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Abstract: In this article, we study certain critical Schrédinger-Kirchhoff-type systems involving the frac-
tional p-Laplace operator on a bounded domain. More precisely, using the properties of the associated
functional energy on the Nehari manifold sets and exploiting the analysis of the fibering map, we establish
the multiplicity of solutions for such systems.
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1 Introduction

In recent years, a lot of attention has been paid to problems involving fractional and nonlocal operators. These
types of problems arise in applications in many fields, e.g., in materials science [9], phase transitions [5,39],
water waves [16,17], minimal surfaces [13], and conservation laws [10]. For more applications of such problems
in physical phenomena, probability, and finances, we refer interested readers to [12,14,47]. Due to their impor-
tance, there are many interesting works on the existence and multiplicity of solutions for fractional and nonlocal
problems either on bounded domains or on the entire space, see [1,3,4,6,23,24,34,36-38].

In the last decade, many scholars have paid extensive attention to Kirchhoff-type elliptic equations
with critical exponents, see [20,25,33], for the bounded domains and [26,28,29] for the entire space. In
particular, in [22], the authors considered the following Kirchhoff problem:

I I N |Lrll(+)z/s)|2dxd (-B)%u = A0 w) + u?u in Q, (1.1)

u= 0 on R™\Q,
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wheret > 0 and M(t) = a + bt forsomea > 0 and b > 0. Here, and in the rest of this article, Q will denote a
bounded domain in R™ with Lipschitz boundary 0Q.

Under suitable conditions and by using the truncation technique method combined with the mountain
pass theorem, the authors proved that for A > 0 large enough, problem (1.1) has at least one nontrivial
solution. Later, the fractional Kirchhoff-type problems were extensively studied by many authors using
different methods, see [7,8,15,21,27,30-32,35,40,42-45]. In particular, by using the Nehari manifold method
and the symmetric mountain pass theorem, Xiang et al. [43] investigated the multiplicity of solutions for
some p-Kirchhoff system with Dirichlet boundary conditions.

Mingqi et al. [30] studied the following Schrédinger-Kirchhoff-type system:

M, VI, + llu, VIE v )Ly + VOOluP~2u) = AH,(x u, v) + ZvBluf2u in RY,
S

(1.2)
M, VI, + llu, VIE v )Ly + VOOWVIP2v) = AH(x, u, v) + ﬁ*lul’xlvlﬁ'zv in R™,
S

np
n-sp’

where 1 >0, a+f=p; = V:R" - [0,00) is a continuous function, the Kirchhoff function

M : (0, c0) — (0, 00) is continuous, and H, and H, are Caratheodory functions. Under some suitable
assumptions and by applying the mountain pass theorem with Ekeland’s variational principle, the authors
obtained the existence and asymptotic behavior of solutions for system (1.2).

By the same methods as in [30], Fiscella et al. [21] studied the existence of solutions for a critical Hardy-
Schrodinger-Kirchhoff-type system involving the fractional p-Laplacian in R". Using the three critical
points theorem, Azroul et al. [8] established the existence of three weak solutions for a fractional
p-Kirchhoff-type system on a bounded domain with homogeneous Dirichlet boundary conditions. Recently,
Azroul et al. [7] have established the existence of three solutions for the (p, g)-Schrédinger-Kirchhoff-type
system in R™ via the three critical points theorem.

Motivated by the above-mentioned articles, we consider in this article the following Schrédinger-
Kirchhoff-type system involving the fractional p-Laplacian and critical nonlinearities:

My(Jlullf ) ((~B)5u + VOOlP-2u) = @O0l ~2u + Af(x, u, v) in Q,
Mo VIR ) (B)5v + VOOIVIP-2v) = ap(x)vIP ~2v + Ag(x, u, v)  in Q,

u,v>0 in Q,
u=v=0 onR"Q,

(1.3)

where ||.|ly; and ||. ||y, will be given later (see (1.6)), n > ps, 0 < s <1< g < p, A is a positive parameter, the
weight functions a; and a; are positive and bounded on Q, and (-A);, is the fractional p-Laplace operator,
defined as follows:

(A = 21im [u0) — u(y)lP?ux) - u(y))
p

-0 Ix — y|Hrs
RM\B¢(x) Y

dy, forall x € R",

where B:.(x) = {y € R": |x — y| < €}. For more details about the fractional p-Laplacian operator and the
basic properties of fractional Sobolev spaces, we refer the reader to [18].

Throughout this article, the index i will denote integers 1 or 2, and we shall assume that the potential
functionV; : Q — (0, co) is continuous and that there exists v; > 0 such that infoV; > v;. In addition, we shall
assume that M; : (0, c0) — (0, co) is a continuous function satisfying the following conditions:

(Hy) lim,_ oot~ 7 Mi(t) = 0.
(K>) There exists m; > 0 such that for all t > 0, we have M;(t) > m;.

(H;) There exists 6; € [1, %[ such that for all £ > 0, we have My(t)t < OMi(t), where My(t) = L:Mi(s)ds.

Moreover, we shall assume that f, g € C(Q x R x R, [0, oo[) are positively homogeneous functions of
degree (q — 1), i.e., forall t > 0 and (x, u,v) € Q x R x R, we have



DE GRUYTER Critical p-fractional elliptic equations = 3

(1.4)

fx, tu, tv) = t97f(x, u, v),
g(x, tu, tv) = t47g(x, u, v).

Finally, we shall also assume that there exists a function H: O x R x R — R satisfying
H,(x,u,v) =f(x,u,v) and H,(x,u,v)=g(x,u,v),

where H, (respectively, H,) denotes the partial derivative of H with respect to u (respectively, v). We note
that the primitive function H belongs to C}(Q x R x R, R) and satisfies the following assumptions for all
t>0,(xuv)ecQ xR xR, and some constant y > 0:

H(x, tu, tv) = t9H(x, u, v),
qH(x, u, v) = uf(x, u, v) + vg(x, u, v), (1.5)
[HOx u, v)I < y(jul? + [v]9).

Before stating our main result, let us introduce some notations. For s € (0, 1), we define the functional
space

WsP(Q) = {w :R" - R measurable: w € LP(Q) and w € LP(Q)}’
x — ylp*s

which is endowed with the norm

W) - wy)IP

s, = P T e
Iwllwsr) = [ IWllfpqy + I I — y[rrs dxdy | ,
Q

where Q = R?\(Q¢ x Q°) and Q¢ = R"\ Q. From now on, we shall denote by | -||; the norm on the Lebesgue
space L(Q). It is well known that (WS?(Q), ||-llwsrq)) is a uniformly convex Banach space.

Next, LP(Q, V;) denotes the Lebesgue space of real-valued functions, with V;(x)|w|? € L(Q), endowed
with the following norm:

1
p

Wiy = fvi(xnwlpdx

Let us denote by W]ﬁl_’p(Q) the completion of C5°(Q) with respect to the norm
%

J‘ W) - W(y)lp _ (1.6)

wlly = [ 1wl + o

According to [18, (Theorem 6.7]), the embedding W;i’p(Q) — L[Y(Q) is continuous for any v € [p, p;]. Namely,
there exists a positive constant C, such that

Iwlly < Cillwlly, ~ forall w e WiP(Q).

Moreover, by [46, Lemma 2.1], the embedding from W;;?(Q) into L¥(Q), is compact for any v € [1, p;).

Let W= Wy p(Q) x Wy p(Q) be equipped with the norm ||(u, v)| = (||u|| + ||V||‘I/}2)11’. Then, (W, |.]) is a
reflexive Banach space. The interested reader can refer to [2] for more details. Let Sy, y; be the best Sobolev
constants for the embeddings from Wé_’p (Q) into LP5(Q), which is given as follows:

llwllf;
Spy= inf ——° 1.7
P wewgP @\ o} Wl (1.7)

For simplicity, in the rest of this article, S will denote the following expression:
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S = min(S,,v, Sp.1;)- (1.8)

Next, we define the notion of solutions for problem (1.3).

Definition 1.1. We say that (u, v) € W is a weak solution of problem (1.3), if

- Z(y)) dxdy + Vl(X)Iulp—ZuZdX
=y
Q

_ -2 _
My([JullP) I u(x) — u()P-2u) - u(y))(z(x)
Q

— VNP (v(x) - v(y)wX) — w(y))

|X _ y|n+ps

+ ML) I'V(") axdy + [ 0O 2wex
Q Q

= J-(al(x)|u|P§*2uz + az(x)|v|1’;*2vw)dx +A I(Hu(x, u, v)z + H/(x, u, v)w)dx,
0 Q

for all (z, w) e W.
The following theorem is the main result of this article.

Theorem 1.1. Assume that s € (0,1),n > ps, 1 < q < p < ps, and that equations (1.4) and (1.5) hold. If M
satisfies conditions (H;)—(Hs), then there exists A* > 0 such that for all A € (0, A*), system (1.3) has at least two
nontrivial weak solutions.

This article is organized as follows. In Section 2, we present some notations and preliminary results
related to the Nehari manifold and fibering maps. In Section 3, we prove Theorem 1.1.

2 The Nehari manifold method and fibering maps analysis

This section collects some basic results on the Nehari manifold method and the fibering maps analysis,
which will be used in the forthcoming section; we refer the interested reader to [11,12,19] for more details.
We begin by considering the Euler-Lagrange functional J; : W — R, which is defined as follows:

B, v) = %(@(Al(u» + M) - %B(u, V) - AC(u, V), 1)

S

where

Aw) = Wil Blu,v) = I(al(x)|u|p5 + @0OWIP ) dx, Clu, v) = j H(x, u, v)dx.
Q Q

We can easily verify that J; € CY(W, R); moreover, its derivative J; from the space W into its dual space W' is
given as follows:

N, v), (u, v)) = AWM (AW) + AHVIMx(A(V)) - B(u, v) - AqC(u, v). (2.2)

From the last equation, we can see that the critical points of the functional J; are exactly the weak solutions
for problem (1.3). Moreover, since the energy functional J, is not bounded from below on W, we shall show
that J is bounded from below on a suitable subset of W, which is known as the Nehari manifold and is
defined as follows:

N)l = {(ur V) € W\{(O’ O)}’ (]/Il(u’ V)r (u’ V))W = O}

It is clear that (u, v) € N, if and only if
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A(WM(A W) + A(V)My(A (V) - B(u, v) - AqC(u, v) = 0. 2.3)

Hence, from (2.2), we see that the elements of A, correspond to nontrivial critical points, which are
solutions of problem (1.3).

It is useful to understand N, in terms of the stationary points of the fibering maps ¢, , : (0, c0) - R, is
defined as follows:

o
—B(u, v) — AtiC(u, v).

S

G (6) = Ity tv) = %(M(t%(u)) + FH(tPA(V)) -

A simple calculation shows that for all ¢ > 0, we have

@, (O = P AWMPAW) + AVIM(tPAV))) - tP1B(u, v) - Agti-C(u, v),
and

%:V(t) = (p - DEP2(A M (tPA () + A (V)My(tPA(v))) + ptP=2((A1(w))*M; (tPA (1))
+ (A (WM)M(tPA(v))) - (p5 - DEP~2B(u, v) - Aq(q — Dt9-2C(u, v).

It is easy to see that for all t > 0, we have
1
(Pliyv(t) = U/{(tu, tV), (ur V))W = t_ZU/{(tu’ tV), (tu’ tV))W

So, (tu, tv) € N, if and only if <pl:’v(t) = 0. In the special case, whent = 1, we obtain (u, v) € Ny, if and only if
(pl:,v(l) = 0. On the other hand, from (2.3), we obtain

‘Plzv(l) = (p - DAWM; (A (W) + A VIM)(A(V))) - (ps — DB, v)
+ p((AW)*M] (A1 (W) + (A(V))*My(A(vV))) - Ag(g - DC(u, v) (2.4)
= p((A1(W)* M (A (W) + (A (W))*My(A (V) - (pi - P)B(u, v) — Aq(q - p)C(u, v)
= p((AW)*M{(Ai(w)) + (A (V))*My(A (V) + Ag(ps — ¢)C(u, v)
- (ps — PAWMI(A W) + A VIMy(A(v)))
= p((AW)*M (A1 (W) + (A (V))*My(A (V) - (ps — @)B(u, v)
+ (0 — QAWM (A (W) + A (V)My(A(V))).

Now, in order to obtain a multiplicity of solutions, we divide N, into three parts as follows:

(2.5)

(2.6)

Ni={u,v) e Ny : (plzv(l) >0} ={(u,v) e W: (plj,v(l) =0 and ‘PLZV(D > 0},
Ni={u,v) € Ny : sz(l) <0}={(u,v) e W: (pl;’v(l) =0 and (plzv(l) < 0},
NO={u,v) e Ny: (plzv(l) =0} ={(u,v) e W: (p;,v(l) =0 and <p,:fv(l) = 0}.

Lemma 2.1. Suppose that (ug, Vo) is a local minimizer for J; on Ny, with (ug, vo) ¢ NS. Then, (uo, vo) is a
critical point of Jj.

Proof. If (ug, vp) is a local minimizer for J; on Ay, then (ug, vo) solves the following optimization problem:
{ min Ji(u, v) = (o, vo),
(u,v)eNy

B(uo, vo) = 0,

where
Bu, v) = A (M (A (W) + A(v)My(Ay(v)) — B(u, v) — AqC(u, v).

By the Lagrangian multipliers theorem, there exists § € R, such that
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Ji(uo, vo) = 6B'(uo, vo). 2.7)
Since (ug, Vo) € Ny, we obtain
8(B'(uo, Vo), (Uo, vo))w = U (uo, Vo), (o, Vo))w = O. (2.8)
Moreover, by (2.3) and the constraint S(ug, vp) = 0, we have
(B'(uo, Vo), (o, Vo)yw = P((A1(uo))*M{(Ai(Uo)) + (A(v0))’My(A (%)) — (ps — P)B(uo, Vo) — Aq(q — p)C(uo, Vo)
n
=0, W-
Since (uo, vo) ¢ NS, we have (pljg’w)(l) # 0. Thus, by (2.8), we obtain § = 0. Consequently, by substituting § in
(2.7), we obtain J}(uo, vo) = 0. This completes the proof of Lemma 2.1. O

In order to understand the Nehari manifold and fibering maps, let us define the function, , : (0, c0) —» R
as follows:

Y, (O) = tP-UAM(tPA (W) + A (VIM(tPA (V) - t%-4B(u, v) — AqC(u, v). (2.9)
We note that tqfll/)u,v(t) = (p,: ’V(t). Thus, it is easy to see that (tu, tv) € N, if and only if
Y, () = 0. (2.10)
Moreover, by a direct computation, we obtain
W, (O = (0 = DT AWM (EPAW) + AVIMy(tPA (V) + ptP= 17 AT WM (tPAIW) + A7 (V)My(tPAr(v)))
- (0 ~ Ot 7B(u, v).
Therefore,
ti iy, () = @ (0. .11)

Hence, (tu, tv) € N}, (respectively, (tu, tv) € N3) if and only if ¢, (¢) = 0 and l/)l:,v(l’) > 0 (respectively,
Y,,(t) =0, and ll)l:,v(t) < 0). Put

m = min(my, my), 6 = max(8,, 6,), (2.12)
and
R g
A = mSy (psz _p)( - )";". @13)
yqulpsT; ps —a\(ps - Da

Now we shall prove the following crucial result.

Lemma 2.2. Assume that conditions (H,) and (H,) hold. Then, for all (u, v) € N, there exist A, > 0 and unique
t > 0 and t, > 0, such that for each A € (0, A,), we have (tu, tiv) € N and (tu, tv) € Nj.

Proof. We begin by noting that by (2.9), we have
Y, () = -AqC(u,v), as t - 0%, and ), (t) — —co, as t — oo.
Now, if we combine equations (1.5) and (1.7) with the Holder inequality, we obtain
B(u, v) < llailoo % + laloo IVIZ: < a(lullZ: + IVIE:)
B I B I (2.14)
<a(S, i (Aw)r + S, (A w)7) :

<SralAu, V)7,

and
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pi-a pi-q
CQu,v) < y(llullf + V) < ylol = (llull, + IVIE.) < yS=1Ql % (A, v)?, (2.15)
where a = max(||ailloo, a2l ), AU, v) = (1, v)||P, and S is given by equation (1.8).

On the other hand, by combining equations (2.14) and (2.15) with (H,), we obtain

e ' pi-q
B (6 2 (P9 (1) + moA(V)) — 7095 a(AGu, V) — Agys-5 1l (AGu, V)b -

" « pi-q
> mtP=9A(u, v) - t%-9S"ra(A(u, v))7 — AqyS~5 Q] % (A(u, v))5 > (A(u, v))5E,. (D),
where m is given by equation (2.12) and E, , is defined for ¢t > 0 by

p-q * ns ps-q g B
E (t) = mtP-9(A(u,v))» —t-9S ra(A(u,v)) 7 - AqyS—»|Q| » .

Since 1 < g < p < p;, it is easy to see that lim; ,o*F,,(t) < O and lim;,.F,,(t) = —co. So, by a simple
calculation, we can prove that E,, attains its unique global maximum at

1

_ P-p
tmax(U, v) = L*( p* q ) (A(u, V));pl. (2.17)
S_p;a pPs —q
Moreover,
pi-q
Fu(tmax) = qyS771Q1 % (A, = A), (2.18)

where A, is given by (2.13).
If we choose A < A,, then we obtain from (2.16)

W, (tmax) = (AU, V))7E, y(tmax) > O. (2.19)

Hence, by a variation of ll)u’v(t), there exist unique t < thax(U, v) and unique & > tnax(U, v), such that
Y, (&) > 0 and ¥ (&) < 0. Moreover, ¥, () = 0 = ¥, (). Finally, it follows from (2.10) and (2.11) that
(tw, tiv) € N and (tu, tv) € N;. This completes the proof of Lemma 2.2. O

We can see from Lemma 2.2 that sets N} and N} are nonempty. In the following lemma, we shall
provide a property related to AV§S.

Lemma 2.3. Assume that condition (H,) holds. Then, for all A € (0, A,), we have N8 = @.

Proof. We shall argue by contradiction. Assume that there exists A > 0 in (0, A,) such that N$ + @. Let
(uo, Vo) € NS. Then, invoking (H,), (2.5), and (2.15), we have
0 = (1) = p((AW)*M(A W) + (A, ())*My(A4,())) - (ps — P)AM(AW) + A (VIMy(A,(v)))
+ Aq(ps - 9)C(u, v)
< p((AW)°M{(A W) + (A ())*My(A (1)) - (ps - p)mAi (W) + mpAy(v))

+Aq(ps - OC(u, v) (2.20)
< p((AW)*M'(AW)) + (A(V))*N'(AW))) - (ps - p)mA(u, v)
+ Aq(t - @S 101 (A, v
On the other hand, by (H,), (2.6), and (2.14), one has
0 = ¢, (1) = p(AW)*M(AW) + (AWV))’My(AHW))) + (p ~ DAWMAW) + A VIM(A (V)
- (ps - PBu, v) 2.21)

> p((AW)* My (AiwW) + (A (V) My(AW))) + (p - OlmA@) + mA () - (55 - @B, v)
> p((4W) M{(AW) + A W)PMY(AW)) + (p - QmAW, v) - (p; - )S 7 a(Au, V)7 .
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Combining (2.20) and (2.21), we obtain

1> m(A(u, v))% - S*pr*a(A(u, v))@

= 2.22)
qyS7r Q| %

Next, we define the function H on (0, co) by

pa P P4
H() = mtr» — S rat »

4 ps-q
qyS7r Q| »

Since 1< g < p < pg, it follows that lim; ,o-H(t) = 0 and lim,_,,H(t) = —co. A simple computation now
shows that H attains its maximum at

p;“ps’%n
Fo (p—q)mSp

and
ntli)XH(t) = H(f) = A,. (2.23)

Hence, it follows from (2.22) and (2.23), that A > max;.oH(t) = A., which contradicts A € (0, A,). Therefore,
we can conclude that that indeed N'§ = @, for A € (0, A,). This completes the proof of Lemma 2.3. O

Lemma 2.4. Assume that conditions (H,) and (Hs) hold. Then, ], is coercive and bounded from below on N.

Proof. Let (u, v) € N,. Then, by (2.3), we obtain
B(u, v) = A)Mi(Ai (W) + A (V)Ma(A(v)) - AgC(u, v).

Therefore,

i, v) = %uﬁl(Al(u)) + M(A0)) - #(A«u)Ml(Al(u» + AWMAV))) - A(l - %)C(u, V).

S S

Moreover, by (H), (Hz), and (2.15), we have

B, V) 2 —— AMAW) + ——AVIM(AV)) - A WM(A W)
0:p 0,p

S

= o) - A(l - %)C(u, v)

Ds Ds

> (ei - %)(A«u)Ml(Al(u)) b A MAA V) - /1(1 : i*)c(u, v
p P P

( 11 ) ( q )

> — - — [(mA@) + mA V) - A1 - = |C(u, v)
bp b P

= m(i - %)A(u, v) - A(1 - l*)yS;|Q|p;s:q(A(u, V))h.

bp  ps p;

Since g < p and 6p < pj, it follows that Jj is coercive and bounded from below on A,. This completes the
proof of Lemma 2.4. O

By Lemma (2.3), we can write N = N'j U N3, and by Lemma (2.4), we can define

ay = inf Jy(u,v) and af = inf Jy(u,v).
W,v)eNy W,v)eNy
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3 Proof of the main result

In this section, we shall prove the main result of this article (Theorem 1.1). First, we need to prove two
propositions.

Proposition 3.1. Assume that conditions (H,) and (H) hold. Then, there exist ty > 0 and (ug, vo) € W\{0}, with
(uo, vo) > 0 in R™, such that

Py P tps* _ n s';,
L A o)td) + Bao)td) - B, o) = [ S - 91 asp:(’"s) . 3.1
p Ds n 9p 0

Proof. For any (u, v) € W\{0}, we define the function ¢, , : (0, c0) — R as follows:
1, — 1 1, ~ tps
Cu() = ;(Ml(/h(tu)) + My(A (1)) — FB(t(u, v)) = ;(Ml(t”Al(u)) + My(tPAy(v))) — ?B(u’ V).
S S

By (H;), it can be shown that lim; ¢, (t) > 0 and lim; ¢, (t) = —oco. It is clear that  is of class CL
Moreover, invoking (H,) and (H;), we obtain

MOk %Al(u)Ml(tpAl(u)) + %Az(V)Mz(tPAz(v)) L T
1 H ;
> %(A1(H)M1(tPA1(u)) + AWM AWV))) - t:j B, v)

tp tps
> —(mA(u) + myA(v)) - —B(u, v)
6p p

S

m o
>—tPA(u, v) — —*B(u, v) = wu,v(t)-
op s

Since lim;_,ow,, ,(t) = 0 and lim;_, ,w,, ,(t) = —00, it follows that w, , attains its global maximum at
f = mA(u, v) ﬁ
"\ 6Bu,v) )

Moreover, from (2.14) and the fact that p; > 6p, we have

sup wu,v(t) = wu,v(t*)
t>0

%

- (p - )(ﬂ) 7 (A, V) (B, V)
pps )\ O
p

= (ps* —_*p )(m)m((A(u, v))'%;B(u, v))p;p
Dbs 0

_s(my? 5 X3 .
-n( 9) (A, V)5 (B, 1)) (3.2

",,(mS)S'}”
> —Asps
n 6

s 06-1 f;(mS)S'}’
>l — - a sps

n 6p 6
(B0 (s

Opp; 6

Therefore, using the variations of the functions ¢, , and w,,y, we obtain
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s 6-1) =(mS £
Sup ¢, , > sup wy,y = il L .

t>0 t>0

Hence, there exists ¢ty > 0 such that

s 6-1) n(mS\»
to) = | = - —— |a» .
(u,v( 0) (n op )a”( 9)

This completes the proof of Proposition 3.1. O

Set now

0-1 P 7 g P4 =
L=(p-q| 33 -Z—= e o T 3.3)
g\n 6p Op?

Proposition 3.2. Assume that conditions (H,) and (Hs) hold. If 1 < q < p < p;, then every Palais-Smale
sequence {(ug, v)} ¢ W for Ji at level c, with

< (i - 0 - 1)(151’}( n;S )ﬁ - Apqu, (3-4)

possesses a convergent subsequence.

Proof. Let {(uy, vi)} be a Palais-Smale sequence for J; at level c, i.e.,
I(ug, vi) — ¢, and Jj(ug, vi) — 0, as k — oo.

By Lemma (2.4), we know that {(uy, vi)} is bounded in W. So up to a subsequence, still denoted by {(uy, vi)},
there exists (u., v,) € W, u > 0, and n > 0O, such that as k tends to infinity, we have

(ug, vi) — (U, v.) weaklyin W,

I, — 5 vidly, — 1,

(e, vi) — (U, v) weaklyin L%(Q) x L%(Q), (3.5)
(ug, vi) = (u., v.) stronglyin L1(Q) x LI(Q)), 1<gq < pd,

(U, vi) » (U, v,) a.e.in Q,

Since 1 < g < pd, it follows from [41, Theorem IV-9] that there exist functions I, L, € LI(Q) such that for a.e.
x € Q, we have |u(x)| < L(x), |vi(x)| < L(x). Hence, by the dominated convergence theorem,

C(uy, vv) — C(u.,v,) as k — oo. (3.6)
On the other hand, by the Brezis-Lieb lemma [21, Lemma 1.32], for k large enough, we have

Ai(u) = Ay(uy — ) + A(u,) + o(1),
Avi) = (v — v) + A(w) + 0(1),

and
B(uk’ Vk) = B(uk = Uy, Vi — V*) + B(u*y V*) + O(l).

Consequently, by letting k tend to infinity, we obtain
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0(1) = U/I\(uki Vk), (uk = Uy, Vk - V*))W

_ -1 _ _ _
= My(Au) J‘ [ue(x) — ux(Y)IP (|E(uli ylgjl))gx) (ue — u)(y)) dxdy
0

+ '[Vl(X)IukIp‘l(uk - u*)dXJ - Ial(X)Iuk|p5 Ly — u)dx
Q

Q

00 = P = 100 = 0 =) 4 g
=y

+ My(Ay (Vi) I
Q

+ jvz(xnvkw*(vk - v*>dx] - jaz(x)wkwé‘*(vk ~v)dx
Q

Q

2 f(Hu<x, e VO — 1) + Hy(t, e, VWi — v))dx
Q
= MiuP)(pP - A(w)) + Mo(nP)(nP - A(v))
= [ (@0t + o )dx + [ (aiconpi + acoi )ax
Q Q
-A f(Hu(x, U, ViU — W) + H(x, ug, vio(vk — v))dx + o(1)
Q

= Mi(uP) A (uy — u.) + Mo(P)Ay(vic — vi) — B(ug — Uy, Vi — V)
2 j(Hu<x, e VO — 1) + Hy(x, e, vOWk — w)dx + o(1).
Q

Therefore,

Ml(u”)klim A(u - w) + Mz(rzp)klim Ay(vk — W)

= klim Bug — u,, v — i) + klim A | (Hu(x, wie, vioQuie — w) + Hy(x, ug, vid(vie — v))dx
—00 — 00
Q

By (1.5), (3.5), and the Holder inequality, it follows that

f(Huo«, e, Vi)W — 1) + Hy (6, e V)i — v))dx
Q

IN

vq j T e — w)dx + yg j|vk|q-1<vk ~ v)dx
Q Q

IN

-1 -1
Yallulld lux — w.llg + yqlvidld v = wlq

-1 -1
Coyalludly ux — w.lly + Cayglvidi, v — villg

IN

for some positive constant C;. So, we obtain

k—o00

lim j (L6 uio O — 1) + Hy(, i vi)(e — w))dx = 0.
Q

Thus, from (3.7), we can deduce that

lim Buy — ., Vk — %) = Ml(y")klim Ay — u.) + Mz(n”)klim A (Vi — ).

k—o0

11

(3.7)
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For simplicity, set b := lim_,,B(ux — u., vx — v.). Note that b > 0. Moreover, to prove that (uy, vx) con-
verges strongly to (u., v.), it suffices to prove that b = 0. Suppose to the contrary, that b > 0. Then, by (H),
we obtain

A(ug — u)MyUP) + Ay (vic = vOM(NP) = mud (e — w) + Ao (Vi — v) =2 mAQug — U, vk — ). (3.8)
Using (2.14), we obtain
Alug — Uy, Vi — V) 2 Saip%(B(uk = Uy, Vg — v*))p%‘. 39
So by combining (3.8) and (3.9), we obtain
_r b
A — w)Mi(A W) + A (vie — VOMy(A,(W)) = mSa »(B(Uy — U, Vi — V)5
By letting k tend to infinity, we conclude that
b > a%(mS)”. (3.10)
On the other hand, by (H), (3.6), and (3.10), one has

. . 1
c= kllm I, vi) = khm (]A(uk, Vi) - F(L/\(uk, Vi), (U, Vk))W)

S

- lim. [%(M(Al(uk)) B0 — —AUOM (A (40)

S

_ 1* A(ps :q)C(uk,vk)}
Ds Ds
. 1 1
> lim [—Al(uk)Ml(Al(uk)) + —A(Vi)My(A>(vi))
k—o00 91p 92p

- i*(141(uk)]\/fl(t‘h(uk)) + A (VioMy (A (vi))) — (Psp— )C(uk, Vk)]

> Tim |[L - —](Al(uuMl(Al(uk)) + AVOMy(AW))) - (ps _ q)C(uk, m]
k—oo | 6p pd s
_ gim || PC ?p)Al(uk)Ml(yp) + (L_fp)Az(Vk)Mz(ﬂp) - (ps — )C(uk’vk)]
k—oo |\ 6pp; Opp; ps
-~ tim. pse ~ bp )(Al(uk — UIMP) + Ax(vi — vOM(P))
+ (”56 o )(Amu*)Ml(up) + A (v)My(nP)) ~ (ps _ )C(uk, vo]
DD Ds
~(5- E)b + (i - E)(Al(u*wl(yv) + A(M(nP)) - (”S — )C(u*, v)
n 6p n 6p DS
N u)b + (i - u)(mlAl(u*) + myAr(V)) - (ps — )C(u*, %)
n p n 6p A
S(5_8- 1)&5_1)}(m8)£” + (i - u)mA(u*, v.) - A(M)C(u*, Vi)
n Op n Op ps

Now, from (2.15), and using the fact that p < p;, we obtain



DE GRUYTER Critical p-fractional elliptic equations = 13

_ -n o - rs-af p* _
cx[2 - astms)® + (2 - C= L macu, vy - dys i iar s (29 A, v)b
n 6p n 6p 6p
(3.11)
- (i -8 1)aw§*<msw + (A, ),
n 6p
where h is defined on [0, co) by
_ pi-aq *
@) =[S - O e aysd i [ P4 e,
n 6p Op
A simple computation shows that h attains its minimum at
: o
a Pl 1 i
&=|rysria e |22 ,
mp ;Gp -©0-1
and
inf h(§) = h(§) = A", (.12

where L is given by (3.3).
Therefore, from (3.11), (3.12), and by considering 8 > 1, we obtain

c> (i - 6 - l)aspg((mS)s'; — Apil > (E - 0 - 1)6151'2’( H;S )5 — Aval.,

n Op n Op

This contradicts (3.4). Hence, b = 0. So, we deduce that (uy, vx) — (u., ) strongly in W. This completes the
proof. O

Proposition 3.3. Assume that conditions (H,) and (Hz) hold. Then, there exist A* > 0, ty > 0, and (ug, Vo) € W
such that

]A(touo, t()Vo) < i — 0-1 as_lg(ms )Sl’ — A%L, (313)
n 6p 0
provided that A € (0, A*). In particular,
o< [5-81 ai’i(ms)” _ VL. (3.14)
n 6p 0

Proof. We put

Then, for any 0 < A < A,., we have

s_6-1 as;'é(ms)g _ AL s 0. (3.15)
n Op 0

By (3.1), there exist t, > 0 and (uo, vp) € W\{0} such that

1, — t¥
JIa(touo, tovo) = ;(Ml(topAl(uo)) + My(tFA,(vo))) - %B(Uo, Vo) — AtdC(uo, vo)

s 6-1) =(mS\»
(o it -

(3.16)
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Let

(tgcwo, %) )
A*** =\ .
L
Then, for all A € (0, A...), we have
~AtdC(uo, vo) < ~A#-aL. (3.17)
Thus, from (3.16) and (3.17), we obtain

Ia(touo, tovo) < s_6-1 as;s;(ms)w — Al
n Op 0

Hence, (3.13) holds. Finally, if we put A* = min(A,, A.., A...), then for all0 < A < A* and using the analysis of
the fibering maps ¢, (t) = Ji(tu, tv), we obtain

This completes the proof of Proposition 3.2. O
Now, we are in a position to prove the main result of this article.

Proof of Theorem 1.1. By Lemma 2.4, J, is bounded from below on N,. Consequently, it is bounded from
below on N} and Nj. So, we can find sequences {(u, v{)} ¢ N and {(u, v¢)} ¢ N7, such that if k tends to
infinity, then

]A(ulz—’ V):) — inf ]A(u’ V) = a}t
W,v)eNy

and

e, vi)) — inf Jiu, v) = ay.
u,v)eNy

By an analysis of fibering maps ¢, ,, we can conclude thataj < 0 and &y > 0. Moreover, by Propositions 3.2
and 3.3, we have

I, i) — DS, v = inf s, v) = af, g, i) — 0,
u,v)eN;

and

I, vio) — hw;,v)) = inf Ju,v) = ey, L, vi) — 0.
W,v)eNy

Therefore, (u,", v") (respectively, (u., v,)) is a minimizer of J, on N} (respectively, on N3). Hence, by Lemma
2.1, problem (1.3) has two solutions (u,’, v}") € N} and (u,, v;) € N3. Moreover, since N j N N = &, it follows
that these two solutions are distinct. Finally, the fact that af < 0 and ay > 0 imply that (v, v) and (u,, v;) are
nontrivial solutions for problem (1.3). This completes the proof of Theorem 1.1. O
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