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A metric space (X,d) has the de Groot property GPn if for any points x0, x1, . . . , xn+2 ∈ X
there are positive indices i, j,k � n + 2 such that i �= j and d(xi, x j) � d(x0, xk). If, in
addition, k ∈ {i, j} then X is said to have the Nagata property NPn . It is known that a
compact metrizable space X has dimension dim(X) � n iff X has an admissible GPn-metric
iff X has an admissible NPn-metric.
We prove that an embedding f : (0,1) → X of the interval (0,1) ⊂ R into a locally
connected metric space X with property GP1 (resp. NP1) is open, provided f is an
isometric embedding (resp. f has distortion Dist( f ) = ‖ f ‖Lip · ‖ f −1‖Lip < 2). This implies
that the Euclidean metric cannot be extended from the interval [−1,1] to an admissible
GP1-metric on the triode T = [−1,1] ∪ [0, i]. Another corollary says that a topologically
homogeneous GP1-space cannot contain an isometric copy of the interval (0,1) and a
topological copy of the triode T simultaneously. Also we prove that a GP1-metric space
X containing an isometric copy of each compact NP1-metric space has density � c.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we shall be interested in structural properties of metric spaces possessing the properties introduced by
J. de Groot [5] and J. Nagata [10].

Let n be a non-negative integer. A metric d on X is said to have the de Groot property GPn if for any n + 3 points
x0, x1, . . . , xn+2 ∈ X there is a triplet of indices i, j,k ∈ {1, . . . ,n + 2} such that

d(xi, x j) � d(x0, xk) and i �= j.

If, in addition, k ∈ {i, j}, then we say that the metric d has the Nagata property NPn or that d is an NPn-metric. It is clear
that each NPn-metric is also a GPn-metric. In the Engelking’s monograph [4] the properties of Nagata and de Groot are
denoted by (μ4) and (μ′

5), respectively. Those properties also are discussed in the Nagata’s book [11, V.3].
According to [5] and [10], for a separable metrizable space X the following conditions are equivalent:

• X has the covering dimension dim(X) � n;
• the topology of X is generated by an NPn-metric on X ;
• the topology of X is generated by a totally bounded GPn-metric on X .
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In fact, the equivalence of the first two conditions holds for any metrizable space X . On the other hand, it is an open
problem due to de Groot [5] if the existence of an admissible GPn-metric on a (separable) space X implies dim(X) � n, see
[4, p. 231]. We recall that a metric d on a topological space X is said to be admissible if it generates the topology of X .

By [4, 4.2.D], a metric d has the GP0-property if and only if it has the NP0-property if and only if the metric d satisfies
the strong triangle inequality

d(x1, x2) � max
{

d(x0, x1),d(x0, x2)
}

for all points x0, x1, x2 ∈ X . The latter means that d is an ultrametric. Thus both NPn-metric and GPn-metric are higher
dimensional analogs of ultrametric.

Due to efforts of many mathematicians the structure of ultrametric spaces is quite well understood. We shall recall two
results: an Extension Theorem and a Universality Theorem.

Extension Theorem 1.1. Each admissible ultrametric defined on a closed subspace A of a zero-dimensional compact metrizable space
X extends to an admissible ultrametric on X.

This theorem follows from its uniform version proved by Ellis in [2] or its “simultaneous” version proved by Tymchatyn
and Zarichnyi [12]. The other theorem is due to A. Lemin and V. Lemin [6] and concerns universal ultrametric spaces. We
define a (topological) metric space X to be (topologically) homogeneous if for any two points x, y ∈ X there is an isometry
(a homeomorphism) h : X → X such that h(x) = y.

Universality Theorem 1.2. For each cardinal κ there is a (homogeneous) ultrametric space LMκ of weight κω containing an isometric
copy of each ultrametric space of weight � κ .

The universal space LMκ in Theorem 1.2 can be constructed as follows: take any Abelian group G of size |G| = κ , let Q+
be the set of all positive rational numbers, and let LMκ be the space of all maps f : Q+ → G which are eventually zero, in
the sense that f (x) is zero for all sufficiently large rational numbers x ∈ Q+ . The space LMκ endowed with the ultrametric
d( f , g) = sup{x ∈ Q+: f (x) �= g(x)} (where sup ∅ = 0) has the structure of an Abelian group and therefore is metrically
homogeneous.

It is natural to ask if these two theorems have analogues for GPn- or NPn-metrics. As we shall see later, the answer is
negative already for n = 1. To construct a suitable counterexample we shall first study the structure of GP1-spaces X in a
neighborhood of an isometrically embedded interval (0,1) ⊂ X .

Theorem 1.3. If a GP1-metric space X is locally connected, then each subset I ⊂ X, isometric to an interval (a,b) ⊂ R, is open in X.

This theorem will be proved in Section 2. Now we discuss some of its corollaries.
By the triode we understand the subspace

T = [−1,1] ∪ [0, i]
of the complex plane C. By Nagata’s Theorem [10], the triode T carries an admissible NP1-metric. Nonetheless, such a
metric cannot restrict to the Euclidean metric on the interval [−1,1] ⊂ T because the interval (−1,1) is not open in the
triode. Thus we obtain:

Corollary 1.4. The Euclidean metric on the interval [−1,1] has the Nagata property NP1 but cannot be extended to an admissible
GP1-metric on the triode T .

Therefore, Extension Theorem 1.1 cannot be generalized to metric spaces with the property NPn or GPn for n � 1.
Next, we show that the same concerns Universality Theorem 1.2: its homogeneous version cannot be generalized to higher
dimensions.

Corollary 1.5. If a GP1-metric space X contains both an isometric copy of the interval [0,1] and a topological copy of the triode T ,
then X is not topologically homogeneous.

Proof. Let [0,1] ⊂ X be an isometric copy of the interval [0,1]. Assuming that X is topologically homogeneous and X
contains a topological copy of the triode T , we can find a topological embedding f : T → X such that f (0) = 1

2 ∈ [0,1] ⊂ X .
Since the triode does not embed into the interval [0,1], the point 1/2 is not an interior point of the interval (0,1) in the
locally connected subspace Y = [0,1] ∪ f (T ) of the GP1-space X . This contradicts Theorem 1.3. �
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In spite of the negative result in Corollary 1.5, we do not know the answer to the following

Problem 1.6. Is it true that for each infinite cardinal κ there is a GP1-metric space U of weight κω that contains an
isometric copy of each NP1-metric space X of weight � κ?

The weight κω in Problem 1.6 cannot be replaced by κ because of the following theorem that will be proved in Section 3.

Theorem 1.7. If a GP1-metric space X contains an isometric copy of each compact NP1-metric space, then X has density dens(X) � c.

Now let us return to Theorem 1.3. It implies that no non-open arc I in a locally connected GP1-metric space (X,d) is
isometric to an interval (a,b) ⊂ R. We can ask how much the metric d restricted to I differs from the Euclidean metric on I .
We can measure this distance using the notion of the distortion.

By the distortion of an injective map f : X → Y between metric spaces (X,dX ) and (Y ,dY ) we understand the (finite or
infinite) number

Dist( f ) = ‖ f ‖Lip · ∥∥ f −1
∥∥

Lip

where

‖ f ‖Lip = sup
x�=x′

dY ( f (x), f (x′))
dX (x, x′)

is the Lipschitz constant of f (if |X | � 1, then ‖ f ‖Lip is not defined, so we put Dist( f ) = 1). The notion of distortion is
widely used in studying the embeddability problems of metric spaces, see [1,7–9].

It can be shown that an embedding f : X → Y of a metric space X into a metric space Y has distortion Dist( f ) = 1 if
and only if f is a similarity, which means that dY ( f (x), f (x′)) = ‖ f ‖Lip · dX (x, x′) for all x, x′ ∈ X .

In terms on the distortion, Theorem 1.3 can be written as follows.

Corollary 1.8. Let X be a locally connected metric space with property GP1 . Each embedding f : (0,1) → X with distortion
Dist( f ) = 1 is open.

Proof. Let f : (0,1) → X be an embedding with distortion Dist( f ) = 1. Let C = ‖ f ‖Lip and

g : (0, C) → (0,1), g : t �→ t/C,

be the similarity mapping having the Lipschitz constant ‖g‖Lip = 1/C . It follows that the composition f ◦ g : (0, C) → X has
distortion

1 = Dist( f ◦ g) = ‖ f ◦ g‖Lip · ∥∥( f ◦ g)−1
∥∥

Lip = 1.

Since ‖ f ◦ g‖Lip = 1, we conclude that ‖( f ◦ g)−1‖Lip = 1 and hence f ◦ g : (0, C) → X is an isometric embedding. By
Theorem 1.3, the image f ◦ g((0, C)) = f ((0,1)) is open in X . �
Problem 1.9. Can the equality Dist( f ) = 1 in Corollary 1.8 be replaced by the inequality Dist( f ) < 2?

This problem has an affirmative solution for metric spaces with the Nagata property NP1. The following theorem can be
easily derived from Proposition 4.1 and Corollary 5.2 proved at the end of the paper.

Theorem 1.10. Let X be a locally connected metric space with property NP1 . Each embedding f : (0,1) → X with distortion
Dist( f ) < 2 is open.

The inequality Dist( f ) < 2 in this theorem is best possible because of the following simple example.

Example 1.11. On the triode T = [−1,1] ∪ [0, i] consider the NP1-metric

ρ
(
z, z′) =

{ |z − z′| if sign(
(z)) = sign(
(z′)),
max{|
(z)|, |
(z′)|,�(z),�(z′)} otherwise.

It is easy to check that the identity embedding f : [−1,1] → (T ,ρ) has distortion Dist( f ) = 2 but is not open.

In spite of Corollary 1.4 there is a hope that the following problem (related to an approximative extension of NP1-metrics)
has an affirmative solution.
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Problem 1.12. Let A be a closed subspace of a one-dimensional space X . Is it true that for any admissible NP1-metric dA
on A there is an admissible NP1-metric dX on X such that the identity embedding f : (A,dA) → (X,dX ) has distortion
Dist( f ) � 2?

2. Isometric arcs in GP1-metric spaces

In this section we shall prove Theorem 1.3. A map f : X → Y between metric spaces is called non-expanding if its
Lipschitz constant ‖ f ‖Lip � 1. For a point x of a metric space (X,d) and a subset A ⊂ X we put d(x, A) = infa∈A d(x,a).

Lemma 2.1. Let (X,d) be a GP1-metric space containing an isometric copy of the closed interval [0,1] and let V = {x ∈ X:
d(x, [0,1]) < 1

3 d(x, {0,1})}.

(1) There is a non-expanding retraction r : V → (0,1) such that

d(x, t) = max
{∣∣t − r(x)

∣∣,d
(
x, [0,1])} for any x ∈ V , t ∈ (0,1).

(2) For any points x, y ∈ V with d(x, [0,1]) �= d(y, [0,1]) we get

d(x, y) � max
{

d
(
x, [0,1]),d

(
y, [0,1])}.

Proof. (1) Given any x ∈ V , let D = d(x, [0,1]) and consider the compact subset D(x) = {t ∈ [0,1]: d(x, t) = D}. We claim
that D(x) is a closed subinterval of (0,1) of length 2D . Let a = min D(x) and b = max D(x).

The triangle inequality implies that d(a,b) � d(a, x) + d(x,b) � 2D . It follows from D < 1
3 d(x, {0,1}) that d(0,a) �

d(0, x) − d(x,a) > 3D − D > D and similarly, d(b,1) > D . Let us show that [a,a + D] ⊂ D(x). Assuming the converse, we
could find a point x1 ∈ (a,a + D] \ D(x). Then for the points

x0 = a, x1, x2 = x and x3 = a − D

we would get

d(x1, x2) > D, d(x1, x3) = D + (x1 − a) > D, d(x2, x3) > D and

d(x0, x3) = d(a,a − D) = D, d(x0, x2) = d(a, x) = D, d(x0, x1) = d(a, x1) � D,

which contradicts the GP1-property of the metric d.
Thus [a,a + D] ⊂ D(x). By analogy we can prove that [b − D,b] ⊂ D(x). Combined with b − a � 2D , this implies that

[a,b] = [a,a + D] ∪ [b − D,b] = D(x). Assuming that b − a < 2D , we could take x0 be the midpoint of the interval [a,b] and
put x1 = x, x2 = x0 − D , x3 = x0 + D . Then

min
{

d(x1, x2),d(x1, x3),d(x2, x3)
}

> D = max
{

d(x0, x1),d(x0, x2),d(x0, x3)
}
,

which contradicts the GP1-property of the metric d.
Therefore, D(x) is a closed interval of length 2D . Let r(x) be the midpoint of this interval. Let us show that d(x, t) =

max{|t − r(x)|, D} for all t ∈ [0,1]. This is obvious if t ∈ D(x) = [a,b]. So assume that t /∈ D(x). If t < a, then d(t, x) �
d(t,a) + d(a, x) � a − t + D = r(x) − t . On the other hand, b − t = d(t,b) � d(t, x) + d(x,b) = d(t, x) + D implies d(t, x) �
b − t − D = r(x) − t . Therefore d(x, t) = r(x) − t = max{|r(x) − t|, D}. The case t > b can be treated by analogy.

Finally, we show that the map r : V → (0,1), r : x �→ r(x) is a non-expanding retraction. It is clear that r(t) = t for any
t ∈ (0,1). Take any two points x, y ∈ V . Without loss of generality, r(y) � r(x). Let Dx = d(x, [0,1]) and D y = d(y, [0,1]).
For the point t = r(x) − Dx = min D(x) let us observe that

r(y) − r(x) + Dx = r(y) − t � max
{∣∣r(y) − t

∣∣, D y
} = d(t, y) � d(t, x) + d(x, y) = Dx + d(x, y)

and hence |r(y) − r(x)| = r(y) − r(x) � d(x, y).
(2) Take any two points x, y ∈ V with Dx = d(x, [0,1]) �= d(y, [0,1]) = D y . We need to prove that d(x, y) � max{Dx, D y}.

Without loss of generality, Dx < D y . Assume conversely that d(x, y) < max{Dx, D y} = D y . Observe that

d
(
r(x),0

)
� d(x,0) − Dx � d(y,0) − d(x, y) − Dx > d(y,0) − 2D y > 3D y − 2D y = D y

and hence for any real a with max{Dx,d(x, y)} < a < D y the point x1 = r(x) − a ∈ (0,1) is well defined. By analogy we can
prove that x2 = r(x) + a ∈ (0,1) is well defined.

So we can consider the 4 points: x0 = x, x1 = r(x) − a, x2 = r(x) + a, x3 = y, and derive a contradiction with the GP1-
property of the metric d because:

min
{

d(x1, x2),d(x1, x3),d(x2, x3)
}

� min{2a, D y, D y} > max
{

a,a,d(x, y)
}

� max
{

d(x0, x1),d(x0, x2),d(x0, x3)
}
. �
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Proof of Theorem 1.3. Let X be locally connected GP1-metric space and I ⊂ X a subset isometric to an open interval
(a,b) ⊂ R. We need to check that each point x0 ∈ I is an interior point of I in X . For a sufficiently small ε > 0 we can
find an isometry f : [0,2ε] → I ⊂ X such that f (ε) = x0. Scaling the GP1-metric d of X by a suitable constant, we can
assume that ε = 1

2 . We shall identify the interval [0,1] with a subinterval of I and 1/2 with the point x0. Consider the
neighborhood

V = {
x ∈ X: d

(
x, [0,1]) < d

(
x, {0,1})/3

}
of (0,1) in X . By the local connectedness of X at x0, find a connected neighborhood C(x0) ⊂ V of the point x0 = 1/2. We
claim that C(x0) ⊂ I . Otherwise there would exist a point x1 ∈ C(x0) \ I . Lemma 2.1(2) guarantees that the subset

D = {
x ∈ C(x0): d

(
x, [0,1]) = d

(
x1, [0,1])}

is open-and-closed in C(x0), which implies that the neighborhood C(x0) is not connected and this is a contradiction. �
3. Universal GP1-spaces

In this section we study universal GP1-spaces and prove Lemma 3.2 which implies Theorem 1.7 announced in the
introduction.

We shall need the following (probably known)

Lemma 3.1. Let (X,dX ) be a NP1-metric space and (Y ,dY ) be an NP0-metric space. Then the max-metric

d
(
(x, y),

(
x′, y′)) = max

{
dX

(
x, x′),dY

(
y, y′)}

on the product X × Y has the Nagata property NP1 .

Proof. Given any 4 points (x0, y0), (x1, y1), (x2, y2), (x3, y3) ∈ X × Y , we need to find two distinct indices i, j ∈ {1,2,3} such
that

d
(
(xi, yi), (x j, y j)

)
� max

{
d
(
(x0, y0), (xi, yi)

)
,d

(
(x0, x j), (y0, y j)

)}
.

Since the metric on X has the property NP1, there are two distinct numbers i, j ∈ {1,2,3} such that

dX (xi, x j) � max
{

dX (x0, xi),dX (x0, x j)
}
.

The NP0-property of the metric space Y ensures that

dY (yi, y j) � max
{

dY (y0, yi),dY (y0, y j)
}
.

Combining these two inequalities, we conclude that

d
(
(xi, yi), (x j, y j)

) = max
{

dX (xi, x j),dY (yi, y j)
}

� max
{

dX (x0, xi),dX (x0, x j),dY (y0, yi),dY (y0, y j)
}

= max
{

d
(
(x0, y0), (xi, yi)

)
,d

(
(x0, x j), (y0, y j)

)}
. �

Lemma 3.1 implies that for a positive real number a the metric

d
(
(x, y),

(
x′, y′)) = max

{∣∣x − x′∣∣, ∣∣y − y′∣∣}
on the product Ia = [−1,1] × {0,a} ⊂ R × R has the Nagata property NP1.

For a metric space X we shall write Ia ↪→ X if X contains an isometric copy of the space Ia .

Lemma 3.2. For any GP1-metric space X the set A = {a ∈ ( 1
16 , 1

8 ) : Ia ↪→ X} has cardinality |A| � dens(X).

Proof. For every a ∈ A fix an isometric embedding ha : Ia → X and define a map fa : I1 → X by letting fa : (x, t) �→ ha(x,at)
for (x, t) ∈ I1. The map fa can be considered as an element of the function space C(I1, X) endowed with the sup-metric

d( f , g) = sup
t∈I1

d
(

f (t), g(t)
)
.

By [3, 3.4.16], the density of the function space C(I1, X) is equal to the density of X . Now the assertion of the theorem will
follow as soon as we check that the set F A = { fa: a ∈ A} is discrete in C(I1, X). This will follow as soon as we show that
d( fa, fb) � 1 for any numbers a �= b in A.
32
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To this end we first introduce some notation. For a ∈ A and i ∈ {0,1} let

I i
a = fa

([−1,1] × {i}), ∂ I i
a = fa

({−1,1} × {i}), J i
a = I i

a \ ∂ I i
a, ci

a = fa

(
1

2
, i

)
,

and

V i
a =

{
x ∈ X: d

(
x, I i

a

)
<

1

3
d
(
x, ∂ I i

a

)}
.

By Lemma 2.1, there is a non-expanding retraction ri
a : V i

a → J i
a such that for every x ∈ V i

a and t ∈ J i
a we get

d(x, t) = max
{

d
(
ri

a(x), t
)
,d

(
x, I i

a

)}
. (1)

Moreover, for any points x, y ∈ V i
a with d(x, I i

a) �= d(y, I i
a) we get

d(x, y) � max
{

d
(
x, I i

a

)
,d

(
y, I i

a

)}
. (2)

To derive a contradiction, assume that d( fa, fb) < ε = 1
32 for some distinct numbers a,b ∈ A. Observe that

d
(
c0

b, I1
a

)
� d

(
c0

b, c0
a

) + d
(
c0

a , I1
a

)
< ε + a <

1

32
+ 1

8
= 5

32

while

d
(
c0

b, ∂ I1
a

)
� d

(
c0

a , ∂ I1
a

) − d
(
c0

a , c0
b

) = 1

2
− ε = 1

2
− 1

32
= 15

32
.

Consequently, d(c0
b, I1

a ) < 1
3 d(c0

b, ∂ I1
a ) and hence c0

b ∈ V 1
a . We claim that d(c0

b, I1
a ) = d(c0

a , I1
a ) = a. Otherwise, we may apply

the formula (2) to derive a contradiction:

d
(
c0

b, c0
a

)
� max

{
d
(
c0

b, I1
a

)
,d

(
c0

a , I1
a

)}
� d

(
c0

a , I1
a

) = a > ε > d( fa, fb).

Since the retraction r1
a : V 1

a → J 1
a is non-expanding, we get

d
(
r1

a

(
c0

b

)
, c1

a

) = d
(
r1

a

(
c0

b

)
, r1

a

(
c0

a

))
� d

(
c0

b, c0
a

)
< ε < a.

Now the formula (1) yields

d
(
c0

b, c1
a

) = max
{

d
(
r1

a

(
c0

b

)
, c1

a

)
,d

(
c0

b, I1
a

)} = d
(
c0

b, I1
a

) = a.

By analogy we can prove that d(c1
a , c0

b) = b, which contradicts d(c0
b, c1

a) = a. �
4. Obtuse arcs and embeddings with small distortion

In this section we shall introduce the notion of an obtuse arc and show that for each embedding f : [0,1] → X with
Dist( f ) < 2 the arc f ([0,1]) is obtuse. By a metric arc we understand a metric space that is homeomorphic to the unit
interval I = [0,1].

A metric arc (I,d) is called obuse if

• for any subarc J ⊂ I with end-points a,b and any point z ∈ J \ {a,b} there are points x, y ∈ J with d(x, y) >

max{d(z, x),d(z, y)}; and
• for any subarc J ⊂ I with end-points a,b there is a point z ∈ J with d(a,b) > max{d(z,a),d(z,b)}.

In this case the metric d on I is called obtuse.
It is easy to see that each subinterval [a,b] ⊂ R endowed with the Euclidean metric is an obtuse arc. It can be shown

that each continuously differentiable curve can be covered by finitely many obtuse subarcs.

Proposition 4.1. If an embedding f : I → X of the unit interval I = [0,1] into a metric space (X,dX ) has distortion Dist( f ) < 2, then
the image I = f (I) is an obtuse arc in X.

Proof. We need to show that the metric

ρ
(
t, t′) = dX

(
f (t), f

(
t′))
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on I, induced by the embedding f , is obtuse. It follows that

(∥∥ f −1
∥∥

Lip

)−1 · |x − y| � ρ(x, y) � ‖ f ‖Lip · |x − y|.
Now we establish the two conditions of the definition of an obtuse arc.

1. Take any subinterval [a,b] ⊂ I and a point z ∈ (a,b). Let x, y ∈ (a,b) be any two points such that z is the midpoint of
the interval (x, y). Then

max
{
ρ(x, z),ρ(y, z)

}
� ‖ f ‖Lip · max

{|x − z|, |y − z|} = ‖ f ‖Lip · |x − y|/2

� 1

2
‖ f ‖Lip · ∥∥ f −1

∥∥
Lip · ρ(x, y) <

1

2
· 2 · ρ(x, y) < ρ(x, y).

2. By analogy we can prove that for any subinterval [a,b] ⊂ I the midpoint z of [a,b] satisfies the inequality
max{ρ(x, z),ρ(y, z)} < ρ(x, y). �
5. Obtuse arcs in NP1-metric spaces

In this section we study the structure of an NP1-metric space X in a neighborhood of an obtuse arc I ⊂ X .

Proposition 5.1. Let (X,d) be an NP1-metric space, I ⊂ X be an obtuse arc with endpoints a,b in X and let V = {x ∈ X: d(x, I) <

d(x, {a,b})}.

(1) For every point x ∈ V \ I the set D(x) = {t ∈ I: d(x, t) = d(x, I)} is the finite union of closed subintervals of I each of which has
diameter > d(x, I).

(2) For any points x, y ∈ V with d(x, I) �= d(y, I) we get

d(x, y) � max
{

d(x, I),d(y, I)
}
.

Proof. (1) Given a point x ∈ V \ I put D = d(x, I) and consider the family I of maximal non-generate subintervals in the
closed subset

D(x) = {
t ∈ I: d(t, x) = D

} ⊂ (a,b) = I \ {a,b}.
We claim that each maximal subinterval [a1,b1] ∈ I has diameter diam[a1,b1] > D . Assuming conversely that

diam([a1,b1]) � D , and using the second condition of the definition of an obtuse metric, we can find a point x0 ∈ (a1,b1)

such that D � d(a1,b1) > max{d(a1, x0),d(b1, x0)}. The maximality of the subinterval [a1,b1] ⊂ D(x) ⊂ (a,b) implies the
existence of points x1 ∈ (a,a1) \ D(x) and x2 ∈ (b1,b) \ D(x) such that max{d(x1, x0),d(x2, x0)} < min{D,d(x1, x2)}. Now we
see that the quadruple of points x0, x1, x2, x3 = x witnesses that the metric d on X fails to have the Nagata property NP1
because

d(x1, x2) > max
{

d(x1, x0),d(x2, x0)
}
,

d(x1, x3) > D � max
{

d(x0, x1),d(x0, x3)
}

and

d(x2, x3) > D � max
{

d(x0, x2),d(x0, x3)
}
.

Taking into account that any two distinct maximal subintervals in the family I are disjoint and have diameter > D ,
we conclude that the family I is finite. It remains to show that D(x) = ⋃

I . Assuming the converse, we could find a point
x0 ∈ D(x)\⋃

I and a neighborhood (a1,b1) ⊂ I \⋃
I of the point x0 in I \{a,b} such that diam(a1,b1) < D . The intersection

(a1,b1) ∩ D(x) contains no non-degenerate subinterval and hence is nowhere dense in (a1,b1). The obtuse property of
the metric d guarantees the existence of two points x1, x2 ∈ (a1,b1) such that d(x1, x2) > max{d(x1, x0),d(x2, x0)}. Since
D(x) ∩ (a1,b1) is nowhere dense we can additionally assume that x1, x2 /∈ D(x). Then for the quadruple of the points
x0, x1, x2, x3 = x we get

d(x1, x2) > max
{

d(x1, x0),d(x2, x0)
}
,

d(x1, x3) = d(x1, x) > D = max
{

d(x1, x0),d(x3, x0)
}

and

d(x2, x3) = d(x2, x) > D = max
{

d(x3, x0),d(x2, x0)
}
,

witnessing the failure of the Nagata property NP1 for the metric d.
(2) Given two points x, y ∈ V with d(x, I) �= d(y, I) we should prove that d(x, y) � max{d(x, I),d(y, I)}. Assume con-

versely, that d(x, y) < max{d(x, I),d(y, I)}. Without loss of generality d(x, I) < d(y, I). By the preceding item, the set

D(x) = {
z ∈ I: d(x, z) = d(x, I)

}
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contains two points x1, x2 with d(x1, x2) > d(x, I). Now we see that the quadruple of the points x0 = x, x1, x2, x3 = y satisfies
the inequalities

d(x1, x2) > d(x, I) = max
{

d(x0, x1),d(x0, x2)
}
,

d(x1, x3) � d(y, I) > max
{

d(x0, x1),d(x0, x3)
}
,

d(x2, x3) � d(y, I) > max
{

d(x0, x2),d(x0, x3)
}
,

witnessing that the metric d fails to have the Nagata property NP1. �
By an argument similar to that from Theorem 1.3, we apply Proposition 5.1 to prove the following

Corollary 5.2. Let X be a locally connected NP1-metric space X and I ⊂ X is an obtuse arc with endpoints a,b. Then the set I \ {a,b}
is open in X.
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