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Limits of Manifolds in the
Gromov–Hausdorff Metric Space

Friedrich Hegenbarth and Dušan D. Repovš

Abstract. We apply the Gromov–Hausdorff metric dG for character-
ization of certain generalized manifolds. Previously, we have proven
that with respect to the metric dG, generalized n-manifolds are lim-
its of spaces which are obtained by gluing two topological n-manifolds
by a controlled homotopy equivalence (the so-called 2-patch spaces).
In the present paper, we consider the so-called manifold-like general-
ized n-manifolds Xn, introduced in 1966 by Mardešić and Segal, which
are characterized by the existence of δ-mappings fδ of Xn onto closed
manifolds Mn

δ , for arbitrary small δ > 0, i.e., there exist onto maps
fδ : Xn → Mn

δ such that for every u ∈ Mn
δ , f−1

δ (u) has diameter less
than δ. We prove that with respect to the metric dG, manifold-like gen-
eralized n-manifolds Xn are limits of topological n-manifolds Mn

i . More-
over, if topological n-manifolds Mn

i satisfy a certain local contractibility
condition M(�, n), we prove that generalized n-manifold Xn is resolv-
able.
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1. Introduction

This paper is a continuation of our systematic study of the characterization
problem for generalized n-manifolds, n ≥ 5 (see Cavicchioli et al. [5,6] and
Hegenbarth and Repovš [23–28]). This is a very important class of spaces
which in the algebraic sense strongly resemble topological manifolds, whereas
in the geometric sense they can fail to be locally Euclidean at any point (see,
e.g., Cannon [4], Edwards [11], and Repovš [42–44]).
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Definition 1.1. A generalized n-manifold Xn is an n-dimensional metric ab-
solute neighborhood retract (ANR) Xn with local homology

H∗(Xn,Xn \ {x};Z) ∼= H∗(Rn,Rn \ {0};Z), for every x ∈ X.

We shall only consider oriented generalized n-manifolds without bound-
ary (i.e., Hn(Xn,Xn\{x};Z) ∼= Z, for every x ∈ Xn). Throughout the paper,
we shall be assuming that n ≥ 5.

Definition 1.2. Given any δ > 0, a continuous map fδ : X → Y of a metric
space X onto a topological space Y is called a δ-map if for every point y ∈ Y,
the preimage f−1

δ (y) has diameter < δ.

More than half a century ago, Mardešić and Segal [30, Theorem 1]
proved the following very nice characterization result for generalized mani-
folds in terms of δ-maps.

Theorem 1.3. Let Xn be a compact n-dimensional metric ANR such that for
every δ > 0, there exists a δ-map fδ : Xn → Mn

δ of Xn onto some (triangu-
lated) oriented closed topological n-manifold Mn

δ . Then, Xn is a generalized
n-manifold.

Definition 1.4. Mardešić and Segal called such a generalized n-manifold Xn

manifold-like. We shall call such maps fδ : Xn → Mn
δ structure maps.

Remark 1.5. Since every topological n-manifold (except for nonsmoothable
4-manifolds) admits a handlebody decomposition (see Quinn [37]), we shall
hereafter neglect “triangulated.”

Let dG be the Gromov–Hausdorff distance which is a complete met-
ric on the set of all isometry classes of compact metric spaces. (Details are
given in Sect. 2, for an overview see Ferry [14, §29].) In our previous paper
Hegenbarth–Repovš [25, §4.3], we proved that with respect to metric dG,
every generalized n-manifold Xn is the limit of 2-patch spaces, defined by
Bryant et al. [3].

In this paper, we shall prove the following new characterization result
for manifold-like generalized n-manifolds—an approximation by topological
n-manifolds in terms of the Gromov–Hausdorff metric dG.

Theorem 1.6. (Approximation Theorem) For every manifold-like generalized
n-manifold Xn and every δ > 0, there exists a topological n-manifold Mn

δ

such that dG(Xn,Mn
δ ) < δ.

Remark 1.7. The metric on generalized n-manifold Xn is induced by a fixed
embedding Xn ↪→ R

m of Xn into some Euclidean m-space R
m, for a suffi-

ciently large dimension m ∈ N. The metric on topological n-manifold Mn
δ is

then induced by an embedding Mn
δ ↪→ Nm

Xn of Mn
δ into a small neighborhood

Nm
Xn ⊂ R

m of Xn in R
m (see Sect. 2 for more details).

Edwards [11] obtained a fundamental criterion for a generalized n-
manifold Xn to be a topological n-manifold. The first (sufficient) condition is
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the existence of a cell-like map f : Mn → Xn, where Mn is a closed topologi-
cal n-manifold, also called the (cell-like) resolution of Xn (see, e.g., Mitchell
and Repovš [32]). By the uniqueness result of Quinn ( [36, Proposition 3.2.3]),
any two resolutions f1 : Mn

1 → Xn and f2 : Mn
2 → Xn of Xn are equivalent,

i.e., for every ε > 0, there exists a homeomorphism hε : Mn
1 → Mn

2 such that
d(f1, f2 ◦ hε) < ε. The second (sufficient) condition is a general position type
of property, the so-called disjoint disks property of Xn (see, e.g., Cavicchioli
et al. [6]).

Quinn [38,39] developed a controlled surgery theory and constructed
a surgery obstruction i(Xn) ∈ Z to existence of resolutions of generalized
n-manifolds Xn. It is convenient to the consider I(Xn) := 1+8i(Xn), called
the resolution index (this appears naturally, passing from the quadratic L-
spectrum to the symmetric L-spectrum, see Ranicki [40]). So I(Xn) = 1 if
and only if Xn admits a (cell-like) resolution.

There are no known general methods for calculating Quinn’s resolution
index I(Xn), like there are for other invariants. In this paper, we shall show
that it vanishes for a certain class of manifold-like generalized n-manifolds,
and thus, we shall prove that they are resolvable (see Theorem 1.9). First,
we need some more notations (see Ferry [14, §29]).

Definition 1.8. A function � : [0, R) → [0,∞) is called contractible if for every
t, �(t) ≥ t, and � is continuous at 0. Let M(�, n) denote the set of all compact
metric spaces M of dimension ≤ n, such that for every x ∈ M, the r-ball
Br(x) = {y ∈ M | d(x, y) ≤ r} contracts to {x} inside the �(r)-ball B�(r)(x).

The following is the second main result of our paper.

Theorem 1.9. (Resolution Theorem) Let Xn be a generalized n-manifold and
fix an embedding i : Xn ↪→ R

m for some m ≥ n ≥ 5. Let � : [0, R) → [0,∞)
be a contractible function and suppose that for every small δ > 0, there is a
structure map fδ : Xn → Mn

δ such that Mn
δ ∈ M(�, n) with respect to the

metric defined in Theorem 1.6. Then, Xn is resolvable.

Remark 1.10. We recall that the metric on generalized n-manifold Xn (resp.
topological n-manifold Mn

δ ) is induced by the embedding Xn ↪→ R
m (resp.

Mn
δ ↪→ Nm

Xn ⊂ R
m).

As an application, consider the following nice result of Ferry [14, Propo-
sition 29.38].

Theorem 1.11. Suppose that X = lim−→{Mn
i }, where {Mn

i } ⊂ M(�, n), in the
Gromov–Hausdorff metric. If dimX < ∞, then X is a generalized n-manifold.

It now follows by our Theorem 1.9 that the space X in Theorem 1.11
is in fact, a resolvable generalized n-manifold X. For some related previous
results on limits in the Gromov–Hausdorff metric space see Dranishnikov
and Ferry [7,8] Dranishnikov et al. [9], Engel [12], Ferry [13,15,16], Ferry
and Okun [18], Grove et al. [22], Kawamura [29], and Moore [33].

We conclude the introduction with the following very interesting open
problem related to our Theorem 1.9. Recall that there are plenty of nonre-
solvable generalized n-manifolds—see, e.g., Cavicchioli et al. [5]. How about
manifold-like generalized n-manifolds?
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Question 1.12. Does there exist, for any n ≥ 5, a nonresolvable manifold-like
generalized n-manifold?

2. Proof of Theorem 1.6

Let Xn be a manifold-like generalized n-manifold. For any δ > 0, let fδ : Xn →
Mn

δ be a structure map from Definition 1.4. We shall invoke the following re-
sult due to Eilenberg (see, e.g., Ferry [14, Corollary 29.10]).

Proposition 2.1. For every δ > 0, there exist a structure map fδ : Xn → Mn
δ

and a continuous map gδ : Mn
δ → Xn such that gδ ◦ fδ : Xn → Xn is δ-

homotopic to IdXn : Xn → Xn.

This is a special case where also the following fact holds.

Supplement 2.2. The structure map fδ : Xn → Mn
δ from Proposition 2.1 is

a homotopy equivalence with the inverse gδ : Mn
δ → Xn.

Proof of Proposition 2.1. The induced map

(fδ)∗ : H∗(Xn;Z) → H∗(Mn
δ ;Z)

is injective since gδ ◦ fδ ∼ IdXn . Therefore, the composition

Hn(Xn;Z)
(fδ)∗→ Hn(Mn

δ ;Z)
(gδ)∗→ Hn(Xn;Z)

is the identity, (gδ)∗ ◦ (fδ)∗ = (IdXn)∗, and we have

Hn(Mn
δ ;Z) ∼= Z, (gδ)∗([Mn

δ ]) = [Xn],

if we choose the fundamental class appropriately. It follows by duality that
the induced map

(fδ)∗ : H∗(Xn;Z) → H∗(Mn
δ ;Z)

is also surjective and that fδ : Xn → Mn
δ and gδ : Mn

δ → Xn are both of
degree 1. In particular, since the map fδ : Xn → Mn

δ is of degree 1, it now
follows that the induced map

(fδ)∗ : π1(Xn) → π1(Mn
δ )

is surjective (see Browder [1, Proposition 1.2]). Since (fδ)∗ : π1(Xn) → π1(Mn
δ )

is also injective, it is in fact, an isomorphism.
Now, arguing as above, we can show that fδ : Xn → Mn

δ induces isomor-
phisms in homology with coefficients in group rings. It therefore follows by
Ferry [13, Theorem 7.4] that fδ : Xn → Mn

δ is indeed a homotopy equivalence
with the inverse gδ : Mn

δ → Xn. This completes the proof of Proposition 2.1.

�

Definition 2.3. The Gromov–Hausdorff distance between any compact metric
spaces X and Y is defined as follows: For any closed subsets X and Y of a
compact metric space (Z, d), and any δ > 0, define their neighborhoods

Nδ(X) := {z ∈ Z | d(z,X) < δ},
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and

Nδ(Y ) := {z ∈ Z | d(z, Y ) < δ}
and define the following distances

dZ(X,Y ) := inf{δ > 0 | X ⊂ Nδ(Y ) and Y ⊂ Nδ(X)}
and

dG(X,Y ) := inf{dZ(X,Y ) | X,Y are isometrically embedded in Z},

where Z ranges over all compact metric spaces.

Remark 2.4. The Gromov–Hausdorff convergence is a notion of convergence
of metric spaces which is a generalization of the classical Hausdorff conver-
gence. The Gromov–Hausdorff distance was introduced in 1975 by Edwards
[10] and then rediscovered and generalized in 1981 by Gromov [21] (see also
Tuzhilin [46]).

To determine dG(Xn,Mn
δ ) for a structure map fδ : Xn → Mn

δ , the
choice of the metric is important. We choose an embedding Xn ↪→ R

m, and
take on Xn the metric induced from R

m. It is important to note that the
property of fδ : Xn → Mn

δ being a structure map does not depend on the
choice of the metric on Mn

δ . It will be appropriately chosen below.
Let fδ : Xn → Mn

δ be a structure map with the inverse gδ : Mn
δ →

Xn, such that gδ ◦ fδ is δ-homotopic to IdXn for a given small δ > 0 (see
Proposition 2.1). In the sequel, let

i : Xn ↪→ Nδ := Nδ(Xn ↪→ R
m)

denote the inclusion of Xn into a δ-neighborhood Nδ of Xn in R
m.

Since by hypothesis, Xn is manifold-like, it follows that for arbitrary
small δ′ > 0, there exists an embedding j : Mn

δ ↪→ Nδ with d(i ◦ gδ, j) < δ′

(see Rourke and Sanderson [45, General Position Theorem for Maps 5.4]).
These maps can be represented by the following diagram

Xn

Mn
δ

Nδ
gδ fδ

i

j

(2.1)

We choose on Mn
δ the metric induced on j(Mn

δ ) ⊂ R
m. Since

d(i ◦ gδ, j) < δ′,

we can deduce the following

d(i(x), j(Mn
δ )) ≤ d(i(x), (i ◦ gδ ◦ fδ)(x)) + d((i ◦ gδ ◦ fδ)(x), j(Mn

δ )) < δ + δ′,

i.e.,

i(Xn) ⊂ Nδ+δ′(j(Mn
δ ) ⊂ R

m)

(see also Remark 2.5).
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Of course, Nδ and Nδ+δ′(j(Mn
δ ) ⊂ R

m) belong to a compact subset Z
of Rm with the induced metric. We obtain the following

dG(Xn,Mn
δ ) ≤ dZ(Xn,Mn

δ ) < δ + δ′.

Now δ and δ′ can be chosen to be arbitrarily small; thus, we have completed
the proof of Theorem 1.6. �

Remark 2.5. Recall that

d(z,A) := inf{d(z, a) | a ∈ A},

where A ⊂ Z is a compact subset of the metric space Z. For z, z′ ∈ Z, the
inequality

d(z′, a) ≤ d(z, z′) + d(z, a)

implies the inequality

d(z′, A) ≤ d(z′, z) + d(z,A),

which was used above.

3. Proof of Theorem 1.9

In this section, we shall apply the controlled surgery sequence to prove The-
orem 1.9. For more details on this important subject, we refer to Bryant et
al. [2], Cavicchioli et al. [6], Ferry [17,19,20], Mio [31], Pedersen et al. [34],
Pedersen and Yamasaki [35], Quinn [38,39], Ranicki and Yamasaki [41], and
Yamasaki [47].

Let L denote the periodic L-spectrum, i. e. L0 = Z×G/TOP, and L
+ is

its connected covering spectrum with L
+
0 = G/TOP. Now, if Sε

⎛
⎝

Xn

↓ Id
Xn

⎞
⎠ �= ∅,

then there exists an exact sequence

· · · → Hn+1(Xn;L+) → Hn+1(Xn;L) → Sε

⎛
⎝

Xn

↓ Id
Xn

⎞
⎠ → Hn(Xn;L+) → . . .

Elements of Sε

⎛
⎝

Xn

↓ Id
Xn

⎞
⎠ are equivalence classes of ε-homotopy equivalences

Mn h→ Xn (measured in Xn), with Mn a closed (oriented) topological n-
manifold.

Definition 3.1. Two elements

Mn
1

h1→ Xn,Mn
2

h2→ Xn ∈ Sε

⎛
⎝

Xn

↓ Id
Xn

⎞
⎠

are said to be ε-related if there exists a homeomorphism ϕ : Mn
1 → Mn

2 such
that h2 ◦ ϕ is ε-homotopic to h1.
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Remark 3.2. Being ε-related does not define an equivalence relation, but it
is a part of the following assertion: There exists an ε0 > 0 depending only on
Xn, such that for every ε ≤ ε0, this becomes an equivalence relation.

For p + q = n + 1, it follows from the spectral sequences

E2
pq = Hp(Xn;πq(L)) ⇒ Hp+q(Xn;L)

and

E+2
pq = Hp(Xn;πq(L+)) ⇒ Hp+q(Xn;L+)

that

E+2
pq = E2

pq,

hence

Hn+1(Xn;L+) ∼= Hn+1(Xn;L).

Moreover, Hn(Xn;L+) → Hn(Xn;L) must be injective. It follows that if

Sε

⎛
⎝

Xn

↓ Id
Xn

⎞
⎠ �= ∅.

then it consists of only one element

card

⎡
⎣Sε

⎛
⎝

Xn

↓ Id
Xn

⎞
⎠

⎤
⎦ = 1.

Proposition 3.3. Let Xn be a generalized n-manifold. Then, I(Xn) = 1 if
and only if

Sε

⎛
⎝

Xn

↓ Id
Xn

⎞
⎠ �= ∅,

i.e., for every ε ≤ ε0, there exists an ε-homotopy equivalence Mn h→ Xn.

Proof. The proof is standard, see e.g., Mio [31, §3] or Bryant et al. [2, p. 444].

�
In order to prove Theorem 1.9, we have to show that for each ε ≤ ε0,

there exists for every M(�, n)-like generalized manifold Xn, an ε-homotopy
equivalence hε : Mn → Xn. This follows from Theorem 1.6 and Ferry [14,
Theorem 29.20].

Theorem 3.4. Let � : [0, R) → [0,∞) be a contractible function and let Y and
Z be any compact metric spaces. Then, for every ε > 0, there exists δ > 0
such that if Y,Z ∈ M(�, n) and dG(Y,Z) < δ, then Y and Z are ε-homotopy
equivalent. Here, δ = δ(ε, �) depends on ε and �, but not on Y,Z.
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Let us provide some more details: We equip generalized n-manifold Xn

with the metric given by an embedding Xn ↪→ R
m of Xn into some R

m, for
a sufficiently large m ∈ N, see Theorem 1.6 and Remark 1.7. By Ferry [14,
Theorem 29.14], Xn with this metric belongs to M(�, n) for some contractible
function � : [0, R) → [0,∞).

By hypothesis, we can now choose a sequence {εi > 0}i∈N such that

lim
i→+∞

εi = 0,

∞∑
i=1

εi < ∞,

and then invoking Theorem 3.4, obtain a sequence

{δi := δi(εi, �) > 0}i∈N.

By Theorem 1.6, then there exists a sequence of closed topological n-
manifolds {Mn

δi
}i∈N ⊂ M(�, n), with respect to the metric obtained by em-

bedding Mn
δi

↪→ Nm
Xn ⊂ R

m each Mn
δi

into a small neighborhood Nm
Xn of

generalized n-manifold Xn in R
m, such that

dG(Mn
δi

,Xn) < δi, for every i ∈ N.

Therefore, every topological n-manifold Mn
δi

is εi-homotopy equivalent
to Xn. This proves Theorem 1.9. �
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[44] Repovš, D.: The recognition problem for topological manifolds: A survey. Kodai
Math. J. 17(3), 538–548 (1994)

[45] Rourke, C., Sanderson, B.: Introduction to Piecewise-Linear Topology, Ergeb-
nisse der Mathematik und ihrer Grenzgebiete, vol. 69. Springer, New York
(1972)

[46] Tuzhilin, A.: Who invented the Gromov-Hausdorff distance? arXiv:1612.00728
[math.MG]

[47] Yamasaki, M.: Controlled surgery theory. Sugaku Exp. 13(1), 113–124 (2000)

Friedrich Hegenbarth
Dipartimento di Matematica “Federigo Enriques”
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