ω Kα

n ⊂ 〈
⋃

Hα〉s. In this case we set Fα+1 = Fα.
For every F ∈ Fα+1 we can find an increasing sequence 〈lFn : n ∈ ω〉 ∈ ωω such that

K ∩ F ∩ (lFn \ n) �= ∅

for every K ∈ Kα
n and F ∈ F . Such an lFn exists because of the compactness of the involved sets and 

Kα
n ⊂ 〈

⋃
Hα〉s ⊂ 〈

⋃
Fα〉+. Since |Fα| < d, there exists an increasing sequence 〈lαn : n ∈ ω〉 ∈ ωω such that 

|{n ∈ ω : lFn ≤ lαn}| = ω for all F ∈ Fα+1. Set

Lα =
{ ⋃

n∈ω

(Kn ∩ lαn) : 〈Kn : n ∈ ω〉 ∈
∏
n∈ω

Kα
n

}
.

Lemma 2.1 yields Zα ⊂ ω such that {φ−1
α [Zα], φ−1

α [ω \ Zα]} ⊂ 〈
⋃

Fα+1〉+. From 
⋃

n∈ω Kα
n �⊂ 〈

⋃
Fα〉 it 

follows that there exists Kα ∈
⋃

n∈ω Kα
n such that {ω \Kα} ∈ 〈

⋃
Fα〉+. Finally, we define Hα+1 to be the 

(Fα+1, ∧)-saturation of

Hα ∪
{
{φ−1

α [Zα], {ω \ φ−1
α [Zα], ω \Kα}

}
∪ {Lα}.

It is straightforward to check that conditions (a)-(j) are satisfied, the only slightly non-trivial step being 
Lα ⊂ 〈

⋃
Fα+1〉+, which can be proved analogously to (but more easily) “〈Kα〉k ∧H ⊂ [ω]ω for any H ∈ Hα

and k ∈ ω” in case 1).
This concludes our proof, since all possible cases have been considered. �
In the proof of the following corollary we shall use the classical result of Hurewicz [19] (see also [20, 

Theorem 4.3]) stating that X ⊂ P(ω) is Menger if and only if f [X] is not dominating for any continuous 
f : X → ωω.
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Corollary 2.5. If a semifilter H satisfies condition (2) of Theorem 2.4, then H2 is not Menger and H is not 
Scheepers. In particular, there is no continuous surjection from H onto H2.

Proof. Suppose that H2 is Menger, then so is H × (∼ H), where ∼ H = {ω \ H : H ∈ H}, because ∼ H
is homeomorphic to H. Therefore X := H × (∼ H) ∩ {〈X, X〉 : X ⊂ ω} is also Menger being a closed 
subspace of H× (∼ H), and hence so is H∩ (∼ H) as the projection of X to the first (as well as the second) 
coordinate. Let us note that H ∩ (∼ H) consists of infinite co-infinite subsets of ω, and hence the map 
h : H ∩ (∼ H) → ωω, h(X) = {n ∈ X : (n + 1) /∈ X}, must have a non-dominating range.

On the other hand, given a strictly increasing x ∈ ωω with x(0) = 0, let us consider the monotone 
surjection φ : ω → ω such that φ−1(n) = [x(n), x(n + 1)) for all n. It follows that there exists Z ⊂ ω such 
that φ−1[Z] ∈ H∩ (∼ H), and it is easy to see that h[φ−1[Z]] ⊂ x[ω]. Thus for every x as above there exists 
X ∈ H∩ (∼ H) with h(X) contained in the range of x, which clearly yields a dominating continuous range 
of H ∩ (∼ H) and thus leads to a contradiction.

Now, suppose that H is Scheepers and consider the clopen cover O = {Ok : k ∈ ω} of H, where 
Ok = {X ⊂ ω : k ∈ X}. By [7, Theorem 2] (see the equivalence of items 1 and 4 there) there exists a 
disjoint sequence 〈On : n ∈ ω〉 of finite subsets of O such that for every finite H′ ⊂ H there exists n with 
H′ ⊂

⋃
On. Let sn ∈ [ω]<ω be such that On = {Ok : k ∈ sn} and consider the finite-to-one surjection 

φ : ω → ω such that φ−1(n) = sn for all n ∈ ω. It follows from the above that for every finite H′ ⊂ H there 
exists n ∈ ω such that H ∩ sn �= ∅ for all H ∈ H′.

On the other hand, using Theorem 2.4(2) pick Z ⊂ ω be such that H′ := {φ−1[Z], ω \ φ−1[Z]} ⊂ H and 
note that there is no n ∈ ω such that both sets

φ−1[Z] ∩ sn = φ−1[Z] ∩ φ−1(n) and (ω \ φ−1[Z]) ∩ sn = (ω \ φ−1[Z]) ∩ φ−1(n)

are non-empty, a contradiction. �

Let us note that the proof of Corollary 2.5 could be actually extracted from that of [8, Lemma 3.1], 
but we have nonetheless presented it for reader’s convenience. Since every Menger subspace of P(ω) has 
Menger square and is Scheepers in the Miller model, Theorem 2.4 cannot be proved in ZFC, as follows from 
Corollary 2.5.

Since each filter has a structure of a topological group, Theorem 2.4 combined with Corollary 2.5 answers 
[8, Question 1.8] in the affirmative, the coideal G+ being the needed counterexample. Another motivation 
for Corollary 2.5 comes from [24] where it was proved that each filter on ω is homeomorphic to its square. 
According to [24, Prop. 8], this result fails for semifilters, and the counterexample is a Borel comeager 
semifilter. However, until now no semifilter F such that both F and F+ are non-meager, which in addition 
is not homeomorphic to its square, was known, and Theorem 2.4 combined with Corollary 2.5 gives a 
consistent example of coideal like that.

For curiosity we exclude below one more possibility for spaces related to filters G satisfying Theorem 2.4
to be homeomorphic.

Corollary 2.6. If a filter G satisfies Theorem 2.4, then G × G+ is not homeomorphic to G.

Proof. G2 is Menger by [24] (see also [12, Claim 5.5] for a simpler proof), whereas (G×G+)2 can be mapped 
continuously onto (G+)2 and hence is not Menger. �
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3. Examples by forcing

This section was inspired by [15, §4] as well as [22, §6]. More precisely, one can obtain a filter G such as 
in Theorem 2.4 by countably complete forcing, namely let P be the poset consisting of conditions p = 〈F, H〉
such that

(i) F is a countable collection of compact subsets of [ω]ω such that 
⋃

F is centered;
(ii) H is a countable collection of compact subsets of [ω]ω such that F ⊂ H;

(iii)
⋃

H ⊂ 〈
⋃

F〉+.

A condition 〈F1, H1〉 is stronger than 〈F0, H0〉 (and written 〈F1, H1〉 ≤ 〈F0, H0〉) if F1 ⊃ F0 and H1 ⊃ H0.

Theorem 3.1. Let G be a P -generic filter, G =
⋃
{
⋃

F : ∃H (〈F, H〉 ∈ G)}, and H =
⋃
{
⋃

H : ∃F (〈F, H〉 ∈ G)}. 
Then G is a filter, H = G+, and both G and H are Menger. Moreover, for every surjection φ : ω → ω there 
exists X ⊂ ω such that φ−1[X], φ−1[ω \X] ∈ G+.

We leave the proof of Theorem 3.1 to the reader, as it is more or less a kind of a repetition of that of 
Theorem 2.4, with the only difference being that now everything we need would happen “generically”, i.e., 
the set of suitable conditions is dense, while for Theorem 2.4 we had to “manually” guarantee all that by 
going over appropriate enumerations.

Instead, we shall address a similar poset tailored to analyze the density one filter Z∗ on ω consisting of 
those Z ⊂ ω such that limn→∞

|Z∩n|
n = 1. It is a well known open problem whether there exists a proper 

poset adding no dominating reals but adding an infinite subset of ω almost included into all ground model 
elements of Z∗, see, e.g., [17, Question 2.12]. This motivated us to introduce the following poset.

Let Q be the set of conditions 〈F, H, ε〉 such that

(i) F is a countable collection of compact subsets of [ω]ω such that 
⋃

F is centered;
(ii) H is a countable subset of [ω]ω and ε : H → (0, 1]; and

(iii) For every F ∈ 〈F〉 and H ∈ H there exists X ∈ [ω]ω such that limn∈X
|F∩n|

n = 1 and 

lim infn∈X
|F∩H∩n|

n ≥ ε(H).

A condition 〈F1, H1, ε1〉 is stronger than 〈F0, H0, ε0〉 (and written 〈F1, H1, ε1〉 ≤ 〈F0, H0, ε0〉) if F1 ⊃ F0, 
H1 ⊃ H0, and ε0 = ε1 � H0. Clearly, Q is countably closed.

Theorem 3.2. Let G be a Q-generic filter and G =
⋃
{
⋃

F : ∃H∃ε (〈F, H, ε〉 ∈ G)}. Then G is a filter, 
Z∗ ⊂ G, and G+ is Menger.

Proof. To see that G is a filter note that for any 〈F, H, ε〉 ∈ Q and finite F ⊂ 〈
⋃

F〉 we have 
〈F ∪ {{

⋂
F}}, H, ε〉 ∈ Q, and hence the set of all conditions in Q whose first component contains {

⋂
F} as 

an element, is dense below 〈F, H, ε〉.
The fact that Z∗ ⊂ G, follows from the observation that for any T ∈ Z∗ and 〈F, H, ε〉 ∈ Q, we have that 

〈F ∪ {{T}}, H, ε〉 ∈ Q. Indeed, if for some F ∈ 〈F〉, H ∈ H, and X ∈ [ω]ω we have limn∈X | |F∩n|
n | = 1 and 

lim infn∈X | |F∩H∩n|
n | ≥ ε(H), then also limn∈X | |(F∩T )∩n|

n | = 1 and lim infn∈X | |(F∩T )∩H∩n|
n | ≥ ε(H).

Thus we are left with the task of showing that for every sequence 〈Kn : n ∈ ω〉 of compact subspaces of G
there exists an increasing sequence 〈mn : n ∈ ω〉 ∈ ωω such that for every 〈Kn : n ∈ ω〉 ∈

∏
n∈ω Kn we have ⋃

n∈ω(Kn ∩mn) ∈ G. Let 〈F0, H0, ε0〉 ∈ G be such that 〈F0, H0, ε0〉 �
⋃

n∈ω Kn ⊂ G. We claim that there 
exists 〈F1, H1, ε1〉 ∈ G such that 

⋃
n∈ω Kn ⊂ 〈

⋃
F1〉. Indeed, given any condition 〈F, H, ε〉 ≤ 〈F0, H0, ε0〉

two cases are possible.
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1. There exists K ∈ 〈
⋃

n∈ω Kn〉 such that ω \K ∈ H, or there exists δ > 0 such that for every F ∈ 〈F〉
there exists X ∈ [ω]ω with properties limn∈X

|F∩n|
n = 1 and lim infn∈X

|F∩(ω\K)∩n|
n ≥ δ. In this case 

〈F, H ∪ {ω \ K}, ε′〉 � K /∈ G, where ε′ � H = ε and ε′(ω \ K) = δ if ω \ K /∈ H. The latter leads to a 
contradiction.

2. For every K ∈ 〈
⋃

n∈ω Kn〉 we have ω \K /∈ H, and for every δ > 0 there exists F ∈ 〈F〉 such that for 
every X ∈ [ω]ω with limn∈X

|F∩n|
n = 1 the following holds:

∀∗n ∈ X
|F ∩ (ω \K) ∩ n|

n
< δ. (1)

Let us note that if for some δ > 0 an element F ∈ 〈F〉 is a witness for Equation (1), then any smaller F ′ ∈ 〈F〉
is also one. Given any F ∈ 〈F〉 and K ∈ 〈

⋃
n∈ω Kn〉, let us construct a decreasing sequence 〈Fi : i ≥ 1〉 of 

elements of 〈F〉 such that F0 = F and

∀X ∈ [ω]ω
(

lim
n∈X

|Fi ∩ n|
n

= 1 ⇒ ∀∗n ∈ X
|Fi ∩ (ω \K) ∩ n|

n
<

1
i

)
. (2)

Equation (2) implies

∀X ∈ [ω]ω
(

lim
n∈X

|Fi ∩ n|
n

= 1 ⇒ ∀∗n ∈ X
|Fi ∩K ∩ n|

n
≥ 1 − 2

i

)
. (3)

Let us fix now any H ∈ H and for every i find Xi ∈ [ω]ω such that limn∈Xi

|Fi∩n|
n = 1 and |Fi∩H∩n|

n >

ε(H) − 1
i for all n ∈ Xi. This is possible by item (iii) of the definition of Q. Removing finitely many 

elements of Xi, if necessary, by Equation (3) we may assume that |Fi∩K∩n|
n > 1 − 2

i for all n ∈ Xi. Now 
let 〈ni : i ∈ ω〉 ∈ ωω be an increasing sequence such that ni ∈ Xi and X(F, H, K) = {ni : i ∈ ω}. It 
follows that |Fi∩H∩ni|

ni
> ε(H) − 1

i and |Fi∩K∩ni|
ni

> 2 − 1/i for all i ∈ ω. Since Fi ⊂ F for all i, we have 

that |F∩H∩ni|
ni

> ε(H) − 1
i and |F∩K∩ni|

ni
> 1 − 2/i and therefore F∩K∩H∩ni

ni
> ε(H) − 3

i for all i ∈ ω. 
Thus 〈F ∪ {Kn : n ∈ ω}, H, ε〉 ∈ Q, where for each F ∈ 〈F〉, H ∈ H, and K ∈ 〈

⋃
n∈ωKn

〉 the infinite set 
X(F, H, K) is such as required in (iii) for F ∩K and H.

Summarizing, we have proved that for any 〈F, H, ε〉 ≤ 〈F0, H0, ε0〉 we have 〈F ∪ {Kn : n ∈ ω}, H, ε〉 ∈ Q, 
and thus there exists 〈F1, H1, ε1〉 ∈ G with 

⋃
n∈ω Kn ⊂ 〈

⋃
F1〉.

Let us now fix 〈F, H, ε〉 ≤ 〈F1, H1, ε1〉 and enumerations 〈Hi : i ∈ ω〉 of H as well as 〈Fi : i ∈ ω〉 of F. Set

Li =
{⋂

Y : Y ∈ [
⋃
j≤i

Fj ∪
⋃
j≤i

Kj ]≤i
}

and by recursion over i construct an increasing number sequence 〈mi : i ∈ ω〉 such that for every L ∈ Li

and j ≤ i there exists nj ∈ [mi−1, mi) such that |L∩nj |
nj

> 1 − 1
i and |L∩Hj∩nj |

nj
> ε(Hj)(1 − 1

i ). This is 
possible by (iii) and the compactness of Li. Letting

K =
{ ⋃

i∈ω

(Ki ∩mi) : 〈Ki : i ∈ ω〉 ∈
∏
i∈ω

Ki

}
,

we claim that 〈F ∪ {K}, H, ε〉 ∈ Q. Indeed, let us fix k ∈ ω and a family {Ys : s ≤ k} ⊂ K, where 
Ys =

⋃
i∈ω(Ki,s ∩ mi) for some Ki,s ∈ Ki. Also, let us fix a family {Rs : s ≤ k} ⊂

⋃
s≤k Fs and set 

R =
⋂

s≤k Rs. Then for every i ≥ 2k + 1 and s ≤ k we have that

Y := {Rs : s ≤ k} ∪ {Ki,s : s ≤ k} ∈ [
⋃

Fj ∪
⋃

Kj ]≤i,

j≤i j≤i
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and therefore for every and j ≤ i there exists nj ∈ [mi−1, mi) such that |
⋂

Y∩nj |
nj

> 1 − 1
i and |Y∩Hj∩nj |

nj
>

ε(Hj)(1 − 1
i ). Since

⋂
Y ∩ nj ⊂

⋂
{Rs : s ≤ k} ∩

⋂
{Ys : s ≤ k} ∩ nj , (4)

(because Ki,s ∩mi ⊂ Ys ∩mi for all s ≤ k), we conclude that (iii) is satisfied for 〈F ∪ {K}, H, ε〉, and hence 
it is a member of Q. Thus for arbitrary 〈F, H, ε〉 ≤ 〈F1, H1, ε1〉 we have 〈F ∪{K}, H, ε〉 ∈ Q, and hence there 
exists 〈F2, H2, ε2〉 ∈ G with K ∈ F2, which yields K ⊂ G. It remains to apply Theorem 2.2. �

It is well-known and easy to see that the filter Z∗ cannot be extended to any P+-filter, and hence G
from Theorem 3.2 is not Menger by Corollary 2.3. In addition, the Menger co-ideal G+ does not contain 
any P -point, and hence also no Menger ultrafilter. We do not know whether such examples can be obtained 
in ZFC, see Section 5 for more questions related to Z.

4. Impossibility results

Here we show that Theorem 2.4 cannot be proved without additional set-theoretic assumptions, see 
Theorem 4.3 below. Following [8] for a semifilter F we denote by PF the poset consisting of all partial 
maps p from ω × ω to 2 such that for every n ∈ ω the domain of pn : k �→ p(n, k) is an element of 
∼ F = {ω \ F : F ∈ F}. If, moreover, we assume that additionally dom(pn) ⊂ dom(pn+1) for all n, the 
corresponding poset will be denoted by P∗

F . A condition q is stronger than p (in this case we write q ≤ p) if 
p ⊂ q. For filters F the poset P∗

F is obviously dense in PF , and the latter is proper and ωω-bounding if F is 
a non-meager P -filter [27, Fact VI.4.3, Lemma VI.4.4]. This result has the following topological counterpart 
proved in [8]. Recall that a poset P is called ωω-bounding if (ωω)V is dominating in V P .

Lemma 4.1. If F+ is a Menger semifilter, then both PF and P∗
F are proper and ωω-bounding.

We shall need the following game of length ω on a topological space X: In the nth move player I chooses 
an open cover Un of X, and player II responds by choosing a finite Vn ⊂ Un. Player II wins the game if ⋃

n∈ω

⋃
Vn = X. Otherwise, player I wins. We shall call this game the Menger game on X. It is well-known 

that X is Menger if and only if player I has no winning strategy in the Menger game on X, see [18] or [26, 
Theorem 13].

For a relation R on ω and x, y ∈ ωω we denote by [x R y] the set {n : x(n) R y(n)}. The next lemma 
improves [8, Lemma 4.3].

Lemma 4.2. Suppose that F is a semifilter such that F ⊂ F+ and F+ is Menger. Let x be P∗
F -generic, 

Q ∈ V [x] be an ωω-bounding poset, and H a Q-generic over V [x]. Then in V [x ∗ H] there is no Menger 
semifilter G containing F such that G ⊂ G+ and G+ is Menger.

Proof. Suppose that a semifilter G ∈ V [x ∗H] as above exists. Throughout the proof we shall identify x with ⋃
x : ω×ω → 2. Suppose to the contrary, that such a G exists. Set xj(n) = x(j, n). Since G ⊂ G+, G cannot 

contain two disjoint elements, and hence for every j there exists εj ∈ 2 such that Xj := x−1
j (εj) ∈ G+. 

Without loss of generality we may assume that there exists an infinite T ⊂ ω such that εj = 1 for all j ∈ T . 
Since P∗

F ∗Q is ωω-bounding we can get an increasing sequence 〈jk : k ∈ ω〉 ∈ V such that for every k ∈ ω

there exists tk ∈ [jk, jk+1) ∩ T .
Given k ∈ ω, for every s ∈ ωjk+1 set

Uk,s = {X ⊂ ω : s[jk+1] ⊂ X}.
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Then {Uk,s : s ∈ Σk,l}, where Σk,l =
∏

j<jk+1
(Xj \ l), is an open cover of G for every k, l ∈ ω, because 

each Y ∈ G has infinite intersection with each Xj. We shall define a strategy Θ for player I in the Menger 
game on G as follows. Θ(∅) = {U0,s : s ∈ Σ0,0}. If II replied with some finite subset V0 of Θ(∅), I
finds h(0) ∈ ω such that this reply is contained in {U0,s : s ∈ h(0)j1 ∩ Σ0,0} and his next move is then 
Θ〈V0〉 := {U1,s : s ∈ Σ1,h(0)}. And so on, i.e., after k many rounds player I finds h(k) ∈ ω above h(k − 1)
(here h(−1) := 0) such that the reply of II is contained in {Uk,s : s ∈ h(k)jk+1 ∩ Σk,h(k−1)} and his next 
move is then

Θ〈V0, . . . ,Vk〉 := {Uk+1,s : s ∈ Σk+1,h(k)}.

Since G is Menger, Θ is not winning, and hence there exists an increasing sequence h ∈ ωω ∈ V [x ∗H] such 
that

G ⊂
⋃{⋃

{Uk,s : s ∈ h(k)jk+1 ∩ Σk,h(k−1)} : k ∈ ω
}
. (5)

Next, we shall define a strategy Υ for player I in the Menger game on G+ as follows. Υ(∅) = {U0,s :
s ∈ S0,0}, where Sk,l =

∏
j<jk+1

(
ω \ (dom(pj) ∪ l)

)
for all k, l ∈ ω. If II replied with some finite subset V0

of Υ(∅), I finds l0 ∈ ω such that this reply is contained in {U0,s : s ∈ h(l0)j1} and his next move is then 
Υ(V0) := {U1,s : s ∈ S1,h(l0)}. And so on, i.e., after k many rounds player I finds lk ∈ ω above lk−1 such 
that the reply of II is contained in {Uk,s : s ∈ h1(lk)jk+1} and his next move is then

Υ〈V0, . . . ,Vk〉 := {Uk+1,s : s ∈ Sk+1,h(lk)}.

Since Υ is not winning, there exists an increasing sequence 〈lk : k ∈ ω〉 (we set also l−1 = 0 for convenience) 
such that

G+ ⊂
⋃
k∈ω

⋃{
Uk,s : s ∈ h(lk)jk+1 ∩ Sk,h(lk−1)

}
. (6)

Let h1 ∈ V ∩ ωω be an increasing function such that h1(k) ≥ h(k) for all k ∈ ω, and 〈p, q̇〉 ∈ x ∗ H a 
condition forcing all the above to happen. Let also ḣ, ṫk, Ġ, Σ̇k,l, ẋ, ẋj , Ẋj , Ṫ ,... be P∗

F ∗Q-names of the 
objects in V [x ∗H] considered above. Consider the condition p1 ∈ P∗

F below p defined as follows:

p1
j = pj ∪ {〈n, 0〉 : n ∈ h1(lk) \ dom(pj)}

whenever j ∈ [jk, jk+1) and k ∈ ω. Thus 〈p1, q̇〉 forces Equations (5) and (6). Thus 〈p1, q̇〉 forces the following: 
If for every k ∈ ω and s ∈ ḣ(k)jk+1 ∩ Σk,ḣ(k−1) we pick js ∈ jk+1, then

{
s(js) : s ∈ ḣ(k)jk+1 ∩ Σk,ḣ(k−1), k ∈ ω

}
∈ Ġ+; and (7)

if for every k ∈ ω and s ∈ ḣ(l̇k)jk+1 ∩ Ṡk,ḣ(l̇k−1) we pick j′s ∈ jk+1, then

{
s(j′s) : s ∈ ḣ(l̇k)jk+1 ∩ Ṡk,ḣ(l̇k−1), k ∈ ω

}
∈ Ġ. (8)

Given a P∗
F ∗Q-generic filter x1 ∗H1 containing 〈p1, q̇〉, we shall work in V [x1 ∗H1] in what follows. For 

abuse of notation we shall again use notations for the evaluations with respect to x1 ∗ H1 of all names 
considered above, obtained simply by removing “˙”, i.e., h := ḣx1∗H1 etc. This way letting j′s := tk for 
each s ∈ h(lk)jk+1 ∩ Sk,h(lk−1), the set B′ defined in Equation (8) belongs to G. For every k ∈ ω and s ∈
h(k)jk+1 ∩ Σk,h(k−1) set js := tm(k), where m(k) = min{m : lm ≥ k}. The set B defined in Equation (7) for 
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this choice of js’s belongs to G+, and hence B∩B′ �= ∅. Thus there exist k, k′ ∈ ω, s′ ∈ h(lk′)jk′+1∩Sk′,h(lk′−1), 
and s ∈ h(k)jk+1 ∩ Σk,h(k−1) such that

s(tm(k)) = s′(tk′). (9)

Since s(tm(k)) ∈ h(k) \ h(k − 1) and s′(tk′) ∈ h(lk′) \ h(lk′−1), from Equation (9) we conclude that h(k) \
h(k − 1) ⊂ h(lk′) \ h(lk′−1), and hence k′ = min{m : lm ≥ k}, which yields k′ = m(k). Recall that 
s(tm(k)) ∈ Xtm(k) , and therefore

xtm(k)

(
s(tm(k))

)
= εtm(k) = 1. (10)

On the other hand,

xtm(k)

(
s(tm(k))

)
= xtm(k)

(
s′(tm(k))

)
= p1

tm(k)

(
s′(tm(k))

)
(11)

because p1
tm(k)

⊂ xtm(k) and

s′(tm(k)) ∈ h(lm(k)) ⊂ h1(lm(k)) ⊂ dom(p1
tm(k)

),

the last inclusion following from tm(k) ∈ [jm(k), jm(k)+1) and the definition of p1. Recall that s′(tm(k)) /∈
dom(ptm(k)) by the definition of Sk′,h(lk′−1) = Sm(k),h(lm(k)−1), which implies that p1

tm(k)

(
s′(tm(k))

)
= 0 by 

the definition of p1. Thus xtm(k)

(
s(tm(k))

)
= xtm(k)

(
s′(tm(k))

)
= 0 by Equation (11), which is impossible by 

Equation (10). This contradiction completes our proof. �
The next theorem improves [8, Theorem 4.5] and is the main result of this section.

Theorem 4.3. It is consistent that there is no semifilter G on ω such that G ⊂ G+ and both G, G+ are Menger.

Proof. Let us assume that V = L and3 consider a function B : ω2 → H(ω2), the family of all sets whose 
transitive closure has size < ω2. Let 〈Pα, Q̇β : β < α ≤ ω2〉 be the following iteration with at most countable 
supports: If B(α) is a Pα-name for P∗

Ḟ for some semifilter Ḟ such that �Pα
“Ḟ ⊂ Ḟ+ and Ḟ , Ḟ+ are Menger”, 

then Q̇α = B(α). Otherwise we let Q̇α be a Pα-name for the trivial forcing. Then Pω2 is ωω-bounding forcing 
notion with ω2-c.c. being a countable support iteration of length ω2 of proper ωω-bounding posets of size ω1
over a model of GCH. Now, using the suitable diamond in V for the choice of B together with a standard 
reflection argument, we can guarantee in addition that for any Pω2-generic filter G over V and semifilter 
F ∈ V [G] such that F ⊂ F+ and F , F+ are Menger, the following holds:

The set 
{
α : Fα := (F ∩ V [G ∩ Pα]) ∈ V [G ∩ Pα], Fα ⊂ F+

α , Fα, F+
α are Menger in V [G ∩ Pα], and 

Q̇G∩Pα
α = P∗

Ḟα

}
is stationary in ω2.

Now, a direct application of Lemma 4.2 implies that Fα cannot be enlarged to any semifilter U ⊂ U+ in 
V [G] such that U , U+ are Menger, which contradicts the fact that F is such an enlargement. �
5. Open questions

Theorem 2.4 together with Corollaries 2.5 and 2.6 motivate the following

3 It suffices to assume 2ω = ω1, 2ω1 = ω2, and 	{δ∈ω2:cf(δ)=ω1}, see [27, Theorem 5.13].
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Question 5.1.

• Is there a ZFC example of a non-meager filter F such that F+ is not homeomorphic to (F+)2?
• Is F × F+ homeomorphic to F+ for every non-meager filter F?

In light of Theorem 3.2 it is natural to ask the next question. Let us recall from [12] that for a filter F
the Mathias forcing associated to it adds no dominating reals iff F is Menger, so the following question is 
especially interesting when F is not an ultrafilter.

Question 5.2. Let F be a filter such that F+ is Menger. Is there a (proper) poset adding no dominating 
reals and adding an infinite pseudointersection of F? What about the Mathias forcing associated to F+?

Theorem 4.3 leaves open one possibility whose inconsistency we are unable to establish.

Question 5.3.

• Is there a ZFC example of a filter F such that F+ is Menger?
• Is there a ZFC example of a semifilter F ⊂ F+ such that F+ is Menger?

The first item of the question above has been mentioned to us by Mikołaj Krupski in private communica-
tion and is related to his work [21]. By [8, Lemma 3.1] the negative answer to the second item of Question 5.3
implies that consistently every Menger remainder of a topological group is σ-compact.
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