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Abstract. The objective of this work is to investigate a nonlocal problem involving singular and critical nonlinearities:

(Wl ) N =A)u = +uri~! inQ,
u>0, ingQ,
u=0, imRV\Q,

where © is a bounded domain in RY with the smooth boundary 82,0 <s <1 < p <oo, N > sp, 1 <o < pi¥/p, with

pi= NNT’;”, (—A)Sp is the nonlocal p-Laplace operator and [u];, ,, is the Gagliardo p-seminorm. We combine some variational

techniques with a truncation argument in order to show the existence and the multiplicity of positive solutions to the above
problem.

Keywords: Kirchhoff problem, nonlocal operator, variational methods, singular nonlinearity, multiplicity results

1. Introduction
In this paper, we shall consider the following singular critical nonlocal problem:

(]l ) (=A)u = L +ur~! inQ,
u>0, in&, (1.1)
u=0, inRV\Q,
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where  is a bounded domain in RV with a smooth boundary Q2,0 <s <1 < p < oo, N > sp,
l <o < pl/p, pl= NIX ’; - », is a nonlocal operator defined by

|u(x) —u(IP 7 wx) - u) 4

|N+Ps

(—A)u(x) = 21lim

y, x €,
=0 Jo\B. (x) lx —

where B.(x) :={y € Q : |[x — y| < €}, and [uly,, is the Gagliardo p-seminorm given by

lu(x) —u(y)|”
b //R Tr e

Problems of this type describe diffusion processes in heterogeneous or complex medium (anomalous
diffusion) due to random displacements executed by jumpers that are able to walk to neighbouring
nearby sites. These problems are also due to excursions to remote sites by way of Lévy flights, they can
be used in modelling turbulence, chaotic dynamics, plasma physics and financial dynamics. For more
details, see [1,6] and references therein.

For p = 2, problem (1.1) has been investigated by many authors in order to show the existence and
the multiplicity of solutions. For further details, one can refer the reader to [8,9,11,17-22,29] and the
references therein.

For s = 1, the local setting case has been extensively investigated in the recent past. The existence,
the uniqueness, the multiplicity of weak solutions and regularity of solutions have been studied in [5,7,
10,13-16,26,28,30,32] and the references therein.

Motivated by the previous results, and the work of FISCELLA [11], who established the existence
and the multiplicity of positive solutions using some variational methods combined with an appropriate
truncation. The aim of this work is to extend the multiplicity results to a more general non-local problem.
More precisely, we shall establish the following result.

Theorem 1.1. Suppose that the parameters in problem (1.1) satisfy the following two conditions
O<l—-y<l<po<pl and 1<o0 <pl/p.

Then there exists a parameter kg > 0 such that for every A € (0, Ay), problem (1.1) has at least two
positive solutions.
2. Preliminaries

This section is devoted to basic definitions, notations, and function spaces that will be used in the
forthcoming sections. For the other background material we refer the reader to [24,27]. We begin by
defining the fractional Sobolev space

WP (RY) := {u € LP(R") : u measurable, |ul, , < oo},

with the Gagliardo norm

1
leelly, p = (lleellh + 1uel? )7
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Denote
Q: =R\ ((RY\ Q) x (RV\ Q))

and define the space

lu(x) —u(y)|”

X := Ju : RY — R Lebesgue measurable : u |qe L”(Q) and
|)C _ y|N+SP

€ L”(Q)}
with the norm

_ 1/p
lu(x) —u(y)|” dxdy) ‘

luellx = llullLr@) + ( o |x — y|Ve

Throughout this paper, we shall consider the space
Xo = {u eX:u =Oa.e.inR”\Q},

with the norm

o u) —u|? r
| := (/;mdxdy>

and the scalar product

. lu(x) — u(P2w(x) = u(y)(ex) — ()
(u, p)x, = dx dy.
RZN

X — y|Vtp
We define a weak solution to problem (1.1) as follows:

Definition 2.1. We say that u € X is a weak solution of problem (1.1) if for all ¢ € X, one has

(1) // 1) —u W@ 1)@ =) 4

|x — y[V+ps
=x/(u+)‘y¢dx+f(u+)”?“<pdx. 2.1)
Q Q

In order to find solutions of problem (1.1), we shall use the variational approach. More precisely, we
shall find two distinct critical points of the energy functional J; : X — (—00, oo] defined by

1 A - 1
. po __ + 14 _ +\Ps
J(u) = P [luel] T SZ(u ) dx _p;k/g(u )™ dux. (2.2)

Now, we prove the following result.
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Lemma 2.1. There exist p € (0, 1], A; and o« > 0 such that for every A € (0, L], we have
Si(u) Za forallu € Xowith ||u|| = p.
Moreover; the following holds
my = inf{J,\(u) Tu € Ep} <0,
where Bp ={u € Xo: |lu|l < p}.

Proof. Let & > 0. Then by virtue of the Holder inequality and the Sobolev embedding theorem, we get
for any u € X

—1
/”l_ydx Q1
Q

< Cllu|'7.

So from the Sobolev embedding, we obtain

1 A 1 \
J ) = —|Jul|P’ — —— MWM—T/JAM
po 1_ Q ps

1 C)\, C] *
6 1-
z —lull” — ——lull ™" = —lull™

1 —

- ||u||1—V( (lull) - %)

where () = —-177~ e — %tp§_1+y. Since 1 —y < 1 < po < p*, wefind p € (0, 1) sufficiently
small and satisfying ‘

N

ggwn=wm. (2.3)
Put
_ @ =py)e(p)
AL_——3E——. (2.4)

Thus, for all u € Xy with ||u|| = p and all A < A{, one has

Cp'~7 Cp'~7
P on - "3 =a>o.
-v l—y

Jr(u) =
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Moreover, since 1 —y < 1 < po < p¥, it follows that for u € X, with u™ = 0 and for ¢ € (0, 1)
sufficiently small, one has

po AtlY

t t _ 1P .
J(tu) = —|lu|" — f (u)™ dx — / (" Ju?* dx
po l—yJa J

< 0. 0

Lemma 2.2. For every A € (0, A1], problem (1.1) has a positive solution u; € X with J, (u;) < O.

Proof. Let p and A; be the constants given respectively by (2.3) and (2.4). Let {u;} C Ep be a minimiz-
ing sequence for m;, i.e.

lim J, (uy) = m;.
k—o00
As {u;} is bounded, for any 1 < r < p}, one has

up — u; weakly in Xy,
up — u; weakly in LP?(Q),

. (2.5)
up — u, strongly in L"(€2),
Uy — u; a.e.in .

By the Holder inequality, we get for all integers k,
/(u,:r)l_y dx —f(uf)l_y dx </ ) — u |7 dx
Q Q Q
p=lty _
<@L ) = wlll, (2.6)

Combining (2.5) and (2.6), we obtain

lim / (uf)' ™" dx = / ()™ dx. 2.7)
Q Q

k—o00

Put u; := u; — u,. Then, by invoking the Brezis—Lieb Lemma [4], we obtain
. ~ . Py ~ Py Py
im flugll” = uxll” = luall”  and  Tm flugll s — Nell e = luall (2.8)
k—00 k—00 s s $

Since {u;} C Ep, it follows that (2.8) implies that for k large enough, u; € Ep. So, from Lemma 2.1,
we deduce that for all u € X with ||u|| = p,

1 1 .
—|u||?? — —/ uPsdx > a > 0,
Q

po Dy
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that is, if p < 1 and £ is large enough,
| U | ~p
— Nuxll” = — | u* dx >0, (2.9)
po Ps Ja

since {u;} is a minimizing sequence. Hence, by combining (2.7)—(2.9), we obtain for k large enough,
m; = Jy(ug) + o(1)

| A - - 1 ~ *
= — i + " — —— | (@ +u)t) T dx - — / (Gix +uz) )" dx 4 o(1)
po Q Py Jao

l—vy
1 1 A 1y
> —|luell”” + — sl — —— | (uf dx
p 1—y sz( 2
1 * 1/ *
~4\ Ps +\Ps
- — u - — u dx + o(1)
@ - [

| U 1 i\ P
2 L) + — ™ — — / @)™ + o(1)
po Ps Ja

2 Ji(up) + o(1)
=

n,,

Hence, J, (1)) = m; < 0.

Now, let us prove that u; is a positive solution to problem (1.1). Our proof uses similar techniques as
[12]. Consider ¢ € Xgand 0 < € < 1. Let ¥ € X be defined by W := (u; + €¢)™* with (uy + €¢)™ :=
max{u, + €¢, 0}. Let Q. := {u; + e < 0} and Q€ := {u, + €¢p < 0}. Put O, := Q. x Q.. Since u, is
a local minimizer for J,, replacing ¢ with W in (2.1), one gets

0< ([u:2,)”

» //’ |, (x) — (NP7 () — (M) F X)) = ¥ () dx dy
R2N

|x _ y|N+ps

- x/ (uF) 7 dx - / ()" d
Q Q

= ([”K]ﬁp)a_l

// |us (x) — u (V)P w5, (x) — w3, () (5, + €)(x) — (us + €9)(¥))
X dx dy
RZN

|x — y[V+rs

- / ()7 s + ) + (ui)pj*l(uk +€¢)) dx
{(r,y)€Qe x ¢}

= ([M)»]f,p)a_l

// | (x) — 1w, (|72 (i (x) — w,(0) (uy, + €9)(x) — (uy + €9) (1))
X dxdy
R2N

|x — y|Ntps
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-y pi—1
) ok e+ () s+ ) o
Q

= ([”)»]sp,p)g_l
// |1, (x) — D72 (W (x) — un (V) (w5, + €9)(x) — (s + €h)(¥)) dx dy
R2N

lx — y[V+rs

X
— / () 7 5 + €d) + ()" (uy + €)) dx
{(x,y)€0¢}
— ([ux]gp)"‘lnuxup — A/ (u)) dx — A/ (u;)”? dx
Q Q

- [ ) o ) ran

— -2 _ -
+e([uk]§p)“‘1f iy (x) — ()P 2 (5 (x) — 1w, (7)) (¢ (x) ¢(y))dxdy

lx — y|V+p

— (wa12,)"""

/ | () = (P72 (a (x) — u, () (5 + €9) (x) — (w5 + €9)())
X dxdy
{(x.y)€O}

|x _ y|N+ps

- / (M) 7 i+ €) + ()5 (s + e4)) dx
{(x,»)€0¢}

— -2 . B
:f([ux]f,p)a_l/ () = L IFEE) — D@ = 90D ;4
R2N

|x — y|V+p

—e [ () 7o+ () o)

— ([u12,)""
/ 1 () — 1 (P2 (0) =, (1) (s + €9)(x) = (u + €9) ()
* dx dy
{(x,y)€0¢} |x — y|N+ps

- / (1) 7 € + ()" (s + e4)) dx
{(x,y)€Oc}

— -2 _ B
ge([uk]gp)a—lf s () — ;)P (s (x) — u; () (P (x) — d(y)) dxdy
RZN

lx — y[V+p
e [0 7o+ () g) e
Q

— (lw:12,)""

/ | (x) — (I ( (x) — w0, (0) ((u + €9) (x) — (x + €9)(y))
X dx dy,
{(x,y)€O¢}

|x _ y|N+ps
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since the measure 2, goes to zero as € — 0. We deduce that,

» o1 | (x) = 1, (DIP > (a (x) = 1, () (. + €9)(x) — (ux + €9)(¥)) drd
([uk]s,p) \/{(xﬁy)egg} |x _ y|N+PS y

— 0.

as € — 01. We divide by ¢ and passing to the limit as € — 0™, one has

([uxlé’,p)‘”/ |5,(x) — w72 (x) — u, () (@ (x) — P(»)) dx dy

R2N |x — y|Nes
_ /Q () 7+ ()" ') dx > 0.

The equality holds if we change ¢ by —¢. So we deduce that u, is a nonnegative solution of problem
1.n. O

3. A perturbed problem
Since J; is not Fréchet differentiable due to the singular term, we cannot apply the usual variational

theory to the functional energy. Therefore, in order to establish the existence of a second solution, we
introduce the following perturbed problem

([lf) ™ (= A)yu = Gy £ @D in g, G.1)
u=0, inRV\Q.

Associated to problem (3.1), we consider the functional J, ; : Xg — R defined by

1 A N7 1\ 1 ,
Juo () == —|ul|?’ — —— ((u+ + —) — (—) )dx —— | (u*)™ dx.
po =y Ja n n riJa

It is clear that J,, ; is Fréchet differentiable, and for all ¢ € X, we have

(7, @), @) = lull?” >, @) — A / - /Q ()" . (3.2)

o (ut + H-r

Lemma 3.1. Let p € (0, 1], Ay and o be the constants given by Lemma 2.1. Then for any A € (0, A{],
one has

Do) =,  forallu € X with |lu| < p.

Moreover; there exists e € X, with |le|| > p and J, ;(e) < 0.
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Proof. Since (u™ + 1)'™" — (1) < (u™)'77, we have
Jn,)\(u) > Jk(u)

Therefore, Lemma 2.1 implies that the first part of Lemma 3.1 has been proved.
Now, let u € X, with ut # 0. Then for any 7 > 0, we have

i T N\ ¥ :
T (1) = — " - f ((“ " _) B <_> ) o f (u*)™ dx.
p -y Jo n n Pt Ja

Since 1 —y < 1 < po < pj, it follows that J, ,(fu) — —ooast — o0o. Hence, the second part of
Lemma 3.1 is proved. [

Now, put

( 1 1 ) No
C}» = - - Spsn—N(rr—I)
po pg

1 1 - pnl:l}tl—y 1 1 py=l+y _l-y po—1I+y
— <_ — _> [A(— + _*)|Q| ST } (3.3)
po p? 1—- 14 Dy

We show the following useful result.

Lemma 3.2. The functional J, ; satisfies the (PS) condition at any level ¢ € R such that c < C,_for any
A > 0.

Proof. Let {u;} C X( be a (PS) minimizing sequence for the functional J,, ; at level ¢ € R, that is

Jup(uy) = ¢ and Jy () - 0 ask — oo. 3.4)

Then by the Sobolev embedding and the Holder inequality, there exist € > 0 and C > 0 satisfying

1
¢+ €llugll +o(l) = Jun — ; < Jy 5 ), ug >

N

11 i 11 -~
) [ [T ey (e Iy LT
po ps 1_y ps Q

11 1 1 Ay -
> (_ - _)Iluku"“ - AC<— + —*)Im A ]

po  pi l—y  p;
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Since 1 —y < 1 < po < pj, it follows that {u;} is bounded. Moreover, {u, } is bounded in X,. So from
(3.4), we deduce that

lim < J/, (up), up == lim [lug |70 < uy, —u; > .
k—o00 ’ k— 00
On the other hand, by an elementary inequality

@—bya —b")<—(a—b")’

we have
_ -2 _ - _ oy
0<// lu(x) —u(y)[P~=(u(x) M(y?)(u (x) —u (y))dxdy
R2N |x — y|N+ps
lu(x) —uWIP2 @™ (x) —u~(y)*
< - //RZN Xy dx dy. (3.5)

From (3.5), we have ||u; || — O as k tends to infinity. Hence, for k large enough, we have
Joa(uw) = Jus(uf) +o() and Ty, () = J; 5 () + o(D),
i.e., we can assume that {u;} is a sequence of nonnegative functions.

Now, since {u} is bounded, up to a subsequence and using [2,31], there exist {u;} C Xo, u in X, and
nonnegative numbers /, u such that

up — u weakly in Xo,
up — u  weakly in L7 (Q),

3.6
up — u strongly in L1(Q2) for g € [1, p}), G0
Uy — u a.e.in 2,
and
luell — w, 3.7)

lue —ullpr — l.
Moreover, for a fixed g € [1, p}), there is h € L9(£2) such that
u<h ae.inQQ.

It is easy to see that if & = 0, then u; — 0 in X,. So let us assume that i > 0. It follows from the above
assertion that

U —u

STl <wr(n )
ot | ST OED
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Therefore, the dominated convergence theorem implies that

lim / u dx =0
k—oo Jo (ux + ;)V
Hence, the Bresis-Lieb Lemma [4] yields
lull” = llux — ull” + [u]l” + o(1) and IIMkllﬁ} = |lux — ullﬁ} + IIMIIZ} + o(1).
Now, using (3.8) and (3.9), we can deduce that:
o) =< J,, (wi), up —u >
U —u

R e
o (up + )7

*—1
dx—/u,fs (uy —u)dx
Q
-1 Py 24
= 1P (g ll? = Naell”) = Noagll s =+ lluell 3z + o (1)
= wP " Vg — ull? = Nl — ulls 4 o(1).

Therefore,

.
uP D Nim fug — ul)? = lim [lu — ul?: = 1.
k— o0 k— o0

K

Since u > 0, if / = 0, we obtain that u; — u in X, and the proof is complete.

135

(3.8)

(3.9

(3.10)

Now, let us prove that [ = 0. Proceeding by contradiction, suppose that / > 0. Then from (3.10) and

the Sobolev embedding, we get
S/Lp("_l)lf’ <17,

that is,
[P > S,UJ’("_I).

On the other hand, by combining (3.9) and (3.10), we obtain
pPOO (P = ful?) =177,

that is,

(c=1)

poe-b N—ps
L= (P —Jlul?) ™.
So using (3.12), we get

PPF=p)e=1) (N=ps)(pE—p)

PP — w o ('up _ ||u||p) Np > S,up(g_l)lp.

(3.11)

(3.12)
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We deduce that

p2s (N*PS)(P;‘*P) N—ps

Pz (wf = ful?) T = STy

Since 1 <o < %;F, it follows that pso — N(o — 1) > 0. So

/’Lp > Spsd—x(rr—l)_ (313)

Now, the fact that (1t + %)1*” — (%)1*?’ < (u*)'~7 implies that for all integers k and n we have

1 , 1 1 o 1 1 -y
o) — — < ), ue =2 | — — — el = A —— + — u dx.
py ’ po  p; l—y pi/)Ja
So from (3.9), (3.13), the Holder inequality and the Young inequality, if k tends to infinity, we get
pi-l+y

1 1 1 ottt A ©
> (— - _*)(u”” + lull?7) — A<— + —*)Im RS '
po  pi l—y

1 1 1 1
2 — — — (W + llull” —<———>||M|lp(r
(po p;")( ) po
I s __po__
1 1 po—1+y 1 1 pi—l+y 1=y |po-THy
= - = AM—+—IQ » S 7
po py =y

1 1 No 1 1\~ prrl:la—y 1 1 ps—l+y -y [mﬁ,ﬂ/
2 - SpsafN(ofl) — - )\‘ - + _ |Q| Py S P
po pg po . p; l—y

=C;,

which is a contradiction. [

4. Existence of an upper bound

Under some suitable condition, we shall prove that J, ; is bounded from above. To this end, we can
assume without loss of generality, that 0 € Q and we fix r > 0 such that By, C Q where By, := {x €
RY :|x| < 4r}. Lete > 0 and . be the function defined by

U
Ver= Uy, @D

where U, is the family of functions (for more details see [25]) and ¢ € C*®°(RY, [0, 1]) is satisfying

1 in B,,

=10 nRM\B,,
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Lemma 4.1. There exist ., > 0 and Y € E satisfying

sup J,.,.(ty) < G,

t>0

Sforall ) € (0, Ay).

Proof. Let € > 0 and let u, and v, be as above. Since
0<1-y < po <pl

it is easy to see that
Jur(tYe) — —00 ast — oo.

Thus, there exists 7. > 0 satisfying

Jn,k(te V) = max Jn,k(“ﬁe)-
t>0

From Lemma 2.1, we get J,,, > o« > 0. So since the functional J, ; is continuous, we deduce the
existence of two values fy, t* > 0 satisfying

fo<te<ty, and J,,(toe) = Ju (1) =0.

On the other hand, since ||u.|| ,+ is independent from e, it follows from [23] that

ffRZN luG)—u)|? dx dy

=y V7S

N—ps
=S+ 0(er 7).
lpucl?; (e)

1Well” <

In fact, foranya > 0,b € [0, 1], p > 1,
(a+b)? <a’ + pla+ 1) 'b.
We obtain for € small enough,
Nops\\o N-ps
[Well?® < (S+0(e 7)) <74 0(erT).
Hence, for any € > 0 sufficiently small, and using the fact that 7, < 7, < #; and || ||?"® = 1, we obtain

tre i A I\ 1\ 17
Jn,)\(tewe) < (6—50 - ) - ((towe + _) - <—> )dx
op ps -y Ja n n

N—ps

+0(7), 42)
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Since

1Pe 1P 1 1 pto
max( — S — =(— - —)sw, (4.3)
>0 \op ps op  py

it follows by (4.2) and (4.3) that

1 1 l’}kf" )\’ 1 l—y 1 l_y
Jn,A(IGWE) < <_ — —*>Sp§1’° - ((lolﬁg + —> — (-) )dx
op  p; -y Ja n n

+o(er ). 4.4)

In addition, for any a > 0, b > 0 large enough,

e €p=D

(a+b)¥ —a® >ebra 7

We can now deduce that for all g > 0 small enough, we can establish the existence of ¢; > 0 satisfying

NN o\
J{lwer ) =) )e
Q n n
rd=y)

(N=ps)(1=y) 1 S
Zc(l—y)e » / — = > dx
xeQ:|x|<Le ( 1 ) P

|x\P/+eP/

(N=ps)(1=y)—p(p—1)g(N—ps)(1—y)+pigN

> ei(1 - p)e

Combining this with (4.4), we get

1 1 pso (N=p$)(1=y)=p(p=Dg(N=p)(1=Y)+pfqN N—ps
* £3
Jn,k(tewe) S| — ——)§57 — Ace Ps + O(e p—1 )
op p§
1 1 Jl:&kﬁ (N*m)(1*y)fp(pfl)z(prS)(lfy)er}qu N—ps
< _op — E Srs-re — dcr€ v + cpe P T, 4.5)
N

for some pclgitive constant c,. _
Now, let A > 0 be such that C; > 0 for all A € (0, 1), where C, is given by (3.3) and let us set

p(p—Do((N —ps)(1 —y) — p(p—1)g(N — ps)(1 —y) + piqN)
pi(po — 1+ y)(N — ps)

Bi=1+

1—-y po

1 1\ po-ity 1 1 pi=lty oy | po-THy
9::(———) (—+—)|s2| ST :
po  p¥ lL—y  p§
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and

1
o~ woetin@W-py fca+O\P
Ay i=mini A, r P4 , ,
C1

where r > 0 is such that By, C Q and g > Ois such that 8 < 0.
Now, for A € (0, Ay), if we choose

p(p—ho
€ ;= \s—T+y)(N=ps)

in (4.5). Then using the fact that arf > clkf > ¢, + 0, we obtain

11\ i oo e
Jna(teYe) S| — — — ) SPr7 — Ae A" TP T 4 AT

op s
1 1 pio o
= (— — _)Sp;(pa + )\’pal——Ier(cz — cl)\'ﬁ)
op P
1 1 Sp,f?‘; O I’T+ C
< _— — s —P0 — po—l+y — .
op Py ’ =

Set
Ao :=min(A, Ao).
Then we have the following important result.
Lemma 4.2. Problem (3.1) has a nonnegative solution v, € X satisfying
a < Jy(vy) < Gy,
forall . € (0, Ay), where « is from Lemma 2.1.

Proof. Let 1 € (0, A9). By Lemma 2.1, J,, satisfies the Mountain Pass geometry. So we can define the
Mountain Pass level

¢, 5 = inf max J, 1)),
n,\ el 1e[0.1] n,)»(g( ))

where
[ = {g € C(0, 11, E) : g(0) = 0, J,;(g(1)) < O}.
Moreover,

0<a<cuy <supdpa(ty) < Cyi.
>
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Hence, by Lemma 3.2, J, , satisfies the (PS) condition at the level ¢, ;, i.e., there exists a non-regular
point v, for J, ; at level ¢, ;. Moreover, J, ,(v,) = ¢, > o > 0. We can therefore deduce that v, is
a nontrivial critical point of the functional energy J, , and also a solution to problem (3.1). If we now
replace ¢ by v, in (3.2) and use (3.5), we get ||v,|| = O, that is, v, is nonnegative. This leads to the
positivity of v, by the maximum principle [3]. [

5. Proof of Theorem 1.1

In order to complete the proof of our main result it now remains to obtain a second positive solution
to problem (1.1) as a limit of the some subsequence of |v,|. To this end, let A € (0, A¢) and |v,| be a
family of the positive function given by Lemma 4.2. By Lemma 4.2, the Holder inequality and since
(n+ D7 = (D)7 < v"7, we see that

1 i
Co> Jns — EU’M(U”)’ Un)

N

11 A N7 [/1)\'7
=(—-= )l —— [ ((w+-) (=) )
po Py 1=y Ja n n

1 1 A
> (— - —*>||vn||f’“ ——— | v,
po ps 1_ Q
1 1 A py—l+y 1—
> (— - —)IIvnII”" e o T el 1A
po  p; -y

Since0 <1 —y <1 < po, v, is bounded in Xy. So, there is v, € X satisfying

v, — v, weakly in X,
v, — v, weaklyin LI (Q),
v, — v, strongly in L"(2), forany r € [1, p;

v, — U, a.e.in 2.

We shall now prove that v, — v, strongly in Xy, i.e. ||v, — vy || > Oasn — oo.
First, we observe that if ||v,|| — O, then v, — v, strongly in X, so we assume that ||v,| — n > 0.
Since

Un <ol

0< ——~— <7 aeinQ,
(Un+;)y

it follows by the Vitali theorem that

limfvinldxzfvi_ydx.
=00 Jo (vn + ;)y Q
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Now, replace both u# and ¢ by v, in (3.2) to get
nbe — x/ v} 7 dx + vl — 0. (5.1)
Q

On the other hand, by a simple calculation in (3.1) we get

A
v 17 (=AY v, > min{ 1, — ) in €,
P py

since v, is bounded in X,. Now, by the strong maximum principle [3], there exist QCcQand?> 0
such that

v, >¢ >0, ae.ing, (5.2)
for any integer n. Let ¢ € C3°(£2) satisfy supp(¢) = Q C Q. Then by (5.2),

ol

X T~
C

¥

— , a.e.in Q.
(Un + ;)y

X

Then the dominated convergence theorem implies that

. @ -
lim / —dxz/ v, " dx.
n—oo Jo (vn + %)V Q A

Thus, by replacing u with v, in (3.2) and by letting » to infinity, we obtain

n? D, @) —x/ v/<pdx+/ u55‘1<pdx =0. (5.3)
Q Q

Now, if we replace ¢ by v; in (5.3) and invoke (3.2), we obtain
o—1 : ps Py
= """ (n” — |l ll?) nlggo(llvnll,,; — llvalls)-
Therefore, by the Brezis—Lieb Lemma [4], we obtain
n?C D 1im (v, — v l|?) = 17, (5.4)
n—o0

Now, let us prove that / = 0, by contradiction, i.e. we assume that/ > 0. As in Lemma 3.2 we can prove
that

[Ps=P > S,up(g_l).
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Therefore, by Lemma 4.2 combined with Young inequality and Holder inequality, we deduce

1 i
Cy. > Jus(vy) — ?< o (Un), V)

N
Pi=l+y

1 1 " o 1 1 ol iy 1
2(———*>(n” +||U)L||p)_)»(m+?>|9| ST

po Ds s

Clearly, this is a contradiction, so / = 0 and v,, — v, _strongly in Xy. In addition, one can easily see that
v, is a solution of problem (1.1). Therefore by Lemma 4.2, J; (vy) = « > 0 so v, is nontrivial. We can
now proceed as in the proof of Lemma 4.2 and deduce that v; is a positive solution of problem (1.1). In
conclusion, since J; (#;) < 0 < J;(v;), this completes the proof.
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