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Dušan D. Repovš∗
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Abstract. We study a class of p(x)-Kirchhoff problems which is seldom stud-

ied because the nonlinearity has nonstandard growth and contains a bi-nonlocal

term. Based on variational methods, especially the Mountain pass theorem
and Ekeland’s variational principle, we obtain the existence of two nontrivial

solutions for the problem under certain assumptions. We also apply the Sym-

metric mountain pass theorem and Clarke’s theorem to establish the existence
of infinitely many solutions. Our results generalize and extend several existing

results.

1. Introduction. The purpose of the present paper is to study the existence and
multiplicity of solutions for the following p(x)-Kirchhoff equation, with an additional
nonlocal term:

M
(∫

Ω
1

p(x)
|∇u|p(x)dx

)
∆p(x)u = λ|u|p(x)−2u+ f(x, u)

[∫
Ω
F (x, u)dx

]r
in Ω,

u = 0 on ∂Ω,

(1)

where Ω ⊂ RN is a bounded smooth domain, p ∈ C(Ω), N > p(x) > 1, r > 0 and
λ are real parameters, M : R+

0 → R+
0 is a Kirchhoff function, f : Ω × R → R is a

continuous function satisfying certain conditions which will be stated later, and

F (x, u) =

∫ u

0

f(x, t)dt ≥ 0.
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We consider the p(x)-Laplacian operator of the form:

∆p(x) = div(|∇u|p(x)−2∇u) =

N∑
i=1

(
|∇u|p(x)−2 ∂u

∂xi

)
,

which is not homogeneous and is related to the variable exponent Lebesgue space
Lp(x)(Ω) and the variable exponent Sobolev space W 1,p(x)(Ω).

These facts imply some difficulties. For example, some classical theories and
methods, including the Lagrange multiplier theorem and the theory of Sobolev
spaces, cannot be applied. Problem (1) is called a bi-nonlocal problem because of
the presence of the terms∫

Ω

1

p(x)
|∇u|p(x)dx and

[∫
Ω

F (x, u)dx

]r
,

which implies that the first equation in (1) is no longer a pointwise identity. This
phenomenon provokes some mathematical difficulties that make the study of such
problems particularly interesting.

Besides, such problems have some physical motivations. Indeed, problem (1) is
related with a physical model introduced by Kirchhoff [20] as follows:

ρ
∂2u

∂t2
−

(
a+ b

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx

)
∂2u

∂x2
= 0, (2)

where ρ, a, b, L are constants. Here,

M

(∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx

)
:= a+ b

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx

describes the changes of the tension due to the increment in the length of the strings
during the vibrations.

It therefore seems reasonable to be possible to give a realistic meaning for M(0) =
0, i.e., when the basic tension of the string is zero. Problem (2) has received a lot
of attention only after Lions [22] proposed an abstract framework for this problem.
We refer the reader to [6, 7, 9] for the Laplacian operator and [10, 14, 16, 19] for
the p-Laplacian operator.

On the other hand, there are only a few papers which deal with nonlocal p(x)-
Kirchhoff equation via variational approach, we can see [1, 2, 3, 12, 13, 17, 18, 29] and
the references therein. Using variational methods, Corrêa-Costa [12] investigated
the following nonlocal p(x)-Laplacian Dirichlet problem{

−M
(∫

Ω
1

p(x) |∇u|
p(x)dx

)
∆p(x)u = h(x, u), in Ω,

u = 0 on ∂Ω,
(3)

where

h(x, u) = λ|u|q(x)−2u

[∫
Ω

1

q(x)
|u|q(x)dx

]r
, m0 ≤M(t) ≤ m1.

Here, m0 and m1 are positive constants, and

M(t) = tα−1, q−(r + 1) < αp−,
α(p+)α

(q−)α−1
<

(q−)r+1(r + 1)

(q+)r
.



1454 M. K. HAMDANI, L. MBARKI, M. ALLAOUI, O. DARHOUCHE AND D. D. REPOVŠ

They proved several results on the existence of positive solutions. Recently, their
result was extended in Corrêa-Costa [13] to the general nonlinearities cases: h(x, u)
and M(t) were replaced respectively, by

f(x, u)

[∫
Ω

F (x, u)

]r
, Q1t

γ(x)−1 ≤ f(x, t) ≤ Q2t
q(x)−1,

A0 +Atα(x) ≤M(t) ≤ B0 +Btβ(x),

where A0, A,B0, B,Q1, Q2 are positive constants and α(x), β(x), γ(x), q(x) ∈ C+(Ω)
satisfy the following conditions

α(x) ≤ β(x) and γ(x) ≤ q(x) < p∗ =
Np(x)

N − p(x)
.

By using Krasnoselskii’s genus, they proved the existence of infinitely many solutions
for (3). For a deeper treatment, we refer to [8, 30] and the references therein.

Motivated by the above results, we are interested in the existence and multiplicity
of solutions for the p(x)-bi-nonlocal type problem (1). We first state the following
conditions for the Kirchhoff function M :

(M1): M : [0,+∞) → [0,+∞) is a continuous function such that there exist t0 ≥ 0
and γ ∈ (1, (p∗)−/p+) satisfying

tM(t) ≤ γM̂(t), for all t ≥ t0, where M̂(t) =

∫ t

0

M(z)dz.

(M2): There exist positive constants α,A and C such that

M̂(t) ≥ Ctα for t ≥ A ≥ 1 with αp− > p+.

A typical prototype of M is given by

M(t) = a+ btα−1, for all t ≥ 0, where a, b ≥ 0, b > 0 and α > 1. (4)

When M(t) > 0 for all t ≥ 0, Kirchhoff problems are said to be nondegenerate and
this happens for example if a > 0 and b > 0 in the model case (4). Otherwise, if
M(0) = 0 and M(t) > 0 for all t > 0, the Kirchhoff problems are called degenerate
and this occurs in the model case (4) when a = 0 and b > 0.

Moreover, we assume that f is a continuous function which satisfies the following
conditions:

(H1): The subcritical growth condition holds:

|f(x, s)| ≤ C(1+ |s|q(x)−1), for all (x, s) ∈ Ω×R,where C > 0, p(x) < q(x) < p∗(x);

(H2): The Ambrosetti-Rabinowitz (abbreviated as (AR)) condition holds:

F (x, s) =

∫ s

0

f(x, t)dt

is θ-super-homogeneous at infinity, i.e. there exists sA > 0 such that

0 < θF (x, s) ≤ sf(x, s), for all |s| ≥ sA, x ∈ Ω, where θ >
γp+

r + 1
;

(H3): The following holds uniformly in x ∈ Ω:

lim
s→0

f(x, s)

|s|p(x)−2s
= 0;

(H4): f(x,−s) = −f(x, s), for all (x, s) ∈ Ω× R.
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Remark 1. An example of our conditions being satisfied is given by the following
functions:

M(t) = btα−1, where α > 1, b > 0,

and
f(x, t) = |t|q(x)−1t, where p(x) < q(x) < p∗(x).

Remark 2. The Ambrosetti-Rabinowitz superlinearity condition was originally in-
troduced by Ambrosetti and Rabinowitz [4] and is still used in many works. This
condition depicts a superquadratic growth and is used to ensure the boundedness of
Palais-Smale sequences of the energy functional and hence in obtaining the moun-
tain pass geometry. We note that the Palais–Smale condition on the functional
is relevant in establishing critical point results and their applications (see also the
discussion in [5]).

Now we are in position to state our main results.

Theorem 1.1. Suppose that function p ∈ C(Ω) satisfies γp+ < (r + 1)p−. Then
there exists λ0 > 0 such that for every λ < λ0, with conditions (M1), (M2), (H1),
(H2) and (H3) satisfied, problem (1) has at least two nontrivial weak solutions.

Theorem 1.2. Suppose that function p ∈ C(Ω) satisfies γp+ < (r + 1)p−. Then
there exists λ0 > 0 such that for every λ < λ0, with conditions (M1), (M2),
(H1), (H2), (H3) and (H4) satisfied, problem (1) has infinitely many solutions

in W
1,p(x)
0 (Ω).

Theorem 1.3. Suppose that conditions (M1), (M2), (H1), (H2), (H3) and (H4)
are satisfied. Then for every λ ∈ R, problem (1) has infinitely many solutions in

W
1,p(x)
0 (Ω).

We conclude with an outline of the structure of the paper. In Section 2, we
introduce some preliminary results concerning Lebesque and generalized Sobolev
spaces and we recall some results that will be used later. In Section 3, we study
the Palais-Smale condition. Section 4 is devoted to the proof of Theorem 1.1. In
Section 5, we prove Theorem 1.2. Finally, Section 6 is dedicated to the proof of
Theorem 1.3.

2. Preliminaries. In this section, we recall some definitions and basic properties of
the generalized Lebesgue space and the variable exponent Sobolev space W 1,p(x)(Ω).
For this purpose, let consider Ω be a bounded domain of RN and denote

C+(Ω) =
{
h ∈ C(Ω) | h(x) > 1, for all x ∈ Ω

}
,

h+ = max
x∈Ω

h(x), h− = min
x∈Ω

h(x), h ∈ C(Ω).

The generalized Lebesgue space is defined as

Lp(x)(Ω) =

{
u : u is a measurable real-valued function,

∫
Ω

|u|p(x) dx <∞
}

and it is equipped by the following norm

|u|p(x) = inf

{
λ > 0 :

∫
Ω

∣∣∣∣u(x)

λ

∣∣∣∣p(x)

dx ≤ 1

}
.

Thus (Lp(x)(Ω), | · |p(x)) becomes a Banach space. Let us recall now some results
which will be used later.
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Proposition 1 ([28]). (1) (Lp(x)(Ω), |·|p(x)) is a separable, uniformly convex Ba-

nach space and has conjugate space Lq(x)(Ω), where 1/q(x) + 1/p(x)
= 1. For every u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), we have∣∣∣∣∫

Ω

uv dx

∣∣∣∣ ≤ (
1

p−
+

1

q−
)|u|p(x)|v|q(x).

(2) The inclusion between Lebesgue spaces also generalizes the classical framework,
namely, if 0 < |Ω| < ∞ and p1, p2 are variable exponents such that p1 ≤ p2

in Ω, then there exists a continuous embedding Lp2(x)(Ω)→ Lp1(x)(Ω).

An important role in working with the generalized Lebesgue–Sobolev spaces is
played by the m(·)-modular of the Lp(·)(Ω) space, which is the modular ρp(·) of the

space Lp(·)(Ω)

ρp(·)(u) :=

∫
Ω

|u|p(x) dx.

For more details about these variable exponent Lebesgue spaces see [23, 25].

Lemma 2.1 ([15]). Denote

Λ(u) =

∫
Ω

1

p(x)
|∇u|p(x)dx, for all u ∈W 1,p(x)

0 (Ω).

Then Λ(u) ∈ C1(W
1,p(x)
0 (Ω),R) and the derivative operator Λ′ of Λ is

〈Λ′(u), v〉 =

∫
Ω

|∇u|p(x)−2∇u∇vdx, for all u, v ∈W 1,p(x)
0 (Ω),

and the following holds:

1. Λ is a convex functional;

2. Λ′ : W
1,p(x)
0 (Ω) → (W−1,p′(x)(Ω)) =

(
W

1,p(x)
0 (Ω)

)∗
is a bounded homeomor-

phism and strictly monotone operator, and the conjugate exponent satisfies
1

p(x) + 1
p′(x) = 1;

3. Λ′ is a mapping of type (S+), namely, un ⇀ u and lim sup〈Λ′(un), un−u〉 ≤ 0,

imply un → u (strongly) in W
1,p(x)
0 (Ω).

Definition 2.2. We say that u ∈W 1,p(x)
0 (Ω) is a weak solution of problem (1), if

M

(∫
Ω

1

p(x)
|∇u|p(x)dx

)∫
Ω

|∇u|p(x)−2∇u∇vdx− λ
∫

Ω

|u|p(x)−2uvdx =[∫
Ω

F (x, u)dx

]r ∫
Ω

f(x, u)vdx, where v ∈W 1,p(x)
0 (Ω).

The energy functional Jλ : W
1,p(x)
0 (Ω)→ R associated with problem (1)

Jλ(u) = M̂

∫
Ω

|∇u|p(x)

p(x)
dx− λ

∫
Ω

|u|p(x)

p(x)
dx− 1

r + 1

[∫
Ω

F (x, u)dx

]r+1

:= Φ(u)− Eλ(u)−Ψ(u), for all u ∈W 1,p(x)
0 (Ω), (5)

is well-defined and of C1-class on W
1,p(x)
0 (Ω). Moreover, we have

〈J ′λ(u), v〉 = M

∫
Ω

|∇u|p(x)

p(x)
dx

∫
Ω

|∇u|p(x)−2∇u∇vdx− λ
∫

Ω

|u|p(x)−2uvdx
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−
[∫

Ω

F (x, u)dx

]r ∫
Ω

f(x, u)vdx, for all u, v ∈W 1,p(x)
0 (Ω). (6)

Hence, we can observe that the critical points of functional Jλ are the weak solutions
for problem (1). In order to simplify the presentation we will denote the norm of

W
1,p(x)
0 (Ω) by ‖.‖ instead of ‖ · ‖

W
1,p(x)
0 (Ω)

. For simplicity, we use Ci, i = 1, 2, ... to

denote general positive constants whose exact values may change from one place to
another.

3. The Palais-Smale compactness condition.

Definition 3.1. Let (W
1,p(x)
0 (Ω), ‖.‖) be a Banach space and Jλ ∈ C1(W

1,p(x)
0 (Ω)).

Given c ∈ R, we say that Jλ satisfies the Palais–Smale condition at the level c ∈ R
(“(PS)c condition” for short) if any sequence (un) ∈W 1,p(x)

0 (Ω) satisfying

Jλ(un)→ c and J ′λ(un)→ 0 in W−1,p′(x)(Ω) as n→∞, (7)

has a convergent subsequence.

Lemma 3.2. Assume that conditions (M1),(M2),(H1) and (H2) are satisfied. Then
functional Jλ satisfies the (PS)c condition for any c 6= 0.

Proof. We proceed in two steps.

Step 1. We prove that (un) is bounded in W
1,p(x)
0 (Ω). Let (un) ⊂ W

1,p(x)
0 (Ω) be

a (PS)c sequence for any c 6= 0. By (M1), for ‖u‖ large enough,

γp+Φ(u) = γp+M̂(Λ(u)) ≥ p+M(Λ(u))Λ(u) ≥M(Λ(u))

∫
Ω

|∇u|p(x)dx = Φ′(u)u.

(8)

By (H2) we can see that there exists C1 > 0 such that

−C1 ≤ θ
∫

Ω

F (x, u)dx ≤
∫

Ω

f(x, u)udx+ C1, for all u ∈W 1,p(x)
0 (Ω),

and thus, given any ε ∈ (0, θ), there exists Aε ≥ A such that

(θ − ε)
∫

Ω

F (x, u)dx ≤
∫

Ω

f(x, u)udx if

∫
Ω

F (x, u)dx ≥ Aε. (9)

We may assume Aε >
C1

θ . Note that in this case the inequality
∫

Ω
F (x, u)dx ≥ Aε

is equivalent to
∣∣∫

Ω
F (x, u)dx

∣∣ ≥ Aε, because∫
Ω

F (x, u)dx ≥ −C1

θ
, for all u ∈W 1,p(x)

0 (Ω).

We claim that there exists Cε > 0 such that

Ψ′(u)u− (r + 1)(θ − ε)Ψ(u) ≥ −Cε, for all u ∈W 1,p(x)
0 (Ω). (10)

Indeed, if
∣∣∫

Ω
F (x, u)dx

∣∣ ≤ Aε, then the validity of (10) is obvious. When∣∣∣∣∫
Ω

F (x, u)dx

∣∣∣∣ ≥ Aε, i.e.

∫
Ω

F (x, u)dx ≥ Aε,

it follows by (9) that

(r + 1)(θ − ε)Ψ(u) = (θ − ε)
(∫

Ω

F (x, u)dx

)r+1
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= (θ − ε)
(∫

Ω

F (x, u)dx

)r ∫
Ω

F (x, u)dx

≤
(∫

Ω

F (x, u)dx

)r ∫
Ω

f(x, u)udx = Ψ′(u)u,

and so (10) holds.

Now let (un) ⊂ W
1,p(x)
0 (Ω)\{0}, J ′λ(un) → 0 and Jλ(un) → c with c 6= 0. Since

γp+ < (r+ 1)θ, there exists ε > 0 small enough so that γp+ < (r+ 1)(θ− ε). Then,
since (un) is a (PS)c sequence, applying (8), (10) and (M2), for sufficiently large n
we have

(r + 1)(θ − ε)c+ 1 + ‖un‖ ≥ (r + 1)(θ − ε)Jλ(un)− J ′λ(un)un

≥
(
(r + 1)(θ − ε)− γp+

)
Φ(un) +

(
γp+Φ(un)− Φ′(un)un

)
+ (Ψ′(un)un − (r + 1)(θ − ε)Ψ(un))− λ(r + 1)(θ − ε)

∫
Ω

1

p(x)
|un|p(x)dx

+λ

∫
Ω

|un|p(x)dx ≥ C2‖un‖αp
−
− C3 − Cε − λ

∫
Ω

(
(r + 1)(θ − ε)

p(x)
− 1

)
|un|p(x)dx

≥

{
C2‖un‖αp

− − C3 − Cε, if λ ≤ 0

C2‖un‖αp
− − C3 − Cε − λ

(
(r+1)(θ−ε)

p− − 1
)
C4‖un‖p

+

, if λ > 0.

Since αp− > p+ > 1, the above inequalities imply that (un) is bounded inW
1,p(x)
0 (Ω).

Step 2. Now we claim that (un) has a strongly convergent subsequence. To
complete the argument we need the following proposition.

Proposition 2. (i) Functional Φ : X := W
1,p(x)
0 (Ω) → R is sequentially weakly

lower semi-continuous, Ψ, Eλ : X → R are sequentially weakly continuous,
and thus Jλ is sequentially weakly lower semi-continuous.

(ii) Mappings Ψ′, E′λ : X → X∗ are sequentially weakly-strongly continuous. For

any open set D ⊂ X\{0} with D ⊂ X\{0}, mappings Φ′ and J ′λ : D → X∗

are bounded and of type (S+).

Proof. (i) Since function M̂(t) is increasing and functional Λ is sequentially weakly

lower semi-continuous, we can see that functional Φ : X := W
1,p(x)
0 (Ω) → R

is sequentially weakly lower semi-continuous.
(ii) Noting that embedding X ↪→ Lq(x)(Ω) is compact, we can see that Ψ, Ψ′, Eλ,

and E′λ are sequentially weakly-strongly continuous. Now let D ⊂ X\{0}. It

is clear that mappings Φ′ and J ′λ : D → X∗ := (W−1,p′(x)(Ω)) are bounded.

To prove that Φ′ : D → X∗ is of type (S+), assume that (un) ⊂ D, un ⇀ u
in X and lim supn→+∞ Φ′(un)(un − u) ≤ 0. Then there exist positive con-
stants C1 and C2 such that C1 ≤ Λ(un) ≤ C2 and therefore there exist
positive constants C3 and C4 such that C3 ≤ M(Λ(un)) ≤ C4. Noting that
Φ′(un) = M(Λ(un))Λ′(un), it follows from lim supn→+∞ Φ′(un)(un − u) ≤ 0
that lim supn→+∞ Λ′(un)(un − u) ≤ 0. Since Λ′ is of type (S+), we obtain

un → u in X. This shows that mapping Φ′ : D → X∗ is of type (S+). More-
over, since Ψ′ and E′λ are sequentially weakly-strongly continuous, mapping

J ′λ : D → X∗ is of type (S+).
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We can now complete the proof of Step 2. Since Jλ(0) = 0 and Jλ(un)→ c 6= 0,
there exists ε > 0 small enough such that for sufficiently large n, ‖un‖ > ε. Setting

D = {u ∈ W 1,p(x)
0 (Ω) / ‖un‖ > ε}, then un ∈ D for n sufficiently large. Because

(un) is bounded, we can consider a subsequence of (un), still denoted by (un), such
that un ∈ D and un ⇀ u. The condition J ′λ(un) → 0 implies J ′λ(un)(un − u) → 0.

Since J ′λ : D →W
1,p(x)
0 (Ω)∗ is of (S+) type, we have un → u ∈ D.

4. Proof of Theorem 1.1. In this section, the existence of nontrivial weak solu-
tions for (1) is shown by applying the Mountain pass theorem and a variant of the
Ekeland variational principle under suitable assumptions. To verify the conditions
of the Mountain pass theorem (see e.g., [27]), we first need to prove two lemmas.

Lemma 4.1. Suppose that conditions (M1),(H1) and (H2) are satisfied. Then for

any w ∈W 1,p(x)
0 (Ω)\{0}, Jλ(sw)→ −∞ as s→ +∞.

Proof. Let w ∈ W 1,p(x)
0 (Ω)\{0} be given. From (M1) and for t ≥ 1, we can easily

obtain that M̂(t) ≤ M̂(1)tγ . Then

E(sw) = M̂

(∫
Ω

1

p(x)
|∇sw|p(x)dx

)
≤ d1s

γp+ ,

for s large enough and d1 a positive constant depending on w. By conditions (H1)
and (H2), we have [∫

Ω

F (x, sw)dx

]r+1

≥ d2s
(r+1)θ,

for s large enough and where d2 is a positive constant depending on w. Finally, we
have ∣∣∣∣∫

Ω

1

p(x)
|sw|p(x)dx

∣∣∣∣ ≤ 1

p+

(∫
Ω

|w|p(x)dx

)
sp+ = d3s

p+ ,

for s large enough, where d3 is a positive constant depending on w. Hence for any

w ∈W 1,p(x)
0 (Ω)\{0} and s large enough,

Jλ(sw) ≤

{
d1s

γp+ − d2s
(r+1)θ + λd3s

p+ if λ > 0,

d1s
γp+ − d2s

(r+1)θ − λd3s
p+ if λ ≤ 0.

Thus, since p+ ≤ γp+ < (r+ 1)θ, we conclude that Jλ(sw)→ −∞ as s→ +∞.

Lemma 4.2. Suppose that conditions (M1),(H1) and (H3) are satisfied. Then
there exist positive numbers a, ρ, λ0 such that Jλ(u) ≥ a > 0 if ‖u‖ = ρ and λ < λ0.

Proof. Conditions (H1) and (H3) imply that

|F (x, t)| ≤ ε|t|p(x) + Cε|t|q(x), for all (x, t) ∈ Ω× R.

For ‖u‖ small enough, we have∫
Ω

F (x, u)dx ≤ ε
∫

Ω

|u|p(x)dx+ Cε

∫
Ω

|u|q(x)dx ≤ ε
(
|u|p

+

p(x) + |u|p
−

p(x)

)
+ Cε

(
|u|q

+

q(x) + |u|q
−

q(x)

)
≤ ε

(
Cp

+

1 ‖u‖p
+

+ Cp
−

1 ‖u‖p
−
)

+ Cε

(
Cq

+

2 ‖u‖q
+

+ Cq
−

2 ‖u‖q
−
)

≤ ε
(
Cp

+

1 + Cp
−

1

)
‖u‖p

−
+ Cε

(
Cq

+

2 + Cq
−

2

)
‖u‖q

−
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≤ ε
(
Cp

+

1 + Cp
−

1

)
‖u‖p

−
+ Cε

(
Cq

+

2 + Cq
−

2

)
‖u‖p

−
≤ C3‖u‖p

−
,

where

C3 = ε
(
Cp

+

1 + Cp
−

1

)
+ Cε

(
Cq

+

2 + Cq
−

2

)
.

Therefore

Ψ(u) =
1

r + 1

[∫
Ω

F (x, u)dx

]r+1

≤ Cr+1
3

r + 1
‖u‖(r+1)p− . (11)

Moreover, condition (M1) gives

M̂(t) ≥ M̂(1)tγ , for all t ∈ [0, 1]. (12)

Thus, using (11) and (12), we obtain

Jλ(u) = M̂(Λ(u))− λ
∫

Ω

1

p(x)
|u|p(x)dx−Ψ(u)

≥

 M̂(1) (Λ(u))
γ − Cr+1

3

r+1 ‖u‖
(r+1)p− , if λ ≤ 0

M̂(1) (Λ(u))
γ − λCp

−
1

p− ‖u‖
p− − Cr+1

3

r+1 ‖u‖
(r+1)p− , if λ > 0

≥


M̂(1)
(p+)γ ‖u‖

γp+ − Cr+1
3

r+1 ‖u‖
(r+1)p− , if λ ≤ 0

M̂(1)
(p+)γ ‖u‖

γp+ − λCp
−

1

p− ‖u‖
p− − Cr+1

3

r+1 ‖u‖
(r+1)p− , if λ > 0

=


‖u‖γp+

(
M̂(1)
(p+)γ −

Cr+1
3

r+1 ‖u‖
(r+1)p−−γp+

)
, if λ ≤ 0

‖u‖γp+
(
M̂(1)
(p+)γ −

λCp
−

1

p− ‖u‖
p−−γp+ − Cr+1

3

r+1 ‖u‖
(r+1)p−−γp+

)
, if λ > 0.

(13)

Now, for each λ > 0, we define a continuous function hλ : (0,∞)→ R,

hλ(t) =
λCp

−

1

p−
tp
−−γp+ +

Cr+1
3

r + 1
t(r+1)p−−γp+ .

Since 1 < p− < γp+ < (r + 1)p−, it follows that lim
t→0+

hλ(t) = lim
t→+∞

hλ(t) = +∞.
Thus we can find the infimum of hλ(t). Note that equating

h′λ(t) =
λCp

−

1 (p− − γp+)

p−
tp
−−γp+−1 +

Cr+1
3 ((r + 1)p− − γp+)

r + 1
t(r+1)p−−γp+−1 = 0,

we get

t0 = t = C4λ
1

rp− , where C4 =

(
cp
−

1 (r + 1)(γp+ − p−)

Cr+1
3 p−((r + 1)p− − γp+)

) 1

rp−

> 0.

Clearly, t0 > 0. It can also be checked that h′′λ(t0) > 0 and hence the infimum of
hλ(t) is achieved at t0. Now, observing that

hλ(t0) =

(
Cp
−

1 Cp
−−γp+

4

p−
+
Cr+1

3 C
(r+1)p−−γp+
4

r + 1

)
λ

(r+1)p−−γp+

rp− → 0 as λ→ 0+,

we can infer from (13) that there exists λ0 > 0 such that for all λ < λ0 we can choose
ρ small enough and a > 0 such that Jλ(u) ≥ a > 0, for all u ∈ X with ‖u‖ = ρ.
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Let λ0 > 0 be a constant as given in Lemma 4.2. By Lemmas 3.2, 4.1, 4.2 and
the Mountain pass theorem, we deduce that for all λ ∈ (0, λ0), Jλ has a critical
point u1 ∈ X which is a weak solution for problem (1). Moreover, u1 satisfies

Jλ(u1) ≥ a > 0, (14)

which implies that u1 is nontrivial.
We will show that there exists a second weak solution u2 6= u1 by using the

Ekeland variational principle. By Lemma 4.2, we have

inf
u∈∂B(0,r)

(Jλ(u)) > 0,

and by Lemma 4.1, there exists w ∈ X such that Jλ(tw) < 0 for t > 0 large enough.
Moreover, as in the proof of Lemma 4.2, for u ∈ B(0, r), we have

Jλ(u) ≥


‖u‖γp+

(
M̂(1)
(p+)γ −

Cr+1
3

r+1 ‖u‖
(r+1)p−−γp+

)
, if λ ≤ 0

‖u‖γp+
(
M̂(1)
(p+)γ −

λCp
−

1

p− ‖u‖
p−−γp+ − Cr+1

3

r+1 ‖u‖
(r+1)p−−γp+

)
, if λ > 0.

Therefore
−∞ < c = inf

u∈B(0,r)
(Jλ(u)) < 0.

Let ε > 0, be such that

0 < ε < inf
u∈∂B(0,r)

(Jλ(u))− inf
u∈B(0,r)

(Jλ(u)).

We deduce from the above information that functional Jλ : B(0, r) → R, is lower

bounded and Jλ ∈ C1(B(0, r),R). Therefore, by using the Ekeland principle, we

conclude that there exists uε ∈ B(0, r), such that c ≤ Jλ(uε) ≤ c+ ε

Jλ(uε) < Jλ(u) + ε||u− uε||, u 6= uε.

Since

Jλ(uε) ≤ inf
u∈B(0,r)

(Jλ(u)) + ε ≤ inf
B(0,r)

(Jλ(u)) + ε < inf
∂B(0,r)

(Jλ(u)),

we can deduce that uε ∈ B(0, r). Now, we define

Ξλ : B(0, r)→ R by Ξλ(u) = Jλ(u) + ε‖u− uε‖.
It is clear that uε is a minimum of Ξλ. Therefore, for t > 0 large enough and for
any v ∈ B(0, 1), we have

Ξλ(uε + tv)− Ξλ(uε)

t
≥ 0, that is,

Jλ(uε + tv)− Jλ(uε)

t
+ ε ‖v‖ ≥ 0.

By letting t tend to infinity, we obtain

J ′λ(uε)(v) + ε ‖v‖ ≥ 0.

This implies that ‖J ′λ(uε)‖ ≤ ε. By the argument above, we deduce the existence
of a sequence (un) ⊂ B(0, r), such that

Jλ(un)→ c < 0, and J ′λ(un)→ 0. (15)

Since (un) ⊂ B(0, r), it follows that (un) is bounded in X. So, up to a subsequence,
there exists u2 ∈ X such that (un) converges weakly to u2 ∈ X. Hence, by the
proof of Lemma 3.2, we deduce that un → u strongly in X.
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Since Jλ ∈ C1(X,R), we have J ′λ(un) → J ′λ(u2), as n → ∞. Hence, from (15), we
conclude that

J ′λ(u2) = 0, ‖u2‖ < r, and Jλ(u2) < 0. (16)

This implies that u2 is a nontrivial solution for problem (1). Finally, by combining
(14) and (16), we obtain Jλ(u2) < 0 < Jλ(u1). The proof of Theorem 1.1 is now
complete.

5. Proof of Theorem 1.2. In this section, we will show that problem (1) has
infinitely many pairs (uj ,−uj) of critical points with I(uj)→∞ as j →∞ by using
the Symmetric mountain pass theorem [26]. We first need the following lemma:

Lemma 5.1. Suppose that conditions (H1) and (H2) are satisfied. Then for any

finite-dimensional subspace X̃ ⊂ X, Jλ(u)→ −∞, ‖u‖ → +∞, u ∈ X̃.

Proof. Arguing indirectly, assume that there exists a sequence (un) ⊂ X̃ such that

‖un‖ → +∞, n→ +∞ and Jλ(un) ≥ B, for all n ∈ N, (17)

where B ∈ R is a fixed constant not depending on n ∈ N. Let vn = un
‖un‖ . Then it

is obvious that ‖vn‖ = 1. Since dim X̃ < +∞, there exists v ∈ X̃\{0} such that up
to a subsequence,

‖vn − v‖ → 0, and vn(x)→ v(x) a.e. x ∈ Ω, as n→ +∞.

If v(x) 6= 0, then |un(x)| → +∞ as n → +∞. Clearly, condition (H2) implies
condition

lim
|t|→+∞

F (x, t)

|t|
γp+

r+1

= +∞, uniformly a.e. x ∈ Ω. (18)

By virtue of (18),

lim
n→+∞

F (x, un(x))

‖un‖
γp+

r+1

= lim
n→+∞

F (x, un(x))

|un|
γp+

r+1

|vn|
γp+

r+1 = +∞, x ∈ Ω0 = {x ∈ Ω : v(x) 6= 0}.

Moreover, we can find t0 > 0, such that

F (x, t)

|t|
γp+

r+1

≥ c > 0, for all x ∈ Ω and |t| > t0. (19)

On the other hand, condition (H1) implies that there exists a positive constant C1

such that

|F (x, t)| ≤ C1, for all (x, t) ∈ Ω× [−t0, t0]. (20)

Then, by (19) and (20), we deduce that there exists a constant C2 ∈ R such that
F (x, t) ≥ C2, for all (x, t) ∈ Ω× R. From this, we conclude that

F (x, un(x))− C2

‖un‖
γp+

r+1

≥ 0, for all x ∈ Ω and n ∈ N,

which implies that

F (x, un(x))

|un(x)|
γp+

r+1

|vn(x)|
γp+

r+1 − C2

‖un‖
γp+

r+1

≥ 0, for all x ∈ Ω and n ∈ N. (21)

Therefore using (17) and (21), we have

0 ≤ lim
n→+∞

Jλ(un(x))
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≤



M̂(1)

(p+)γ
− lim
n→+∞


λ
∫

Ω
|un(x)|p(x)dx

p−‖un‖
γp+

r+1

+

(∫
Ω
F (x,un(x))

‖un‖
γp+

r+1

dx

)r+1

r + 1

 , if λ ≤ 0

M̂(1)

(p+)γ
− lim
n→+∞

1

r + 1

(∫
Ω

F (x, un(x))

‖un‖
γp+

r+1

dx

)r+1

, if λ > 0

≤



M̂(1)

(p+)γ
− lim
n→+∞


λC3‖un‖p

+

p−‖un‖
γp+

r+1

+

(∫
Ω
F (x,un(x))−C2

‖un‖
γp+

r+1

dx

)r+1

r + 1

 , if λ ≤ 0

M̂(1)

(p+)γ
− lim
n→+∞

1

r + 1

(∫
Ω

F (x, un(x))− C2

‖un‖
γp+

r+1

dx

)r+1

, if λ > 0

≤ M̂(1)

(p+)γ
− lim
n→+∞

1

r + 1

(∫
Ω

F (x, un(x))− C2

‖un‖
γp+

r+1

dx

)r+1

≤ M̂(1)

(p+)γ
− lim
n→+∞

1

r + 1

(∫
Ω

F (x, un(x))− C2

|un(x)|
γp+

r+1

|vn(x)|
γp+

r+1 dx

)r+1

→ −∞,

which is a contradiction. The proof of Lemma 5.1 is thus complete.

Proof of Theorem 1.2. Clearly, by condition (H4), Jλ is an even functional.
Since Jλ(0) = 0, thanks to Lemmas 3.2, 4.2, 5.1 and the Symmetric mountain pass
theorem [26], we deduce the existence of an unbounded sequence of weak solutions
to problem (1).

6. Proof of Theorem 1.3. In this part, we will prove Theorem 1.3 by using
Clarke’s theorem [11] which will be stated below. To this end, let us begin by
defining the notion of genus and its basic properties.

Let Σ be the class of closed subset A of X \ 0 such that A = −A, i.e. symmetric
with respect to the origin. Recall that for A ∈ Σ, the genus γ(A) is defined as the
least integer k such that there exists an odd function f ∈ C(X,Rk \ 0). Moreover,
if such function does not exist then γ(A) =∞ and by convenience, γ(∅) = 0.

It’s well known that in general, the computation of the genus is a difficult task.
Often, it suffices to use some estimates which can be given by comparison with sets
whose genus is known as for example the sphere. We shall use the definition of the
genus from [21].

Consider now

Σk = {A ∈ Σ, γ(A) ≥ k}, k ∈ N, and ck := inf
A∈Σk

sup
u∈A

I(u).

We have

−∞ < c1 ≤ c2 ≤ · · · ≤ ck+1 ≤ · · · .
Moreover, in order to prove Theorem 1.3, we use the following theorem due to
Clarke [11].
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Theorem 6.1 ([11]). Let J ∈ C1(X,R) be a functional satisfying the following
conditions

• (i) J satisfies the (PS) condition.
• (ii) J is bounded from below and even.
• (iii) There exists a compact set K ∈ A such that γ(A) = k and supx∈K J(x) <
J(0).

Then J possesses at least k pairs of distinct critical points, and their corresponding
critical values ck < 0 such that limk→∞ ck = 0 are less than J(0).

In order to get the infinity of solutions, we shall use Theorem 6.1. Since X is a
separable reflexive Banach space, there exist (en) ⊂ X and (e?n) ⊂ X? such that

〈e?n, em〉 = δnm =

{
1 if n = m

0 if n 6= m,

X = span{en, n = 1, 2, · · · , }, X? = span{e?n, n = 1, 2, · · · , }.
For each k ∈ N, consider the subspace

Xk = span{e1, · · · , ek} ⊂ X = W
1,p(x)
0 (Ω), spanned by e1, · · · , ek.

It is well-known that

Xk ↪→ Lδ(x)(Ω), continuously for 1 < δ(x) < p?.

Moreover, the norms in X and Lδ(x)(Ω) are equivalent in Xk. Furthermore, by
using condition (H2), we have

|F (x, u)| ≥ C1|u|θ − C2,

hence we get

Jλ(u) ≤ M̂(1)

p−γ

[∫
Ω

|∇u|p(x)dx

]γ
− λ

p+

∫
Ω

|u|p(x)dx− C3

r + 1

[∫
Ω

|u|(r+1)θdx

]
+
C4|Ω|r+1

r + 1
.

If ‖u‖ is small enough, then we have∫
Ω

|∇u|p(x)dx ≤ ‖u‖p
−

and − |u|p
+

p(x) ≥ −
∫

Ω

|u|p(x)dx.

By using the equivalence of the norms in Xk, we deduce that

−C(k)‖u‖p
+

≥ −
∫

Ω

|u|p(x)dx,

where C(k) is a positive constant. Consequently, we get

Jλ(u) ≤ M̂(1)

p−γ
‖u‖γp

−
− λC(k)

p+
‖u‖p

+

− C̃(k)‖u‖(r+1)θ + C5.

Hence, we have

Jλ(u) ≤ ‖u‖(r+1)θ

[
M̂(1)‖u‖γp

−−(r+1)θ

p−γ
− λC(k)‖u‖p

+−(r+1)θ

p+
+

C5

‖u‖(r+1)θ
− C̃(k)

]
.

Let R be a positive constant such that

M̂(1)

p−γ
‖u‖γp

−−(r+1)θ − λC(k)

p+
‖u‖p

+−(r+1)θ + C5‖u‖−(r+1)θ ≤ C̃(k).



ON THE EFFECT OF TWO NONLOCAL TERMS 1465

Let 0 < r0 < R and consider the set K = {u ∈ Xk; ‖u‖ = r0}. Then

Jλ(u) ≤ r
(r+1)θ
0

[
M̂(1)

p−γ
r
γp−−(r+1)θ
0 − λC(k)

p+
r
p+−(r+1)θ
0 + C5r

−(r+1)θ
0 − C̃(k)

]

≤ R(r+1)θ

[
M̂(1)Rγp

−−(r+1)θ

p−γ
− λC(k)|g|∞Rp

+−(r+1)θ

p+
+

C5

R(r+1)θ
− C̃(k)

]
< 0 = Jλ(0),

which implies that supK Jλ(u) < 0 = Jλ(0). Since Xk and Rk are isomorphic and
K and Sk−1 are homomorphic, it follows that γ(K) = k. The Clarke theorem 6.1
shows that problem (1) admits at least k pairs of distinct critical points, and their
corresponding critical values ck < 0 such that limk→∞ ck = 0 are less than Jλ(0).
If k is chosen arbitrary then problem (1) possesses infinitely many critical points.

Lemma 6.2. For each n ∈ N, there exists ε > 0 such that

γ(A−ελ ) ≥ n, where A−ελ = {u ∈ X; Jλ(u) ≤ −ε}.

Proof. Consider Xn be a subspace of X of dimension n and any u ∈ Xn such that
‖u‖ = 1 and 0 < t < R. Then we have

Jλ(tu) ≤ M̂(1)tγp
−

p−γ
‖u‖γp

−
− λC(k)tp

+

p+
‖u‖p

+

− C̃(k)t(r+1)θ‖u‖(r+1)θ + C5

≤ M̂(1)tγp
−

p−γ
− λC(k)tp

+

p+
− C̃(k)t(r+1)θ + C5.

If

Jλ(tu)→ −∞, γp− ≤ γp+ < (r + 1)θ, 0 < t < R,

then there exist t0 > 0 and ε > 0 such that

Jλ(t0u) < −ε, u ∈ Xn, ‖u‖ = 1.

Consider now the sphere

St0,n = {u ∈ Xn, ‖u‖ = t0}.

Then St0,n ⊂ A−ελ and by the properties of the genus, γ(A−ελ ) ≥ γSt0,n = n.

Lemma 6.3. Let

Σ = {A ⊂ X \ {0} | A is closed and A = −A}, Σk = {A ∈ Σ | γ(A) ≥ k}.

Then ck = infA∈Σk supu∈A Jλ(u) is a negative critical value of Jλ and if c = ck =
· · · = ck+r, then

γ(Kc) ≥ r + 1, where Kc = {u ∈ X; Jλ(u) = c; J ′λ(u) = 0}.

Proof. First, we claim that −∞ < ck <∞. By the previous lemma, we know that
for each k ∈ N, there exists ε > 0 such that γ(A−ελ ) ≥ k or A−ελ ∈ Σk. Then:

1. either ck ≤ supu∈A−ελ
Jλ(u) ≤ −ε(k) < 0, for all K,

2. or Jλ is bounded from below, hence ck > −∞, for all k ∈ N.
Since c < 0, Jλ satisfies the (PS) condition at level c, Kc is compact and symmetric,
it follows that γ(Kc) is well-defined.

Let us now assume that

c = ck = ck+1 = · · · = ck+r and γ(Kc) < r + 1.
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By the properties of the genus, there exists a neighborhood K of Kc such that
γ(K) = γ(Kc) < r + 1. Moreover, based on the Deformation lemma [24], there
exists an odd homomorphism

η̂ : X → X such that η̂(Ac+βλ \K) ⊂ Ac−βλ , where 0 < β < −c.

Functional Jλ satisfies the (PS) in A0
λ. Furthermore, by definition, we have

c = ck+r = inf
a∈Σk+r

sup
u∈A

Jλ(u).

Then there exists A ∈ Σk+r such that supu∈A Jλ(u) < c+ β, which means that

A ⊂ Ac+βλ and η̂(A \K) ⊂ η̂(Ac+βλ \K) ⊂ Ac−βλ .

Hence, we conclude that

γ(η̂(A \ k)) ≥ γ(A \K) ≥ γ(A)− γ(K) ≥ (k + r)− r = k,

i.e.,

η̂(A \K) ∈ Σk, hence sup
u∈η̂(A\K)

Jλ ≥ ck = c,

which yields a contradiction. Therefore, if c = ck = · · · = ck+r, then γ(Kc) ≥
r + 1.

Remark 3. We note that if ck is a critical value, then γ(Kck) ≥ 1 and Kck is
nonempty for all k ∈ N. In addition, if the points ck are not all distinct, then
γ(Kc) > 1, Kc is an infinite subspace, and problem (1) admits infinitely many
critical points with negative energy.
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