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We consider a class of nonautonomous cellular neural networks (CNNs) with mixed delays, to study the solutions of these systems
which are type pseudo almost periodicity. Using general measure theory and the Mittag-Leffler function, we obtain the existence
of unique solutions for cellular neural equations and investigate the Mittag-Leffler stability and attractiveness of pseudo almost
periodic functions. We also present numerical examples to illustrate the application of our results.

1. Introduction The cellular neural system with mixed delay is described by
Due to the many applications of neural cell networks in var- ) "
ious fields, these systems have been extensively studied. 50) ==¢0)%0) + ;‘91"1 4(240) + Z (1) (2 (¥ = 1))
Image processing, robotics, optimization, etc. are among n oo (1)
the fields used by these differential systems [1-4]. Due to + zlhpq()/) L ¥, (1)@ (z,(y = 1))dr + L,(y), foryeR.

e .

the importance of network systems, stability analysis and
synchronization control for these systems have always been
considered by many researchers who have studied these sys-
tems with different tools. For example, we can mention
[5-8], where Lyapunov functions have been used as a tool »() =6 0)
for these synchronization analyses.

We shall introduce a neural cellular system and
investigate the solutions of this differential equation,
which are of the ¢-pseudo almost periodic type (for
more details, see [9-11]). Assume that ¢ is a measure,
n is a positive measurable function in R, and ¢, is sin-
gular Lebesgue measure. Here, measure ¢ is defined by

a9(y) =n(y)dy + dg (7). 2,() =§,(7), fory<o. (3)

This system with the initial value is expressed as follows:
2(0) + 2 9q(1)84 (2,(7)
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The parameters in this equation are as follows:
(i) z,(y) is the p-th neuron state

(ii) e,(y) represents the rate of decay,

(iii) Real functions @P, 0,, (:)P are activation functions
of the p-th neuron

(iv) L,(y) is the input
W) ¢ pq ATE the delays that are constant
(vi) 12 is the transmission delay kernel

Considering a special case of the stated measure, ie.,
d¢(y) =n(y)d(y), ¢, =0, the ¢-pseudo almost periodic
solutions of the above system are of the weighted pseudo
almost periodic functions type.

In the present paper, we shall derive some sufficient
conditions for existence and uniqueness results for cellular
neural equations [3, 12-14]. We first state the basic con-
cepts and then obtain the unique solution for equation
(1). In the sequel, we prove our main results, ie., the
Mittag-Leffler stability and attractiveness of ¢-pseudo
almost periodic solutions of equation (2), which improves
upon and extends [11, 15-20].

We conclude the introduction by describing the struc-
ture of the paper. In Section 2, we collect the preliminary
information. In Section 3, we present several examples of
interesting measures. In Section 4, we prove our first main
result (Theorem 19). In Section 5, we prove our second
main result (Theorem 21). In Section 6, we prove our
third main result (Theorem 23). In Section 7, we present
some applications.

2. Preliminaries

We denote the space of all positive measures on Lebesgue
y-field o with 4. If u is a positive measure, then we have

() (R) = +00
(i) ¢([¢, f]) < oo, for all €,j e R(£ <)

Considering BE (R, %) as the space of all continuous
and bounded functions, as well as the supremum norm
19|00 = sup,er[|g(») ||, we have a Banach space.

Definition 1. The Mittag-Lefller function is defined by

B0)= Y (@

¢=0

where A is a real number, A <0, and g is a complex variable.
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The generalization of E, (g) is defined as

(o)

Eyu(9) = ;}m (5)

where A, p € C,Re (1) >0, Re (y) > 0.

Definition 2. If 0 < A <1 and v is a complex number, then

00 2G .-2GA
2 VEx
coshy (vx ) - ;OF(ZcA +1) (6)

is called the A-order fractional hyperbolic cosine function
and

00 v2q+1x(2c+1)/\

sinhy (VXA> - ;r((x DA+ @)

is called the A-order fractional hyperbolic sine function.

Proposition 3. Assume that 0 < A< 1. Then,

cosh,, (w&) _E (vx’\) +2E/1 (—vx)‘) i o
sinh, (vx’\) _ E, (Vx)h) —ZE)L (—vxl) .

Definition 4. A continuous function g : R — % is said to be
almost periodic if [|g(y +{) - g(y)|| < @, for all y e R, @ > 0,

Cele .

Definition 5. Let ¢ € /. A bounded continuous function
g:R— ¥ is said to be ¢-ergodic if

. G .
Jim s | leolasm =0 ©

Definition 6. Suppose that ¢ €/, k, and w are almost
periodic and ¢-ergodic functions, respectively. Then,
g:R— % is a ¢-pseudo almost periodic function,
provided that g=k+w.

We denote the space of all almost periodically functions
by A P(R, %), the space of all ¢-ergodic functions by
&(R, ¥, ¢), and the space of all ¢-pseudo almost periodic
functions by PAP(R, ¥, ¢). All these spaces, equipped
with the supremum norm, are Banach spaces. Also, we
have PR, %) Cc PAP (R, Y, ) C BE(R, ¥); for more
details, see [9].

Definition 7. Let z* (y) = {z, () };:1 be a solution of equation
(2), with initial value {z;(y): y <0}. Suppose that for every
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solution z(y) = {z,(y)}" 1 of equation (2) with initial value
&={&,(y)}, there exist constants y > 0 and W, > 1 such that

(o)

%00 -2 )] = Wellg ="l Zorcm (10)

forally>0,p=1,2,3,:--, n, where

-z, = su max
1€ =27, Sup o max

(-7 ()

Then, the property of Mittag-Leffler stability holds for z*.

We can derive the Mittag-Leffler attractiveness from the
Mittag-Leffler stability; for more details, see [21-27].

Definition 8. Let z*(y) =

(2), with initial value {z;(y): y<0}. Suppose that there
exists p > 0 such that

{z, ()/)}Z:1 be a solution of equation

Jim Y i I =l (2

{70},

property of Mittag-Leffler attractlveness holds for z*.

If the Mittag-Leffler stability for any solution of equation
(2) is established, then z depends on its initial value {z(y):
—oo<y <0}.

for any solution z(y) = of equation (2). Then, the

Definition 9. The convolution of functions v and x from R to
R, if any, is defined as follows:

(r)0) = |ty =y (13)
where ¢ e/ and for p,q=1,2,3, Spq’qu’ hyp Ly €
PAP R, R, ¢), and e, € A P(R, ]R).

suﬂ};{—ﬁp(y)+Op z(ys ) (;7@+|
re g=1

(I,) There exist e, € BE(R
o,> 0 such that

,[0,+00)), 0, >0, %, > 0 and

< ™
|
ke
——
A
—_
—
-
3
~—

0< max
p=123,n

Definition 10 (see [28]). Let (G, &) be a Borel space. If ¢ and
T are measures on (G, &), we say that ¢ and 7 are mutually
singular, if there exist disjoint sets R and Din & such that
G=RuUD and 7(R) =¢(D) = 0.

Definition 11 (see [28]). Assume that ¢ and 7 are measures
on the Borel space (G, &/). We say that 7 is absolutely contin-
uous relative to ¢, provided that (¢(R) =0) = (7(R) =0), for
eachRe df.

Following Lebesgue-Radon-Nikodym [28], we assume
that dé(y) =y(y)dy +d¢,. We impose the following
assumptions for every p=1,2,3,--,n

1,) ©,,0,,0, are globaly Lipschitzian with Lipschitz

constants ?, T ?, and 7 ®, respectively

(I) y,, : R" — R is bounded and continuous
(1) Tflere exists n > 0 such that

’WM()’ ’Z c)t+1 (14)

is integrable on R*

(I, For the bounded interval L and all { € R, there exists
e>0 such that ¢(R+{)<ep(R), when Redf
satisfies RNL =

(I;) There exist ¢, € BE(R, [0,+00)), O, > 0, such that

EReMn) o § LTG0

M8

forally,beR,y>b,

pr I'(GA+1) 5 I'(gA+1)
b N s o
e, = jl:ﬂ}:ep(y), e, = ;relgep(y) >

(15)

(Is) There exist e, € BE(R
0,>0 such that

,[0,+00)), 0, >0, %, >0 and

g \h ) Eo‘wp(r)‘dr)aq} } <K, <0 (16)

(Ig) For all € j,i€ R such that 0 <€<j<i, there exist
{y >0 and A, > 0 such that

€] =8 == ¢((e+C,j+)) 2 Ap([C,i+C])  (18)



Hypothesis (I,) implies hypothesis (I;), whereas the
converse is not true. Also, if hypothesis (Ig) holds, then
(PAP(R,R", ¢), ||||,) is a Banach space. If hypothesis
(I,)holds, then for any ge PAP(R,R", ¢),{ R, g(y—{)
€ PAP(R,R", ¢),U € &R, R, ¢), and E € L' (R), we have
ExU € &(R, R, ¢). The proofs can be found in [9].

Theorem 12 (see [29]). For any integrable function g:
R — Rsuch that g € 4 P(R, R), we have gk € A P(R, R).

Theorem 13 (see [30]). For any { on the interval with posi-
tive length I, and any @ > 0, we have

190 =8 =gl < k(y =)~k <e (19)

where g,k e dP(R,R), for all yeR. In particular, kg €
AP(R, R).

Remark 14. For a globally Lipschitzian mapping @ :
Y — Zsuch that % and Z are Banach spaces and every
almost periodic functions w, we have Qow e AP (R, ¥),
which means that @ o w is an almost periodic function.

3. Examples of Measures Satisfying Hypotheses
(I,) and (I,)

Next, we shall introduce three examples of measures which
satisfy hypotheses (I,) and (Ig).

Example 15 (see [9]). We consider a measure ¢ € /4 which is
not absolutely continuous and satisfies (Ig). This measure is
defined as d¢(y) =dy + dg, where dy is a measure of the
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where > 0,% >0, and according to the integer n, §, is a
Dirac measure (DM), and

o0 [ee]
(yn)*
22
nzoo<z A+ 1)) 22
is a generalized Dirac comb (GDC). When y = 0, this mea-
sure is called a Dirac comb (DC).

Since [{, b+ ] C [{, [b] + 1 + b], we shall show that (1) is
satisfied for b > 0, such that b>j :

i+{ 00 (1//)’) o)
¢1//u([( b+q) J = (CA+1)dy+%ne[{zb+( (Z C/\-I—l )

& ((b+{)”1/c+l e+

ey I'(GA+1)
b+ [/ oo ¢
(yn)
5 (5nit)
o S ((b + O+ 1 -0 g+ 1)
B CZO [(cA+1)
S W) ¢ (v
+%;F(CA+I)ZZO(;F(C/\+1)>
_ 0 (w)c b+c)c+1 c
N ;r(qml) [ ¢+l (+1>
b 00
3 (yz)°
+x({) ;(;F(CA+1))}

Lebesgue type. Also, ¥ is the measure on (R, &), which in (23)
g is the y-field of the Lebesgue type. This measure is
defined as follows: We also have that
®) { card (RN Z), if RNZisfinite, 20) o (W)
¥(R)= . N W)
00, if RN Zis infinite. by +C7+5) ZJ“(;)F(CAJFI) dy
Example 16. Consider the following measure: _ Z y)* U+¢ )<+1 B (e+¢ )qul
c)t +1) | c+1 c+1 |
2yu9)= > =y x Z f 5, (24)
v = I'(GA+1) c)t+1) "
(21) The conclusion follows with {;, =0 and
SR+ D) ((0+ 0" e+ 1)) = (€O s+ 1)) 2s)
Q=

()T + 1) (0407 1E + 1)) = @+ 1)) ) + Q) T (B2 (w2 (A + 1))e) |
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This means that (24 2(R, R", ¢,,.,), ||.||o,) is a Banach

space.
The measure ¢,,, does not satisfy (I,). In the sequel, we

shall prove this. Let

D=u n—l— n—l+
— “n=—00 2 Q> 2 Q|

0= 1 sinh™ o ! , (26)
1 2lnl+ Yeso(yn) /T (A +1)
1
2

Then, D+{=U2__ (n—p,,n+p,) contains Z and

byn(D+Q) = ZJ nz (c)t+l Z Z (Z\nu

n=-o0 J n-Q, ¢=0 Nn=—00 G= 0
s 1
= Z +00 = 00,
n=7002\n\+1
(27)
provided that DN Z = &. Now,
(&Y n+1/2+p, O V/y S
brulD)= 2. J CEn AL
n=—oo J n-1/2+p, ¢=0 (GA+1)
(28)
(w2 & 1
Z Z +1 <00
) CA+1 n 002|n|

Therefore, if R=D/L, where L is a bounded interval,
we obtain

Sy R+0)2 Y Zr((gnl = (29)

neZ/L ¢=0

provided that ¢, (R) <¢,,, (D) < co.

Example 17. We consider the following measure for ¢ € ./,
v20,%>0,

(e

S (&) 1
Wyu0)= B Ay oY o (60

where 8, is the Dirac measure at 1/n and satisfying (I,).

For (e R, let L=
RNL=@,RN[0,1] =

(=1 =], 1+ {]. We can easily see that
@ and also (R+{) N [0,1] = . Then,

O(R+0) J v ()

R+l c:01"(c/\+ 1)

e o)

(W) R+
T(Gh+1) ¢+1

(v)° (R+Q)™
sT(GA+1) (¢+ 1)(R+ ()R

(O R _
T(GA+1)c+1 =¢(R).

dy+0

n
Il
o

I
Mg

)
I
o

i M8 a M8

The conclusion now follows with 9=1.
4. On the Integral Solution of Equation (34)

Proposition 18. Assume that (1;) and (1,) hold. If z, €
RBE (R, R), then

g (1O, (2, (y = ¢yy)) € BE(R,R), épq(y)é

hpq (y)JZOqu (1’) (:)q (Zq ()/ -

q(zq(y)> € BE(R,R),
r))dr € BE(R,R),

(32)

fOT p)q: 1’2)3 e
Assume further that (1,),(L,), and (1,) hold. If z, €

PAP (R, R, §), then

9 ()0 (2(y = Cyy)) € PAP(RR, §), 9, (7)

hpq(y)lellM(r)éq(zq(y —1))dr e PAP(R, R, ).

0,(2,(»)) € PAP(R, R, §),

(33)

Proof. This follows from [15] (Theorem 4.1).
In the sequel, we set z,(y) = 0, 'z(y). Then, equation (1)

is transformed into the followmg system:

+ ijl Zl g (7)8, (07, (y
e

#07" D] 118 02,y )
g=1 0

_Cpq)) (34)

Now we show that the integral solutions of equation (34)
are mappings of P P(R, R", ¢) to itself. O



Theorem 19. Assuming that (I,), (I,), and (I5) hold, we
define the nonlinear mapping * on BE(R,R") for p=1,2,
3,---,n as follows:

@ (—(Ye (r)dr)®
o))< [ § Tl {0‘1

06=0

If we assume condition (1,) along with the other three con-
ditions, then ' € P P(R, R", ¢).

Proof. We have PUe BE(R,R") (see [29]). Accord-
ing to Proposition 18, for p=1,2,3, -+, n, there exist A, € o/
P(R,R) and ¥, € E(R, R, ¢) such that

Z U,(»)) +o lz 00, (0,Uy (7= Cpy))
+0," D By () J qu(v)@q(aqu()’— v))dv
q=1 0
+0,'L,(y) = 4, + ¥, € PAP(R, R, §).
(36)

(1) We claim that

co (_ [V d
rzwAp(b)dbe&i@(]R, R),p=1,2,3,n.
05 T(ch+1)
(37)
In fact,
Y 2 (= [re,(r)dr)*
Ay (y) = L;)WAP(b)db,p— 1,2,3,,n

(38)

According to Theorem 13, and since Ap, e, € AP (R, R),
for every @ > 0, there exists a number such as { belonging to

an interval of positive length [, such that [A,(y +{) - 4,(y)|
<@, and
¢,
o (r L
o, (39
CZO c/\+1 &0 Z c/\+1 50)| <@ (39)
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for all y € R (see [30]). Then,

|4, +8) = 4,00
e (< e .
Il §%%“’W‘L§%ww
[ j+ dr oy 00 e (r dr C
) JO;WAP(b C)db_JOZ(:)( Ff?C;(Jr)l)) 4,(b)db

& (~Friepndr)’
_chzo( bz/\pﬂ )Ap

Ay (b+)db- Jy § Che@dr)” g

06=0

+J4yozo“ Ibcl/?\+1 )

e (Srdedr)” @ (- e, ()
<j0;) T(cA+1) _;0 Fl(7c1/71+1) ||AP(h+c)‘dh
y (o]
+JO<Z:(:) Ibcf\ﬂ |45 (0+8) = 4y (1) dr.
(40)
Let
(-Pibepndr)” & (= fre,(r)dr)’
- ;0 L(ch+1) 7;0 e | (41)
Since
S (~frep(n)dr)ty, y o1
using assumption (1), we obtain that
S (—[ley(r)dr)* & ( Jb+z ) dr)
Zo <“1) czo T(cA+1)
at+b
7 2 (~[le,( oo( ‘Zﬁp()) /
='|:LCZ-<; C)Hl (Z(; T(GA+1) da
Y2 (e ,m( b+{P
Js(; Fc)Hl ) ;0 F(c)t+1 }
y & (,jye r)‘ © 6 fb+< ' dr) ) (—ep(x+0))
_{L; I(cA+1) (Z‘, T(cA+1) da
7 6(= Paey(r)n) " (—ep(@) Qe (r
+.[b;226 PF(C/\+1) CZO (cA+1) d“ (43)
|p e creman e (Liignd)
- jb;) F(clj\+l) CZO IT(A+1)

B [yozo: (—l[{;ep(r)dr)cz( Jb+z P dr)

& I(cA+1) =0 I'(cA+1)

a+( oo
(Z%(wmr )

=0
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Then, A, is a continuous and bounded function, given that
A, € 4P (R, R). Now, by putting equation (39) in equation
(38), we have

[4,0+8) = 4,0)]

P —e”(y—b)c Y O (= [Te, (r)dr)*
sOppjoczo%(y‘b)wp(b+C)W“'”L;)%dh

2 7 & ‘?()’_b)c 7 & (- [le,(r)dr)*
SOPpHAp‘mjog%(y—b)db+0ppj 5! rl(}i(gl)) db

—00 ¢=0

o (<& (-b)) v oo (<5 -b))
sOf,PHAP{mJZCZO%—JrI))(}’b)db+Opsz§%M

B s 6
) Pl ZW PPZW

(44)

We obtain that

® (= [Ve, (r)dr)°
K Z}%Ap(b)db cdPR,R).  (45)

(2) Let us show that

r 5C &Iy bR R ). (46)
RS A A € R, ¢).
o0& T(A+1) P
According to hypothesis (I,), for ¥, € &(R, R, ¢) and
forp=1,--,

n, we have

. s ()
OWE&WTTETLLQH ¥l niraeo)
. u -y 00( e )
(47)
Then, by (I5),
i LS Clie®d)
05, s L Tietan O 1d8d80)
L ppe(me-n) i
= O ) [Joczo Ty |T(bldbdsr) =0
(48)
Hence,
7 & (- iep(r)dr)c
JO ;W‘f’p(b)db cE(R,R,¢), (49)

for p=1,2,3, -, n. Combined with (37), we have

oS H!

4 c)»+1 A

¢
)C
J cl+1 p

b)db

¥ (b)db € PAP(R, R, §).

(50)

O

5. Existence and Uniqueness of ¢-
Pseudo Almost Periodic Solutions

Assuming that the solution of equation (1) is of the ¢-pseudo
almost periodic type, we shall prove the existence and
uniqueness of these solutions.

Theorem 21. (I) Given assumptions (I;), (I,), and (I5),
there is a unique solution z* € BE€ (R, R") for equation (1).

(2) Given assumptions (1,), (I,), (Is), (L), (I5), and (1),
we have z* € PAP(R, R, ¢).

Proof. Let U,G € BE€(R,R") (resp., U, G e PAP(R,R",

¢)). Then, in view of Theorem 19, we have that ‘BU,

PG e BE(R,R") (resp. PU, PG € PAP(R,R", p)).
Let & = | (BU), (7) - (BG), (7). Using (1,) and (1), (1),

we get that

yoo( }’ o n
7(7
L;) I(GA+1) pe (

n

- @q (Jqu(b))) + 01;1 Z Spq(b) (®q (Gq

q=1

S =

(CAH)
Uyg(b=C59))
~©,(0,G, (b)) + 0" ; hpq(b)J:o%q(v) (©4(0,Uy(b-v))
-0,(0,U (b~ v)))dv) db

~ yoo( n
SopaplL;) CA‘*'I z

q=1

19, |9‘@+9‘®|h |[ "/’pq(" ‘dr)a db)HU Gl

el rydr
SJZ;‘)%[Ep(b)—KP}db\\U—GHOO
y @ (=1, (ndr)* ) ([ (1)dr)©
) {E;Jogf;( FZ(ICI/)\(+)1)) db’cp(‘.og)(l(’f\(ﬁl))db} IU-G|,,
=08y i_;_f—{}U—Gm
L
(51)
$0
e«
90,00~z g {F -1,
(52)



Invoking condition (I,) and 0 <max,_; ,;...,{(€}/e,) -
(x1/e)} < 1, we conclude that B € BE(RR, R") is a contrac-

tion (since 4 P(R, R", ) is a Banach space, according to
condition (1) it is also a contraction on this space). Therefore,
we conclude that z* € B€(R, R") (or z* € PAP(R,R", ¢))
is a unique fixed point for *B. Also, given (34), z* € BE(R,
R") (or z* € PYP(R,R", ¢)) is a unique solution of type
¢-PAP for equation (1).

In the sequel, we shall investigate the Mittag-Leffler sta-
bility and the Mittag-Leffler attractiveness for the unique
solution of equation (2), which is of type ¢-PAP. First,
we state Lemma 22. O

Lemma 22. Assuming conditions (1) and (I5), we define

3= {?’P}Zzz [0, m] — R" by 3,(w) = su}gSP(w,y), where
ye
3p(wy)=w-72,(y) + 0,0,
;(|9pqu>\9?+\ 0|75 g Cm
* N (wr)
77k |J il )‘C_Zor(qmz)dr)"q
(53)

Then 3,(v) <0 for all 0<v,<m and 0<v <v,.

Proof. According to condition (I;), function y — 3,(w, y) is
defined on the interval [0, m]. Then according to condition
(I¢), we have

3,(0) = sup3,(0.y) = sup{-2,(y) + 0,0’

yER yeR
Y (1940)[7 + (94 (0)|T§
q=1

+J6h

Next, we shall show that there exists 0 < v, < m such that
3,(v) <0, for all 0 <v <v,. Also, we have

+ T |1y )] <J:O‘wpq(r)’ i% r— J:)‘l//pq(r)‘dr>>aq
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If we take 9, and h, nonnegative numbers

5= SSplOw 0Ty = bl OITF. - (59)

then
<w+0,0,'9 (5 ()" -1
13p(w:) = 3,(0.y)[ cw+ 0,0, pq; ;Or(g)ul) %
w03 ([Tl Sy o)

(57)

for all w € (0, m] and y € R. Now, for every p > 0, by conti-
nuity, there exists 0 < 511, < m such that the following holds:

P
—l>aq< 5

(58)

n C
1 -1
w<6p:w+opap92<z c)t+1

q=1 \s=0

In the sequel, invoking condition (I;), the Lebesgue
dominated convergence theorem (LDCT), and the integra-
bility of the function |y, (r)¥.Z(cr)*/I'(gA+1)| on the

interval (0, 00), we get 0 < 812, < m such that w < 812, implies

0,0:th, (J 0] & _Jj\wpq(r),dr>aq<g.

(59)

If we now take 0 < v < min (81 52 ) and p < k,/2, we can
conclude that for every y € R,

K

3,(v,9) < 3,(0,9) + (3,(v,y) = 3,(0,3)) <k, + p< -5
(60)

6. On the Mittag-Leffler Stability and
Attractiveness of Unique Solutions

Theorem 23. If we assume conditions (I,), (I5), (I5) and (I),
then the Mittag-Leffler stability for any solution z* of equation
(2) is established by the initial condition {z*(y): y < 0}. If we
add condition (I,), then the Mittag-Leffler stability for the
solution z* € BE (R, R") of equation (2) is also established.
Also, if we add condition (I,) to conditions (I,), (I;), (I5),
(14), and (1,), then the Mittag-Leffler stability for the solution
z* € PAP (R, R", u) of equation (2) is also established.
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Proof. Let z(t)={z (y)}
with initial value &(y) = {Ep (y) };:1. Set

be a solution of equation (2)

=110} ={e" (m0)-50))} - oD

(62)
Let [[E-2"[|, = SUPy¢(-00,0] maxp:1,2,3,~~,n0§1|5p()’) -
z,(y)|, and X >0 be such that
N> >0, +1. (63)
p=1
Then, for all y € (—c0,0], we have
HEWI <118 =27l (64)

Given v, in Lemma 22, we assume that 0 <v < min

{min,_;, .. ,&,,v,}. Then for all y,p>0, we have

WO N2l ) S (69

Otherwise, for p=1,2,3, -,
continuity, we have

n and u>0, given the

v (vn)f
RN =t
uf(y)u<N(||f—z*|\o+p)§)r(<c1 )1) for all yé(~00,0).
(66)
Now, first, we multiply both sides of (62) by
b S
0 (J"Oep(r)dr) | )

I'(cA+1)

¢=0

Then, we integrate the obtained equation with respect
to b on [0,u]. Finally, we multiply by

i (- gep(r)dr)c . (68)

i I'(GA+1)

Therefore, we have

(-[ve r)dr *&(-[re (rdr
0 Z (ql)’;+1 Jz bc}/)\+1

0620

¥ [|9pq<b>»9‘?aq\fq<b>\ ROIERATACEI ]
q=1

T 8 [y =] db).

(70)

Now, by (64) and (66), we get

X dr

‘fp(%)’ SOP(HE_Z*”a"'P {Z T CA+1

+N0;1J Z( f?p ))

0 ¢=0

Since b>0 and 0<v<wv,,
Lemma?22,

we have by virtue of
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® (—[*e (r)dr)°
1£,69] < 0, (I1E=2"1l, +p){§M
wop [ § B0 )y 5 0 }

06=0 F(

% 00 (—(*(2 (r) —v)dr)®
+No;1(—vu)‘J 2 L&) =) (Ep(b)‘”>db}

0 & I'(cA+1)

0,182l ) Y 1 (<] @t -war)
+No;1r (—[ (,(r) - v)dr) @) - v)db}

0 Jb

—0, (&2, +p) Y F((;X’:)l { <_ (&(r) - v)dr)

)
s o))

=0,(1="1,+#) Yooy { (-], @0 -)ar)

_ o \ (_V%)c
“R(E-2"1 4P 2 ey
O\ L (—[5(@,(r)—v)dr)
{_(I_FP)CZO F1(7c/\+1) }
(72)
We recall that v<@e,. This implies that 2,(r)-v>0
for all r € (0,00). Hence, by (61), we see that

00 <ROE-7 0 Y e )

which contradicts (66) and we can conclude that what
was claimed in (65) is true.

We now assume that y is constant and p tends to zero.
Then we get

e \ (_v}t)c
IFO <R[ -2 ||g;m’ (74)
so the proof is complete. O

Corollary 24. If we assume that conditions (I,), (I1,), (1),
(I), and (I5) hold, then the Mittag-Leffler attractiveness
for unique solution z* € BE (R, R") of equation (2) holds.

8T+ 19, (0T
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Corollary 25. If we assume that conditions (1), and (I,)
hold, then the Mittag-Leffler attractiveness for unique solu-
tion z* € PAP(R, R") of equation (2) holds.

7. Applications
We shall provide two examples (see Figures 1-3).

Example 26. Let n=2,p,q=1,2,

(P,) We consider Lipschitz functions @P(r) =
=0,(r)=

stants 9‘?=0,9‘®=9‘?=2/5.

0, @P(r)

2/5 arctan r, with the Lipschitz con-

(P,) Then, y,, is bounded and continuous,

(P;) Furthermore, the next sum is integrable on [0, +00)
forn=1,

“/’pq’ CZOF((:)LY-?— 1) (76)
(Py) (see [1]) If ¢ € A, where d¢(y) =1, (y)dy, and
_ v _(wyy _N )
1,(y) = ;‘)m’%q(}’) = ;T(C/\+ )
(77)

with 9)=2-vy>0,-u<b<y<u, then for w=1
we have that L = &.

(P;) For e,(y) = (2/5)(1 + (3/2) sin y), e,(y) = (2/5)(1 +
(716) cos y),2,(y) = (2/5), we have
i (4/15)° (78)

SI(cA+1)

(Pg) For 0,=1,R=7,(,, =3/(p+q),9,,(y) =0,9,,(»)
= (8/10) sin y, h,,(t) = (9/10) cos 2y, {; = 9/100,
we have

f?+,°7q6|hp(y)‘J:O’wpq(r)’dr)aq] },s—xpso (79)
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-1.x 10" —

-2.x 10"

-3.x 10"

FiGure 1:

-20

20

z(yhi=12 30 y

(a) Numerical solutions of CNNss for y € (-20, 30)

-5.%10% —

1w 10%—
~1.5 x 10* =
-2x 10
-2n
=Tt
z(y)i=1,2 o y

(b) Numerical solutions of CNNs for y € (28,-56)

-1.x10"

2. x 10

-3.x10%

z(y)i=12

(c) Numerical solutions of CNNs for y € (100,—40)

Graphs related to numerical solutions of CNNs (1) for different values.
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FIGURE 2:

100
) T 500 150
2\ y

(a) Numerical solutions of CNNs for y € (—(10/7), 200)

0T
-2.x10'% _:
-4.x 10" 7]
-6.x 10" 7]
-8.x10'% 7]
-1.x 10" 7]
-1.2x 10 7]
-1.4x10"% 7]

-1.6 x 10
~1.8 x 10" 7] 300

2
T e 100
_2n - 0 hid 0

y
z,(y)

(b) Numerical solutions of CNNs for y € (—(200/18),—300)

1. x 10"
2.x 10"
3.x 101
4. x 10"

5.x10"

6.x 10"

(¢) Numerical solutions of CNNs for y € (—(10/6), 10)
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Graphs related to numerical solutions of CNNs (1) for different values.
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—-1.x 10" ]

-2.x 10" — ,

-3.x 10”J :

—4.x 10"
~5. % 104
-6.x 101
n 10
z,(y) 20 y

(a) Numerical solutions of CNNs for y € (20,~15)

-2.x10° |
-4.x10° |
-6.x 10
-8.x10%
-1.x10°

-1.2x10°

-1.4x10°

z,(y)

13

(b) Numerical solutions of CNNs for y € (15/6,~40/7)

(c) Numerical solutions of CNNss for y € (10/6,-60/8)

FiGure 3: Graphs related to numerical solutions of CNNs (1) for different values.

(P,) Also,
e«
0< max {:P—A—f}<1 (80)
p=1,2,3,n,n ep ep

Let L,(y) = (20 + p)|cos y[ + U(y), where

U(h) = { e?, b<o (81)

1, b<O,

and L, € 24 P(R, R, p). Then, all solutions of (1) are in the
Mittag-Leftler form and they converge to a unique solution
of equation (1) such that z*(y) € 24 P(R, R?, ¢), when
y —> +00 with convergence rate v =0.05 < e,.
Example 27. Assume conditions (P;) to (P,) hold and con-
sider functions from Example 26. For y > 1, v > 0 and Dirac
measure §,,,, define the following measure:

(o)

S ® 1
Wyol)= Y v Y o (82)
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Consider the interval I = (-1 —|{], 1 +]{|), for { € R and
9=1. Then for all R€ & and { € R, there exist 9> 0 and a
bounded interval L such that ¢(R + () < 9¢(R) and RN L = @.

Let L,(y) = (20 + p)|cosy| + U(y), where

e’ b<o
U(b) = (83)
0, b>0,

and L, € 4P (R, R, p). Then, all solutions of (1) are in the
Mittag-Leftler form and they converge to a unique solution

of equation (1) such that z*(y) € PAP(R, R?, ¢), when
y — +00 with convergence rate v = 0.05.

8. Conclusion

In this work, we considered differential systems of cellular
neural networks (CNNs) with mixed delays. We also
considered general measurement theory whose general form
is d¢ =n(y)dy + d¢,. We first investigated the existence of a
unique solution of this system and proved that the solutions
of equation (1) are ¢-pseudo almost periodic. Then we
studied the Mittag-Leffler stability and the Mittag-Leffler
attractiveness of these solutions. We obtained our results
by considering new conditions and using the fixed point
contraction mapping theorem. Also, two examples were
given to illustrate our results.
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