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Abstract. In this paper, a class of nonlocal fractional Dirichlet problems is

studied. By using a variational principle due to Ricceri (whose original version

was given in J. Comput. Appl. Math. 113 (2000), 401–410), the existence of
infinitely many weak solutions for these problems is established by requiring

that the nonlinear term f has a suitable oscillating behaviour either at the

origin or at infinity.

1. Introduction. In the present paper we deal with the following nonlocal frac-
tional problem {

(−∆)spu = λα(x)f(u) in Ω
u = 0 in RN \ Ω,

(1.1)

where Ω ⊂ RN is a bounded domain with a smooth (Lipschitz) boundary ∂Ω
and Lebesgue measure |Ω|, s ∈ (0, 1), p > N/s, λ ∈ R, while α ∈ L∞(Ω) with
α0 := essinfx∈Ωα(x) > 0 and the reaction term f : R → R is a suitable continuous
function. Finally, the leading operator (−∆)sp in (1.1) is the degenerate fractional

p-Laplacian, defined for all u : RN → R smooth enough, and x ∈ RN by

(−∆)sp(x) := 2 lim
ε→0+

∫
RN\Bε(x)

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+ps
dx,

which for p = 2 reduces to the linear fractional Laplacian, up to a dimensional
constant C(N, s) > 0; see, for instance, [7, 8, 11, 23].

Since elliptic problems involving the fractional p-Laplacian operator have been
intensively studied in recent years by several authors, a bibliography list is always
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1402 BOŠTJAN GABROVŠEK, GIOVANNI MOLICA BISCI AND DUŠAN D. REPOVŠ

far from being complete. To avoid this, we mention here only the papers [4, 10, 12,
13, 14] and [17, 18, 27, 28, 29], as well as the references therein.

Motivated by the wide interest in problem (1.1), and in order to treat it, we
crucially use that, in our setting, the nonlocal fractional Sobolev space

Xs,p
0 (Ω) = {u ∈W s,p(RN ) : u = 0 a.e. in RN \ Ω},

endowed by the norm

‖u‖ :=

(∫∫
RN×RN

|u(x)− u(y)|p

|x− y|N+ps
dxdy

)1/p

,

is compactly embedded into the space C0(Ω̄) of continuous functions up to the
boundary ∂Ω. This regularity result allow us to obtain essential analytical prop-
erties of the Euler–Lagrange functional associated to (1.1) in the low-dimensional
case; see [3, 9, 15] for related topics.

Inspired by the results contained in [1, 3, 24, 25, 26] and invoking Lemma 2.1,
we then study the number and the asymptotic behavior of the solutions of prob-
lem (1.1), when f oscillates near the origin or at the infinity. This analysis is carried
out by exploiting variational and topological techniques; see Theorem 2.2 below and
[31, Theorem 2.5].

More precisely, fixed L ∈ {0+,∞}, let

AL := lim inf
t→L

max|ζ|6t F (ζ)

tp
and BL := lim sup

t→L

F (t)

tp
,

where

F (t) :=

∫ t

0

f(ζ)dζ, for every t ∈ R.

With the above notations, let us define

λL1 := κp,N,s
ωN

pτspα0

2N

BL
and λL2 :=

1

p‖α‖∞|Ω|KpAL
,

where ωN denotes the volume of the unit ball in RN ,

κp,N,s :=
2p(3−s)−N

p

(
1− 1

2N

)2

+
22+ps−N

ps(N + p(1− s))
+

2

(N − ps)ps

(
1− 1

2N−ps

)
,

τ := sup
x∈Ω

dist(x, ∂Ω), and K := sup

{
‖u‖∞
‖u‖

: u ∈ Xs,p
0 (Ω) \ {0}

}
.

The main result reads as follows.

Theorem 1.1. Assume that

inf
t>0

F (t) = 0 and lim inf
t→L

max|ζ|6t F (ζ)

tp
< C lim sup

t→L

F (t)

tp
,

where C = C(p,N, s, α, τ, |Ω|,K) is the geometric constant given by

C :=

(
τsp

2Nκp,N,sKp|Ω|ωN

)
α0

‖α‖∞
. (1.2)

Then for every λ ∈ (λL1 , λ
L
2 ), problem (1.1) admits a sequence (uλ,j)j of weak

solutions in the fractional Sobolev space Xs,p
0 (Ω).

Moreover, lim
j→∞

‖uλ,j‖ = ∞ if L = ∞, and lim
j→∞

‖uλ,j‖ = lim
j→∞

‖uλ,j‖∞ = 0 if

L = 0+.
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A special and a meaningful case of Theorem 1.1 is the following.

Corollary 1. Assume that f is nonnegative with f(0) = 0. Furthermore, suppose
that

lim inf
t→L

F (t)

tp
= 0 and lim sup

t→L

F (t)

tp
=∞. (1.3)

Then for every λ > 0 problem (1.1) admits a sequence (uλ,j)j of nonnegative weak
solutions in the fractional Sobolev space Xs,p

0 (Ω).
Moreover, lim

j→∞
‖uλ,j‖ = ∞ if L = ∞, and lim

j→∞
‖uλ,j‖ = lim

j→∞
‖uλ,j‖∞ = 0 if

L = 0+.

We notice that the existence of sequences of weak solutions for fractional nonlocal
equations, without any symmetry hypothesis on the nonlinear term f , has been
investigated in [2, Theorems 5 and 6]. However, in the low-dimensional case treated
here, it can be easily seen that Theorem 1.1 is more general than the results proved
in the aforementioned paper. We refer to the monograph [23] as a general reference
for nonlocal problems and variational methods used in this manuscript.

2. Fractional framework. This section is devoted to the notations used through-
out the paper. In order to give the weak formulation of problem (1.1), we need to
work in a special functional space. Indeed, one of the difficulties in treating prob-
lem (1.1) is related to encoding the Dirichlet boundary condition in the variational
formulation. In this respect, the standard fractional Sobolev spaces are not suffi-
cient in order to study this problem. We overcome this difficulty by working in a
new functional space, whose definition is recalled here.

Let Ω be a bounded domain in RN with smooth (Lipschitz) boundary, fix s ∈
(0, 1) and take p > N/s. Let

W s,p(RN ) :=

{
u ∈ Lp(RN ) :

∫∫
RN×RN

|u(x)− u(y)|p

|x− y|N+ps
dxdy <∞

}
be the fractional space endowed with the norm

‖u‖s,p :=

(∫
RN
|u(x)|pdx+

∫∫
RN×RN

|u(x)− u(y)|p

|x− y|N+ps
dxdy

)1/p

, u ∈W s,p(RN ).

We work on the closed linear subspace defined by

Xs,p
0 (Ω) := {u ∈W s,p(RN ) : u = 0 a.e. in RN \ Ω},

and equivalently renormed by setting

‖u‖ :=

(∫∫
RN×RN

|u(x)− u(y)|p

|x− y|N+ps
dxdy

)1/p

, u ∈ Xs,p
0 (Ω),

namely, the Poincaré inequality holds in Xs,p
0 (Ω). The following Rellich-type result

will be crucial for our purposes.

Lemma 2.1. Let Ω ⊂ RN be a bounded domain with Lipschitz boundary and let
p > 1, s ∈ (0, 1) such that sp > N . Then the embedding

Xs,p
0 (Ω) ↪→ C0(Ω̄)

is compact.
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Proof. Since p > N/s, by [5, Theorem 4.47] it follows that Xs,p
0 (Ω) ⊂ W s,p(RN )

is continuously embedded into C0(Ω̄); see also [8, Theorem 8.2]. Now, in order to
show that this embedding is also compact, let B be a bounded subset of Xs,p

0 (Ω)
and let us prove that B is relatively compact in C0(Ω̄). By virtue of the Arzelà–
Ascoli theorem, the conclusion will be achieved by proving that B is equibounded
and equicontinuous on C0(Ω̄). To this end, since Xs,p

0 (Ω) by [5, Theorem 4.47], is
continuously embedded in C0(Ω̄), there exists a constant c1 > 0 such that

‖u‖∞ 6 c1‖u‖, for everyu ∈ B.

Hence, the set B is equibounded in C0(Ω̄). Moreover, arguing as in the proof [8,
Theorem 8.2], for every u ∈ B, the following Morrey-type inequality holds

|u(x)− u(y)| 6 c2‖u‖s,p|x− y|s−N/p, for every x, y ∈ RN (2.1)

for some constant c2 > 0. Indeed, by formula (8.8) in [8], it follows that

|u(x)− u(y)| 6 c[u]p,ps|x− y|s−N/p, for every x, y ∈ RN ,

where

[u]p,sp :=

(
sup

x0∈Ω ρ>0
ρ−sp

∫
Bρ(x0)∩Ω

|u(x)− 〈u〉Bρ(x0)∩Ω|pdx

)1/p

,

with

〈u〉Bρ(x0)∩Ω :=
1

|Bρ(x0) ∩ Ω|

∫
Bρ(x0)∩Ω

u(x)dx.

Consequently, (2.1) has been proved by [8, formula 8.4]. Finally,

‖u‖s,p 6 c3

(∫∫
RN×RN

|u(x)− u(y)|p

|x− y|N+ps
dxdy

)1/p

, for every u ∈ B. (2.2)

In conclusion, by combining (2.2) with (2.1) the equicontinuity of B easily follows.
This completes the proof of Lemma 2.1.

Note that, since the embedding Xs,p
0 (Ω) ↪→ C0(Ω̄) is continuous, it follows that

K := sup

{
‖u‖∞
‖u‖

: u ∈ Xs,p
0 (Ω) \ {0}

}
<∞.

It remains an open problem to determine an explicit upper bound for the constant
K.

Remark 1. We note that a more precise version of Lemma 2.1 can be proved by
using [5, Lemma 2.85]. More precisely, if p > N/s and C0,µ

b (Ω̄) denotes the space of

Hölder continuous functions of order µ on Ω̄, the embedding Xs,p
0 (Ω) ↪→ C0,µ

b (Ω̄) is
compact provided that µ < s−N/p. The above regularity argument, with a slight
modification, seems to work also in anisotropic fractional Sobolev spaces; see [30]
for related topics.

For further details on the fractional Sobolev spaces we refer to [8, 23] and to the
references therein.
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Let us fix λ ∈ R. We recall that a weak solution for problem (1.1), is a function
u : Ω→ R such that

∫∫
RN×RN

|u(x)− u(y)|p−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+ps
dxdy

= λ

∫
Ω

α(x)f(u(x))ϕ(x)dx, for every ϕ ∈ Xs,p
0 (Ω)

u ∈ Xs,p
0 (Ω) .

(2.3)

Let Jλ : Xs,p
0 (Ω)→ R be defined as follows

Jλ(u) :=
1

p

∫∫
RN×RN

|u(x)− u(y)|p

|x− y|N+ps
dxdy − λ

∫
Ω

α(x)F (u(x))dx, (2.4)

where, as usual, we set

F (t) :=

∫ t

0

f(ζ) dζ, for every t ∈ R.

Since f ∈ C0(R,R) and α ∈ L∞(Ω), the functional Jλ ∈ C1(Xs,p
0 (Ω)) and its

derivative at u ∈ Xs,p
0 (Ω) is given by

〈J ′λ(u), ϕ〉 =

∫∫
RN×RN

|u(x)− u(y)|p−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+ps
dxdy

−λ
∫

Ω

α(x)f(u(x))ϕ(x)dx, for every ϕ ∈ Xs,p
0 (Ω).

Thus the weak solutions of problem (1.1) are exactly the critical points of the
energy functional Jλ.

Therefore, the proof of the main result reduces to finding critical points of the
functional by using suitable abstract approaches.

In this direction, we rephrase [31, Theorem 2.1] in a slightly different version;
see, for instance, [3, Theorem 2.1].

Theorem 2.2. Let X be a reflexive real Banach space and let Φ,Ψ : X → R be
two Gâteaux differentiable functionals such that Φ is strongly continuous, sequen-
tially weakly lower semicontinuous and coercive, and Ψ is sequentially weakly upper
semicontinuous. Set Jλ := Φ− λΨ. Moreover, for every r > inf

X
Φ, put

ϕ(r) := inf
u∈Φ−1((−∞,r))

sup
v∈Φ−1((−∞,r))

Ψ(v)−Ψ(u)

r − Φ(u)
,

γ := lim inf
r→∞

ϕ(r), δ := lim inf
r→(infX Φ)+

ϕ(r).

Then one has

(a) If γ <∞, then for each λ ∈ (0, 1/γ) , the following alternatives exist:
(a1)either Jλ possesses a global minimum,
(a2)or there is a sequence (uj)j of critical points (local minima) of Jλ such
that

lim
j→∞

Φ(uj) =∞.

(b) If δ <∞, then for each λ ∈ (0, 1/δ) , the following alternatives exist:
(b1) either there is a global minimum of Φ which is a local minimum of Jλ,
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(b2) or there is a sequence (uj)j of pairwise distinct critical points (local
minima) of Jλ which weakly converges to a global minimum of Φ, with

lim
j→∞

Φ(uj) = inf
u∈X

Φ(u).

Following the seminal work of Ricceri [31], an impressive number of publications
appeared, most of them dedicated to the study of suitable extensions of his varia-
tional principle as well as of its consequences; see, for instance, the books [16, 21, 23]
and the references therein. Recent applications of [31, Theorem 2.1] can be found
in [6, 19, 22]. See also [20] for related topics.

3. A proof of Theorem 1.1. Let X := Xs,p
0 (Ω) be endowed with the norm

‖u‖ :=

(∫∫
RN×RN

|u(x)− u(y)|p

|x− y|N+ps
dxdy

)1/p

, u ∈ X.

Moreover, let Φ : X → R and Ψ : X → R be defined as follows

Φ(u) :=
1

p

∫∫
RN×RN

|u(x)− u(y)|p

|x− y|N+ps
dxdy and Ψ(u) :=

∫
Ω

α(x)F (u(x))dx,

so that if we set Jλ := Φ− λΨ as in Theorem 2.2, then we get Jλ = Jλ.
By standard arguments, one shows that Φ is continuously Gâteaux differentiable

and sequentially weakly lower semicontinuous and that its Gâteaux derivative is the
functional Φ′(u) ∈ X∗ given by

Φ′(u)(ϕ) =

∫∫
RN×RN

|u(x)− u(y)|p−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+ps
dxdy, ϕ ∈ X.

Moreover, Ψ is continuously Gâteaux differentiable, its Gâteaux derivative is given
by

Ψ′(u)(ϕ) =

∫
Ω

α(x)f(u(x))ϕ(x)dx, ϕ ∈ X.

Now, thanks to Lemma 2.1, Ψ is a sequentially weakly continuous functional.
Indeed, for every sequence (uj)j in X such that uj ⇀ u0 for some u0 ∈ X, we shall
prove that

lim
j→∞

Ψ(uj) = Ψ(u0). (3.1)

Since the embedding X ↪→ C0(Ω̄) is compact by Lemma 2.1, there exists c > 0 such
that uj → u0 in C0(Ω̄) and

‖uj‖∞ 6 c, for every j ∈ N. (3.2)

On the other hand,

lim
j→∞

α(x)F (uj(x)) = α(x)F (u0(x)),

and, by inequality (3.2)

|α(x)F (uj(x))| 6 α(x) max
|t|6c
|F (t)|, for a.e. x ∈ Ω̄ and every j ∈ N.

Hence, since α ∈ L∞(Ω), by using the Lebesgue dominated convergence theorem it
follows that (3.1) holds.

Now, let (cj)j be a positive real sequence such that

lim
j→∞

cj = L and lim
j→∞

max
|t|6cj

F (t)

cpj
= AL.



NONLOCAL FRACTIONAL PROBLEMS WITH... 1407

Set

rj :=
cpj
Kpp

> 0, for every j ∈ N.

The continuous embedding X ↪→ C0(Ω̄) yields

‖v‖∞ 6 cj , for every v ∈ Φ−1((−∞, rj)) and j ∈ N.

Thus

‖v‖∞ 6 K‖v‖ = K(prj)
1/p = cj , for every j ∈ N.

Then

ϕ(rj) = inf
u∈Φ−1((−∞,rj))

sup
v∈Φ−1((−∞,rj))

Ψ(v)−Ψ(u)

rj − Φ(u)

6

sup
v∈Φ−1((−∞,rj))

Ψ(v)

rj
6 p‖α‖∞|Ω|Kp

max
|t|6cj

F (t)

cpj
, for every j ∈ N,

taking into account that Φ(0) = Ψ(0) = 0.

Hence, if λ < λL2 :=
1

p‖α‖∞|Ω|KpAL
it follows that

βL 6 lim inf
j→∞

ϕ(rj) 6 p‖α‖∞|Ω|KpAL <
1

λ
<∞,

where

βL :=

γ := lim inf
r→∞

ϕ(r) if L =∞

δ := lim inf
r→0+

ϕ(r) if L = 0+.

Let us denote by Br(x0) the N -dimensional open ball centered at x0 ∈ RN and
of radius r > 0. As Ω is open, we can certainly choose a point x0 ∈ Ω and a number
τ > 0 so that Bτ (x0) ⊆ Ω.

If we set τ := sup
x∈Ω

dist(x, ∂Ω), the point x0 is the Chebyshev center of Ω. Hence

let us fix such x0 and τ and define the function θ to be

θ(x) :=


0 if x ∈ RN \Bτ (x0)
1 if x ∈ Bτ/2(x0)

2
τ − |x− x0|

τ
if x ∈ Bτ (x0) \Bτ/2(x0)

(3.3)

for every x ∈ RN , where | · | denotes the usual Euclidean norm in RN . Since θ ≡ 0
outside the compact ball Bτ (x0), we can easily deduce that θ ∈ X.

We now state and prove our main lemma.

Lemma 3.1. Let θ ∈ X be the function defined in (3.3). Then∫
RN×RN

|θ(x)− θ(y)|p

|x− y|N+ps
dxdy 6 κp,N,sω

2
Nτ

N−sp, (3.4)

where ωN denotes the volume of the unit ball in RN , and

κp,N,s :=
2p(3−s)−N

p

(
1− 1

2N

)2

+
22+ps−N

ps(N + p(1− s))
+

2

(N − ps)ps

(
1− 1

2N−ps

)
.
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Proof. A direct and straightforward computation ensures that∫∫
RN×RN

|θ(x)− θ(y)|p

|x− y|N+ps
dxdy =

4∑
j=1

Jj , (3.5)

where we set

J1 :=

∫
Bτ (x0)\Bτ/2(x0)

∫
Bτ (x0)\Bτ/2(x0)

|θ(x)− θ(y)|p

|x− y|N+ps
dxdy,

J2 := 2

∫
Bτ (x0)\Bτ/2(x0)

∫
RN\Bτ/2(x0)

|θ(x)− θ(y)|p

|x− y|N+ps
dxdy,

J3 := 2

∫
Bτ/2(x0)

∫
Bτ (x0)\Bτ/2(x0)

|θ(x)− θ(y)|p

|x− y|N+ps
dxdy,

and

J4 := 2

∫
Bτ/2(x0)

∫
RN\Bτ (x0)

|θ(x)− θ(y)|p

|x− y|N+ps
dxdy.

On the other hand, by virtue of

|y − x0| − |x− x0| 6 |x− y|,

and

|x−y| 6 |x−x0|+ |y−x0| 6 2τ, for all (x, y) ∈ (Bτ (x0)\Bτ/2(x0))× (Bτ (x0)\Bτ/2(x0)),

one has

J1 =
2p

τp

∫
Bτ (x0)\Bτ/2(x0)

∫
Bτ (x0)\Bτ/2(x0)

||y − x0| − |x− x0||p

|x− y|N+ps
dxdy

6
2p

τp

∫
Bτ (x0)\Bτ/2(x0)

∫
Bτ (x0)\Bτ/2(x0)

|x− y|p

|x− y|N+ps
dxdy

= 2p(3−s)−N
(

1− 1

2N

)2
τN−ps

p
ω2
N .

Furthermore, since for every y ∈ Bτ (x0) \Bτ/2(x0),∫
RN\Bτ (x0)

|τ − |y − x0||p

|x− y|N+ps
dx = ωN

∫ ∞
τ−|y−x0|

|τ − |y − x0||p

%ps+1
d%,

it follows that

J2 =
2p+1

τp

∫
Bτ (x0)\Bτ/2(x0)

∫
RN\Bτ (x0)

|τ − |y − x0||p

|x− y|N+ps
dxdy

=
2p+1ωN
τp

∫
Bτ (x0)\Bτ/2(x0)

∫ ∞
τ−|y−x0|

|τ − |y − x0||p

%ps+1
d%dy

=
2p+1ωN
psτp

∫
Bτ (x0)\Bτ/2(x0)

|τ − |x− y||p(1−s)dy

=
2p+1ω2

N

psτp

∫ τ/2

0

zN+(1−s)p−1dz =
21+ps−N

s(N + p(1− s))
τN−ps

p
ω2
N ,
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as well as

J3 =
2p+1

τp

∫
Bτ/2(x0)

∫
Bτ (x0)\Bτ/2(x0)

||x− x0| − τ/2|p

|x− y|N+ps
dxdy

=
2p+1

τp

∫
Bτ (x0)\Bτ/2(x0)

∫
Bτ/2(x0)

||x− x0| − τ/2|p

|x− y|N+ps
dydx

=
2p+1ωN
τp

∫
Bτ (x0)\Bτ/2(x0)

||x− x0| − τ/2|p
∫ |x−x0|+τ/2

|x−x0|−τ/2

d%

%ps+1
dx

6
2p+1ωN
psτp

∫
Bτ (x0)\Bτ/2(x0)

||x− x0| − τ/2|p(1−s)dx

=
2p+1ωN
psτp

∫ τ/2

0

zp(1−s)+N−1dz =
21+ps−N

s(N + p(1− s))
τN−ps

p
ω2
N ,

observing that∫
Bτ/2(x0)

dy

|x− y|N+ps
= ωN

∫ |x−x0|+τ/2

|x−x0|−τ/2

d%

%ps+1
, for every x ∈ Bτ (x0) \Bτ/2(x0).

Finally,

J4 = 2

∫
Bτ/2(x0)

∫
RN\Bτ (x0)

1

|x− y|N+ps
dxdy

= 2ωN

∫
Bτ/2(x0)

∫ ∞
τ−|y−x0|

1

%1+ps
d%dy =

2

ps
ωN

∫
Bτ/2(x0)

1

(τ − |y − x0|)ps
dy

=
2ω2

N

ps

∫ τ

τ/2

zN−ps−1dz =
2

(N − ps)s

(
1− 1

2N−ps

)
τN−ps

p
ω2
N ,

due to the fact that∫
RN\Bτ (x0)

1

|x− y|N+ps
dx = ωN

∫ ∞
τ−|y−x0|

1

%1+ps
d%, for every y ∈ Bτ/2(x0).

The conclusion follows by (3.5) and the above estimates.

If L = ∞, then we claim that the functional Jλ is unbounded from below. For
our goal, let (ζj)j be a real sequence such that

lim
j→∞

ζj =∞

and

lim
j→∞

F (ζj)

ζpj
= B∞. (3.6)

For each j ∈ N, let wj = ζjθ ∈ X. Then, by Lemma 3.1,

Φ(wj) 6 κp,N,sω
2
N

τN−ps

p
ζpj , for every j ∈ N.

Moreover, since inf
ζ>0

F (ζ) = 0 and α0 := essinfx∈Ωα(x) > 0, we have∫
Ω

α(x)F (wj(x))dx > α0

∫
Bτ/2(x0)

F (wj(x))dx > α0
τN

2N
ωNF (ζj) > 0, for every j ∈ N,

since θ ≡ 1 on Bτ/2(x0). Then, on account of (3.4), it follows that

Jλ(wj) 6 κp,N,sω
2
N

τN−ps

p
ζpj − λα0

τN

2N
ωNF (ζj), for every j ∈ N.



1410 BOŠTJAN GABROVŠEK, GIOVANNI MOLICA BISCI AND DUŠAN D. REPOVŠ

If B∞ <∞, since λ > λ∞1 , we can fix

ε ∈
(
κp,N,s

ωN
λpτpsα0

2N

B∞
, 1
)
.

By using (3.6), we get νε such that

F (ζj) > εB∞ζ
p
j , for all j > νε.

Then one has for every j > νε,

Jλ(wj) 6 κp,N,sω
2
N
τN−ps

p
ζpj − λα0

τN

2N
ωNF (ζj) 6

(
κp,N,s

ωN
pτps

− λεB∞
α0

2N

)
τNωNζ

p
j .

Consequently, since

lim
j→∞

ζj = +∞ and ε > κp,N,s
ωN

λpτpsα0

2N

B∞
,

it follows that,

lim
j→∞

Jλ(wj) = −∞.

If B∞ =∞, let us fix

M > 2Nκp,N,s
ωN

λpτpsα0
.

By using again (3.6), we get νM such that

F (ζj) > Mζpj , for all j > νM .

Now we have for every j > νM ,

Jλ(wj) 6 κp,N,sω
2
N
τN−ps

p
ζpj − λα0

τN

2N
ωNF (ζj) =

(
κp,N,s

ωN
pτps

− λM α0

2N

)
τNωNζ

p
j .

Bearing in mind the choice of M again, we get

lim
j→∞

Jλ(wj) = −∞.

Therefore, thanks to Theorem 2.2 - Part (a), the functional Jλ admits an unbounded
sequence (uλ,j)j ⊂ X of critical points.

If L = 0+, then an argument similar to the one above shows that u0 ≡ 0 is
not a local minimum point for the functional Jλ. By Theorem 2.2 - Part (b), the
functional Jλ admits a sequence (uλ,j)j ⊂ X of pairwise distinct critical points
(local minima) such that

lim
j→∞

‖uλ,j‖ = 0.

Finally, by Lemma 2.1 one also have lim
j→∞

‖uλ,j‖∞ = 0 as claimed. This completes

the proof of Theorem 1.1.
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4. Final comments and remarks. Let us give some comments concerning Corol-
lary 1. To this end, assume that f : R → R is a nonnegative continuous function
with f(0) = 0. It is easily seen that Corollary 1 can be obtained by applying
Theorem 1.1 to the nonlocal problem{

(−∆)spu = λα(x)f+(u) in Ω
u = 0 in RN \ Ω,

(4.1)

where f+ : R→ R, defined by

f+(t) :=

{
f(t) if t > 0

0 if t 6 0,

is continuous for every t ∈ R.
Indeed, since f is nonnegative, one has

max
|ζ|6t

∫ ζ

0

f+(x)dx = max
|ζ|6t

∫ ζ

0

f(x)dx = F (t), for every t ∈ [0,+∞),

so that the assumptions of Corollary 1 actually give AL = 0 and BL =∞. Conse-
quently, the main conclusions hold with λL1 = 0 and λL2 =∞.

Finally, to conclude the proof, we just need to prove that the solutions are non-
negative. To this end, let

ξ± := max{0,±ξ}, for every ξ ∈ R,
and let u ∈ Xs,p

0 (Ω) be a weak solution of (4.1). Then u± ∈ Xs,p
0 (Ω) and∫

Ω

α(x)f+(u(x))u−(x)dx = 0. (4.2)

Furthermore, notice that

|ξ− − η−|p 6 |ξ − η|p−2(ξ − η)(η− − ξ−), for every ξ, η ∈ R. (4.3)

Then, by virtue of (4.2) and (4.3), and by testing J ′λ with −u− ∈ Xs,p
0 (Ω), we

obtain

0 = 〈J ′λ(u),−u−〉 =

∫∫
RN×RN

|u(x)− u(y)|p−2(u(x)− u(y))(u−(x)− u−(y))

|x− y|N+ps
dxdy

>
∫∫

RN×RN

|u−(x)− u−(y)|p−2

|x− y|N+ps
dxdy.

This implies that u− is constant on RN and since u− vanishes outside Ω, it follows
that u− = 0 on the entire space RN . Thus, u > 0 a.e. in Ω as claimed. This
completes the proof of Corollary 1.

We conclude the paper by an application of Corollary 1.

Example 4.1. Let us consider the following nonlocal fractional problem{
(−∆)spu = λf(u) in Ω
u = 0 in RN \ Ω,

(4.4)

where Ω ⊂ RN is a bounded domain with smooth (Lipschitz) boundary ∂Ω, s ∈
(0, 1), p > N/s, and f : R→ R is the function defined by

f(t) :=


((k + 1)!p − k!p)

gk(t)∫ bk

ak

gk(ζ)dζ

if t ∈
⋃
k>1[ak, bk]

0 otherwise,
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where

ak :=
2k!(k + 2)!− 1

4(k + 1)!
and bk :=

2k!(k + 2)! + 1

4(k + 1)!
,

and gk : [ak, bk]→ R is the continuous function given for every k > 1, by

gk(t) :=

√
1

16(k + 1)!
−
(
t− k!(k + 2)

2

)2

, t ∈ [ak, bk].

By virtue of Corollary 1, for every

λ > κp,N,s
ωN
pτps

2N−p,

problem (4.4) admits a sequence (uλ,j)j ⊂ Xs,p
0 (Ω) of (nonnegative) weak solutions

such that

lim
j→∞

‖uλ,j‖ =∞.
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