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We study the following singular problem involving the p(x)-Laplace Received 6 June 2021
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Here, Q is a bounded domain in RY=2 with C2-boundary, A is a posi-  operator; multiplicity

tive parameter, a(x), b(x) € C(2) are positive weight functions with
compact support in €, and §(x), p(x), g(x) € C(2) satisfy certain
hypotheses (Ap) and (A1). We apply the Nehari manifold approach
and some new techniques to establish the multiplicity of positive
solutions for problem (P;).

—Apot = a0)|ul92u(x) +

P2 u>20 in 2,

u=20 on 0%2.

AMS SUBJECT
CLASSIFICATIONS
35J20; 35J60; 35J70; 47J10

1. Introduction

The aim of this paper is to study the following inhomogeneous equation

Ab(x
—Apwt = a(x)|u|12u(x) + usgx)) n<,
P Yu=o0 in ,
u=20 on 0%2.

Here, operator A,yu := div(|VulP®=2Vy) is the p(x)-Laplacian, p(x) is a nonconstant
continuous function, 2 is a bounded domain in RN (N > 2) with C?>-boundary, A is a
positive parameter, a(x), b(x) € C(Q) are positive weight functions with compact support
in Q, and 8(x), p(x), q(x) € C(RQ) satisfy the following conditions

(Ag) 0 <1—48(x) <px) <qx) <p*(x);
(A1) 0<1-86"<1-6T<p  <pt <q <q".
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Here, p*(x) := Np(x)/(N — p(x)),8" := esssup §(x), 5~ := essinf §(x), and analo-
gous definitions hold for p~, p*, 4™, and q*.

Partial differential equations with variable exponents are very interesting and active top-
ics. The motivation for this type of problems was stimulated by their various applications in
physics — for more details, see [1,2], and in particular the book by Radulescu-Repovs [3],
and the references therein.

Before stating our main result, we review the key literature concerning singular partial
differential equations with variable exponents. Zhang [4] proved the existence of solutions
for the purely singular problem. Using variational methods, Saoudi [5] proved the existence
of a superlinear singular equation with variable exponent. Fan [6] investigated the multi-
plicity of solutions using topological methods. In [7,8], variational methods were used to
establish the multiplicity of solutions for singular problems with Dirichlet and Neumann
conditions, respectively (see also [9]).

The case when p is constant in problem (P;) has received more attention and has been
approached by different techniques. For a more general presentation, we refer to [10-16]
and the references therein.

Some interesting papers on the applications of the Nehari manifold method in a variable
exponent problem have recently been published (see, e.g. [17-19]). In the present paper, we
generalize the results of Giacomoni et al. [14] and Saoudi [15] to the problem with variable
exponent, by using topological methods. Here is the main result of this paper.

Theorem 1.1: Suppose that conditions (Ag) and (A1) are fulfilled. Then there exists Lo > 0
such that for every A € (0, L), problem (P;) has at least two positive solutions.

This paper is organized as follows. In Section 2, we briefly review the properties of gener-
alized Lebesgue-Sobolev spaces. In Section 3, we prove the necessary lemmas. In Section 4,
we prove the existence of a minimum for the functional energy E; in A" In Section 5, we
prove the existence of a minimum for the functional energy E; in N/, . Finally, in Section 6,
we present the proof of our main result.

2. Generalized Lebesgue-Sobolev spaces

In this section, we recall definitions of functional spaces with variable exponents and prop-
erties of the p(x)-Laplacian operator which will be used later (for more on this topics, see
[3], and for other additional information, see [20]). Let

POQ) = {u €S(Q): / lu(x) [PY dx < oo} ,
Q

with the norm

u(x) p(x)

A

Q

Then (I?)(Q), |- 1p()) isa reflexive, uniform convex Banach, separable space - for details,
see [3,21].
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The variable exponent Sobolev space
W@ = fue r9@) : |Vul e O],
can be equipped with the norm
lull = |ulpcy + [Vulp), forallu e WO ().

Note that W, 7 () is the closure of C3°(€2) in W) ().
We denote by LI®(Q) the conjugate space of LP™) (), where q(—lx) +-L =1.Forue

P~
LP®(Q) and v € LI®(Q), the Holder-type inequality

'/ u(x)v(x) dx
Q

holds. Recall the following result.

1 1
=< (p__ + q__) |u|p(x)|vlq(x) (1)

Lemma 2.1: Consider the mapping pp(x) : LPY(Q) — R defined by

Pp(x)(U) = /Q lulP® dx,

where (1), u € LP®(Q), and pt < 00. Then the following relations hold

- +

lullgper > 1= [l oy < opoo @) <l 2)
N _

lullper < 125 [l < peo@) <l 3)

lun — ullpey — 0 if and only if pp(x) (uy — u) — 0. (4)

We state the Sobolev embedding theorem.

Theorem 2.1 (see [22,23]): Let p € C(Q) with p(x) > 1 for each x € Q where Q c RN
is an open bounded domain with Lipschitz boundary and suppose that p(x) < r(x) < p*(x)
and r € C(S_Z),for all x € Q. Then the embedding WhP®(Q) < L'™(Q) is continuous.
Also, if r(x) < p*(x) almost everywhere in Q, then this embedding is compact.

Let p(x,s) be a Carathéodory function satisfying the following condition
lp(x,s)| <A foraexe Q andallse [—sy,s0], (5)
where sop > 0 and A is a constant. Recall the following comparison principle.

Lemma 2.2 ([24, Lemma 2.3]): Let p(x,t) be a function satisfying (5) and increasing in t.
Let u,v € WO (Q) satisfy

—DApu+ pu) < —Apv+ p(x,v), forall x € Q,

and assume that u < von 0Q2. Then u < vin Q.
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Next, we recall the following strong maximum principle.

Theorem 2.2 ([7, Theorem 3.2]): Suppose that for some 0 <o < 1, u,v € Ch(Q) we
have 0 S u, 0 < v, and

A A
— Apyu — @ = h(x) > g(x) = —Ap)v — 5@ (6)

withu = v = 0 on 0$2, where g, h € L>(S2) are such that 0 < g < h pointwise everywhere
in Q. Assume that

ou v
—>0 —>0 ondQ, (7)
on on
where n is the inward unit normal on 9S2. Then the following strong comparison principle
holds:

d(u—v) -

u>v in, andthereisa positivee such that >e¢ ondQ. (8)

We shall now prove the following result.

Theorem 2.3: Suppose that the domain Q has the cone property and consider p €
C(RQ). Assume that b € L¥®, b_(x) >0forxeQ, ac C(Q)anda™ > 1, o, <aplx) <
@y (5o T aeg = 1> 8 € C(Q), and

a(x) —1 —
0<1—-46kx) < Wp (x), forallx e Q. 9)

Then the embedding W"*® (Q) — L;(_x‘;(x)(Q) is compact. Moreover, there is a constant
c2 > 0 such that the following inequality holds

/ b ul' 0% dx < & (|ful|*° + [Jul* 0. (10)
Q

Proof: The proof of the first assertion is adopted from [6]. Let u € W @) () and

o (x)

200 — 1786 =@~ 5).

r(x) =

Hence, (9) implies that r(x) < p*(x). Therefore, using Theorem (2.1), we obtain
WhP®(Q) s L'™(Q). So, for u € WM (Q), we get |u|' 0™ e L%®(Q). By (1),

|u|1—8(x)

/ b(x)|ul' 7P dx < ¢1]blaco < 0.
Q

This means that W™ (Q) ¢ LI=3@(Q).
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On the other hand, if u, — 0 weakly in WLr™) (), then we have that u, — 0
strongly in L'® (Q). Therefore,

Jun| 70| = 0,

/bmwwém&fqmm>
Q

hence |ut,]1—s(x),bx) — 0 and we can conclude that
1-§
WI)P(X)(Q) s Lb(x)(X)(Q)
Next, we shall prove inequality (10). First, we have from above

|u|1—5(x)

[ b & < alblacy <o,
Q

Sincel —8~ <1—8(x) <1—38%and |u/'*® < |u|'=%" + [u|'~", we obtain
/ b(x)u 0@ dx < / b(x)ul 70 dx+/ b(x)|u)' " dx.
Q Q Q

On the other hand, using (1), (2), (3), (4), and condition p(x) < (1 — &7 )ag(x) < (1 —
§M)ap(x) < p*(x), we get

LM@M“VMSQMWnW*@ o = C2lblae sy = csllull™
(11)
In the same way, one gets
[ b= dx < calul' =" (12)
Q
Hence, using (11) and (12), we have
b < sl 0+ 1)
Q
which completes the proof of Theorem 2.3. |

Theorem 2.4: Let p € C(Q), suppose the boundary of domain Q has the cone property and
let u € WYX (Q). Then there exist nonnegative constants cg, 7, s, ¢9 > 0 such that the
following inequalities hold:

+ .
/Mwmmm<{qu1WW>L
i <

rllull®if [lull <1,

/me4mm<{mwﬂfiMW>L
i <

1-8T .
Col[ul] if [lu]| < 1.

Proof: Theorem 2.4 follows immediately by Mashiyev et al. [17, Theorem 2.3] and
Theorem 2.3. |
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3. Some necessary lemmas

Let us define the functional E;, : Wol’p ) (2) > Rby

p(x) q(x) +)1-3(x)
at [ 1V dx_/ a(x)|u dx_k/ b
Q Q

E —
A () () 1—8(x)

Definition 3.1: We say that u € Wé P (€2) is a generalized solution of the equation

_ *b(x)
= Apeo = a@ ™ Pul) + —5 (14)

if for all ¢ € C3°(2) and ess Kinf u > 0 for every compact set K C €,

fIVu|p(x)2VuV¢dx=/ a(x)|u|q<x>1¢dx+xf buWedx  (15)
Q Q Q
forall ¢ € CJ°(2).

Obviously, every weak solution of problem (P,) is also a generalized solution of
Equation (14).

In many problems, such as (Py), E, is not bounded below on Wé’P (X)(Q), but it is
bounded below on the corresponding Nehari manifold which is defined by

N = {u e WP (@) \ (0} : (B} (), u) = 0.
Then u € N, if and only if

Vulp® q(x) 1-5(x)
|Vl dx_/ a(x)|ul dx_A/ b(x)|ul d
Q Q

=0. (16)
Q px) q(x) 1—38(x)

We note that V;, contains every solution of problem (P;).
It is well known that the Nehari manifold is closely related to the behaviour of the func-
tions @, : [0,00) — R defined as &, (t) = E; (tu). Such maps are called fibre maps and

were introduced by Drabek-Pohozaev [25]. For u € WS’P (x)(Q) \ {0}, we define

tp(x) \V4 p(x) tq(X) b tl_s(x) 1-8(x)
q)u(t) = / i dx_ / &Ww(x) dx— )\’/ (x) |u| dx’
Q px) o qx) Q 1—8(x)

<1>;(t)=/QtP(X>—1|Vu|P(x>dx—/Qa(x)ﬂ(")—wuﬂ(") dx—A/Qb(x)t—W)|u|l—5(x> dx,

(1) = f (p(x) — D@2V P® dx — / a(x)(q(x) — 1)t1972)3|1®) dx
Q Q
+A/ b(x)8 (x)t 00 d,
Q

It is easy to see that tu € N if and only if @/ (f) = 0 and in particular, u € N; if and only
if ®/,(1) = 0. Thus it is natural to split \V; into three parts corresponding to local minima,
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local maxima and points of inflection defined as follows:
NF={ueN, ®l(1) >0} = {tu e W@ @)\ {0} : @/,(H) = 0, ®/(1) > o},
N = {ue N, : ®l(1) <0} = {tu e WP @)\ {0} : @/,(H) = 0, D(t) < o},
0 m(we N, : @/(1) =0} = {tu e W@ @)\ {0} : @/,(H) = 0, ®//(1) = o} .
Our first result is the following.

Lemma 3.1: E,_is coercive and bounded below on N,

Proof: Let u€ N, and ||u|| > 1. Then, using (2)-(4) and the embeddings from
Theorem 2.1, we estimate E; (1) as follows:

Vyulp® q() 1-5(x)
P i dx_/ a(x)|ul dx—k/ b()|ul
Q Q

p(x) q(x) 1—8(x)

11 1 1

> (———)/ |V 1P dx—k(———)/ b(x) | 70 dx
pt a7 ) Je 1-6% g7 ) Ja
11 - 1 1 +

> - _ Py - = 1-4 .

_(p+ q_)nuu C8(1_5+ q_)uun

Note that since 0 < §7 < 1and 1 — 8% < p~, it follows that E; (1) — o0 as ||u|| — oo.
Therefore, E; is coercive and bounded below. [ |

Lemma3.2: Letu be alocal minimizer for E; on subsets N, or i~ of N such thatu & N7.
Then u is a critical point of E;,.

Proof: Recall u is a local minimizer for E, under the constraint
I () = (B, (w), u) = 0. (17)

Hence, using the theory of Lagrange multipliers, we obtain the existence of u € R such
that

E; (u) = pli (u).
Therefore,
(B (), u) = T} (), 1) = /(1) = 0.
So, u ¢ N}, hence ®//(1) # 0. Consequently, i = 0. The proof of Lemma 3.2 is thus
complete. |

Lemma 3.3: There exists Ao such that for every 0 < L < Ao, we have ./\fki # W and N? =
{0}.
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Proof: First, by Lemma 3.2, we deduce that N, f are nonempty for A € (0,4). Now,
suppose that there exists u € N, ,{) such that ||u|| > 1. Using the definition of V] 0 we obtain

f |VuP® dx—/ a(x)|ul1® dx—)\/ b(x)|u' @ dx = 0.
Q Q Q
Combining the above equality with (17) and Theorem 2.3 in [17], we get
0= (I (u),u) = / p()|VulP™ dx — / a(x)q(x)|ul1 dx
Q Q
— A/ b(x)(1 — 8(x))|ul' ™ dx
Q

>p- / [VulP® dx — g* / a(x)|u|1™ dx
Q Q

—1-5hH (/ |Vu|p(x)dx—/ a(x)|u|q(x)dx>.
Q Q
>(p —(1 —3+))/ IVulP® dx + (1 —5+—q+)/ a(x)|ul1% dx.
Q Q

It now follows from Theorem 2.4 that
P~ — A =8NIullP +co(1 -8 — q+)||u||q+ >0,

hence

1
“4 8t -1\
lull = c1o (pl—_ —— q+> . (18)

In the same way, since u € N, we obtain
/ |V P dx—/ a(x)|u]1® dx—A/ b(x)|u' 0™ dx = 0
Q Q Q
and since u € N, )? , we have

p+/ |Vulp® dx—q—/ a(x)|u1® dx—/\(1—3+)/ b(x)|u|' 0™ dx > 0.
Q Q Q
Therefore,

p+/ |VuP® dx—q_/ a(x)|ul1™ dx
Q Q
—A1-=6h (/ |V ul[P® dx—k/ a(x)|ul1® dx) > 0.
Q Q

=@ - q+)/ IVulP® dx + r(qT + 8T — 1)/ b(x)|u) 0@ dx > 0.
Q Q
Now since [|u|| > 1, by Theorem 2.4, one has

P — gDl +cur(g™ + 8% — DIl = 0,
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and therefore,
1
TSt — 1\t
lull < e (x—q L ) . (19)
qr—p

Using (18) and (19),

1 1
. Aq+ +ot — 1\ et (P St —1\a >
11 —q+ —p 1057 o o+

we get

p~+st—1
cio (p~ + 8T —1\ 4t q+ +6T -1
pYPSLY (L B 9 7° ~ 7).
T 1—5+—q+ q+—p_
Then, if X is small enough,
p st -1
cio (P~ + ST —1\ q+ +8t—1
A=—(|——— - ),
e \1—6% —qg* qt—p~
we obtain ||u|| < 1, which is impossible. Therefore, N? = {0} for all A € (0, A¢). Hence,
this completes the proof of Lemma 3.3. |

4. Existence of minimizers on N}:"
In this section, we shall prove the existence of a minimum for the functional energy E, in

N, k+ . We shall also prove that this minimizer is a solution to problem (Py).

Theorem 4.1: There exists u; € N, satisfying

Ep(up) = inf E;(u),

L{G)L

forall A € (0, 1o).

Proof: Suppose that A € (0, 19). Now, E; is bounded below on N, and hence also on
N, ):F . Therefore, there exists a sequence {u,} C N, ;’ , satisfying E; (u,,) — inf N E; (u),
asn — 00.

Since E,, is coercive, {u,} is bounded in W&’P (x)(Q). Therefore, we can assume that

Uy — ug weakly in Wé’p ) (2) and by the compact embedding, we obtain
un =ty in Ly, f“‘)(sz)
and

wy =y in LI ().

Now, we shall show that u, — ug strongly in WS PC) (€2). First, we shall prove that

ianr E;(u) < 0.

ueN;
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Let ug € N, ;“ . Then ¢,, (1) > 0 which gives

p+/ |Vup® dx—q_/ a(x)|u|‘1<x>dx—,\(1—3+)/ b()|ul' @ dx > 0. (20)
Q Q Q

Moreover, by the definition of the functional energy E,, we can write

A

1 1
Ey(u) < —/ |V P dx——/ a(x)|ul1% dx — /b(x)|u|1—5(x> dx. (21)
P Ja 9" Ja 1-3% Jo

Now, we multiply (17) by (—(1 — §T)) and get
—(1- 5+)/ [VulP® dx + (1 — 5+)/ a(x)|u]1® dx
Q Q
+a(1—68") / b(x)|u' 0™ dx = 0.
Q

Invoking the above equality and (20), one gets

T+t -1
/ a(x)|u)1® dx < L/ |Vulf® dx.
Q g+t —1Jq

On the other hand, from (17) and (21), we obtain

1 1 1 1
_ _ PO 4y — (— — q(x)
B0 = (- 1_(5+>/9|Vu| d = (- 1_5+)/Q“(x)'”' dx.
Then, by (22) and (23), we get
- + _ + B
Ek(u)<_(p +37—1)(@q" —p )Hu”p -0

pqt(1—3%)
Now, let us assume that u,, - ug strongly in Wé’p(") (). Then
/ [Vug |P(x) dx < lim inf/ |V, |p(x) dx.
Q n—oo Jo

Using the compactness of embeddings, we obtain

/ a(x)ul® dx = lim inf f beoul™ dx,
Q n—0o0 Q

n—oo

/ b(x)u(l)_(s(x) dx = hm lnf/ a(x)u:l*(s(x) d.x
& Q

Now, by (17) and Theorem 2.3 in [17], one has

(22)

(23)

1 1 1 1
_ _ p(x) _ 1-8(x)
E(u,) > (p_ qu)/QIVM,,I * dx+k<q+ 1_(SJF)/Qb(x)W,,l *) dx.
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Passing to the limit when 7 goes to co, we obtain

1 1
lim Ej (u,) > (— — —) lim / [V, P9 dx
n—oo pi Q

q+ n—>00

1 1 - 1-8(x)
+k<q—+— 1_8+)nli)ngofﬂb(x)|un| dx.

Hence, using Theorem 2.3 in [17], we get

1 1 - 1 1 - N
. - 4 - 1-§ 1-6
inf By () > (p q+> luol [P + dcs (q+ 1_5+) (luol '™ + [uol'™")

>0

sincep” > 1—8T > 1— 8 and||up|| > 1, which gives a contradiction. Therefore, u,, —
up strongly in Wé’p (X)(Q) and Ej(up) = inf, N E; (). This completes the proof of
Theorem 4.1. u

5. Existence of minimizers on NV~
In this section, we shall prove the existence of a minimum for the functional energy E, in

N, 5_- We shall also prove that this minimizer is a solution to problem (P;).

Theorem 5.1: There exists v, € N, 5 such that

Ex(vp) = inf Ex(v),

veN,

forall & € (0, Ap).
Proof: Suppose that A € (0, A¢). Since E, is bounded below on N hence also on NV, .
Therefore, there exists a sequence {v,} C N, 5 > satisfying E; (v,) — inf N E; (u), as

n — 00. Since E,, is coercive, {v,} is bounded in WS’P (x)(Q).

Therefore, we can assume that v, — vy weakly in Wé’p () (2) and by the compact
embedding, we get

Yy = Vp In L;(_x?(x)(ﬂ)
and
Vo — o in L19().

a(x)

Now, we shall show v,, — v strongly in Wé P (€2). First, we shall prove that

inf_ E;,(v) > 0.

veN,

Let vo € N, . Then we have from (17),

/|Vu|P(x)dx—/ a(x)|u|q(x)dx—k/ b(x)|u)' 0@ dx = 0. (24)
Q Q Q
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Moreover, by the definition of the functional energy E,, we can write

1 1
Ey(v) > —/ |VyP® dx — —f a(x)|v|1% dx — / b(o)v|' 0™ dx. (25)
p_ Q q+ Q 1— Q

Hence, from (24) and (25), one has

5t

1 A
Ey(v) > —/ |VyP® dx — /b(x)|v|1—5<x>dx
r~Ja 1-6% Jg

1
</ |Vy[P® dx—,\f b(x)|v|'0® dx)
Q Q

q+

1 1 1 1

Lt vy P ro v / 1-5(0)
2(1) q*)fg' " dx+<q+ 1—8+> szb(x)M &

11 . 1 1 .

. 4 - 1-§
z(p_ q+>||v|| +ng<q+ 1_5+)||v||

1 1 1 1 -

Z T +Acs pr vl

sincep” > 1—48%.
Hence, if we choose
(1=~ —q")

= cgpt (1 — 8+ — q+)’

we obtain E, (v) > 0. Moreover, since N;r N NA_ = P and infveN;r E;.(v) < 0, we see that

veN, .
In the same way, if vo € N, , there exists £ satisfying tovg € N, 5 and so E, (tovo) <

E, (v9). Moreover, since

I(v) = / PO VyP™ dx — / a(x)q(x)|v]1® dx — A / b(x)(1 — 8(x))|v|'°™ dx,
Q Q Q

we get
I,/\(l‘ovo)=/p(x)IVtov0|P(x)dx—/ a(x)q(x)|tgvo 1™ dx
Q Q

— ,\f b(x) (1 — 8(x)) [tovo|' @ dx
Q
<& p* / Vvl dx — 1] g / a(x)|vo|1™ dx
Q Q
— a1 —sh™ / b(x)|vo|' ™ dx,
Q
since 1 — 8% < p™ < g™. By the conditions on a and b, it follows that I} (fyv) < 0, so by

definition NV, 5 tovo € N, e
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Now, let us assume that v, - v strongly in Wé’p @ (£2). Using the fact that

/ [V P™® dx < lim inf/ Vv P9 dx
Q n—oo [o

one gets
X | 0 [P 14(x) =8 1y 1-8(x)
EA(tVO)S/ %dx—/ —|V0|q(x)dx—k/ ¢dx,
o P Q q(x) @ 1-6(
" < -8+
< lim —f |an|1’(’“>dx——f V)19 dx — / v 709 dic |
oo P Ja qt Ja 1-68% Jg
< lim Ey(tv,) < lim E)(v,) = inf E,(v),
n—oo n—00 —

veN,

which contradicts with the fact that tvg € N, , - Hence, v, — vg strongly in Wé PC) (2) and
E) (vo) = inf _ NS E; (v). This completes the proof of Theorem 5.1. |

6. Proof of Theorem 1.1

Proof: By Theorem 4.1 and Theorem 5.1, forall A € (0, Ao), there exist ug € N, )\+ ,v0 € N, 5
such that

Ey(uo) = inf E;(u)

ueN,
and

EA(Vo) = infﬁ E}L(V).

veN,

On the other hand, since E; (1) = E) (|ug|) and |ug| € Nf and in the same way, Ej (vo) =
E; (Jvo]) and |vg| € N, , we suppose that ug, vy > 0. Using Lemma 3.2, ug, vy are critical
points of E; on Wé’p ) (2) and thus weak solutions of (Py).

Finally, by the Harnack inequality and by Zhang-Liu [26], we obtain that ug, vy are
nonnegative solutions of (P,).

It remains to prove that the solutions we obtained for Theorem 4.1 and Theorem 5.1
are distinct. Indeed, since NV, . NN, f = (J, it follows that ug and vg are different. This

completes the proof of Theorem 1.1. |
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