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1. Introduction

This paper is devoted to one of the possible approaches to the problem posed by Arhangel’skiı̆ [1] concerning existence of
a Lindelöf topological group with non-Lindelöf square. This approach is based on the recent deep result of Moore [7] assert-
ing that there exists an L-space in ZFC. We recall that an L-space is a regular hereditarily Lindelöf non-separable topological
space. The connection between L-spaces and preservation of Lindelöfness by finite powers is given by the following result,
which is a corollary of [10, Theorem 7.10] and its proof:

Theorem 1.1. Suppose that X is a regular topological space with countable tightness and Y is a non-separable subspace of X . If all
finite powers of X are Lindelöf, then there exist a c.c.c. poset P and a family D of dense subsets of P of size |D| = ω1 such that if there
exists a filter G ⊂ P meeting each D ∈ D, then Y has an uncountable discrete subspace.

Consequently, if MAω1 holds and X is a regular topological space with countable tightness containing an L-subspace, then some of
the finite powers of X are not Lindelöf.

The L-space constructed in [7] is a subspace of Σω1 , the Σ-product of ω1 many circles. It is well known [3] that all
finite powers of this Σ-product have countable tightness. Theorem 1.1 suggests the following open question.
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Question 1.2. Let L be the L-space constructed in [7]. Is the subgroup of Σω1 generated by L a Lindelöf group? More generally, can L
be embedded into a Lindelöf subgroup G of Σω1 ?

The L-space constructed in [7] remains an L space in extensions by a wide class of forcing notions containing all c.c.c.
ones. Therefore if the answer to Question 1.2 is positive, i.e. L can be embedded into a Lindelöf subgroup G of Σω1 , then
Theorem 1.1 would imply that some of the finite powers of G are not Lindelöf in ZFC.

In this paper we make a step towards the solution of Question 1.2. Using the ideas of [7], we show in Section 2 that the
subsemigroup of Σω1 generated by L is an L-space. Thus there exists an L-semigroup with cancellation, which seems to
have not been noted elsewhere. On the other hand, the group generated by L contains a copy of the one-point compactifi-
cation of the discrete space of size ω1, and hence is not hereditarily Lindelöf.1 In Section 3 we prove that the subgroup of
the Tychonoff product of ω1-many circles generated by the union of L and certain meager σ -compact subspace is Lindelöf,
which speaks for the positive answer to Question 1.2. However, this group has uncountable tightness, and consequently it
is not within the scope of applications of Theorem 1.1.

The authors were able to find only two consistent examples of a Lindelöf group G with non-Lindelöf square in the
literature, see [5] and [11]. Malykhin’s example is constructed under cof(M) = ω1 in terms of [2], while Todorčević uses
the additional assumption that there exists a countably additive measure extending the Lebesgue measure and which is
defined on all sets of reals. Both of these assertions contradict Martin’s axiom. The existence of such a group G is also
consistent with MA: Soukup [8] constructed a model of ZFC + MA which contains an L-group of countable tightness (an
L-group is a topological group whose underlying topological space is an L-space). Therefore Theorem 1.1 implies that some
of the finite powers of G are not Lindelöf.

All spaces considered here are assumed to be Tychonoff.

2. L-semigroups with cancellation

We briefly discuss Theorem 1.1 before passing to L-semigroups.

Proof sketch of Theorem 1.1. The direct application of [10, Theorem 7.10] gives Theorem 1.1 only for spaces X such that all
finite powers of X have countable tightness. However for a pair X, Y of spaces satisfying the premises of Theorem 1.1 one
can easily construct a continuous map f : X → Σω1 such that f (Y ) is not separable, see, e.g., the proof of [6, Corollary 2.3].
Since all finite powers of f (X) have countable tightness, we can apply to f (X), f (Y ) the same argument as in the proof of
[10, Theorem 7.10] and then pull the conclusion back to X, Y . This way we get Theorem 1.1. �

In the rest of this section we follow the notations from [7]. Developing the ideas of Todorčević [9], Moore considered
the function osc : {(α,β) ∈ ω2

1: α < β} → ω having strong combinatorial properties. We shall give more detailed definition
of this function in Example 3.1. For the purposes of this section the following fundamental result is sufficient.

Theorem 2.1. ([7, Theorem 4.3]) For every uncountable families of pairwise disjoint sets A ⊂ [ω1]k and B ⊂ [ω1]l and every n ∈ ω,
there exist a ∈ A and bm ∈ B, m < n, such that for all i < k, j < l, and m < n:

a < bm and osc
(
a(i),bm( j)

) = osc
(
a(i),b0( j)

) + m.

(Here a < b means max a < min b.)
Let (zα)α<ω1 be a sequence of points on the circle T = {z ∈ C: |z| = 1} which are rationally independent. (We consider

T as a subgroup of C \ {0} with the multiplication.) Given any α < β < ω1, set o(α,β) = zosc(α,β)+1
α . We define wβ ∈ T

ω1

by letting

wβ(α) =
{

o(α,β), if α < β,

1, otherwise.

It was showed in [7, Theorem 7.11] that for every uncountable X ⊂ ω1 the space L X = {wβ |X: β ∈ X} is an L-space. The
methods developed in [7] allow one to slightly extend this result.

For a subset A of a group G , we denote by sgrp(A) and grp(A) the smallest subsemigroup and subgroup of G contain-
ing A, respectively. In particular, sgrp(L X ) stands for the subsemigroup of T

X generated by L X . A semigroup with cancellation
is a semigroup H such that both of the equalities hh′ = hh′′ and h′′h = h′h imply h′ = h′′ , where h,h′,h′′ ∈ H .

Theorem 2.2. For every uncountable X ⊂ ω1 the subspace sgrp(L X ) of T
X is an L-space. In particular, sgrp(L X ) is an L-subsemigroup

of T
X with cancellation.

1 J. Moore informed us in a private communication that it is unlikely that his ideas can help to construct ZFC-examples of L-groups.
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The following classical result independently proved by Kronecker and Tchebychef will be useful.

Theorem 2.3. Suppose that zi , i < k, are elements of T which are rationally independent. For every ε > 0 there exists a natural number
nε such that if u, v ∈ T

k, then there is an m < nε such that |ui zm
i − vi | < ε for all i < k.

The next proposition resembles [7, Theorem 5.6].

Proposition 2.4. Let A ⊂ [ω1]k and B ⊂ [ω1]l be uncountable families of pairwise disjoint sets. Then for every sequence (Ui)i<k
of open subsets of T, every partitions k = u0 � u1 and l = v0 � v1 , and arbitrary sequence (n j) j<l of integers with the property∑

j∈vr
n j �= 0 for all r ∈ 2, there exist a ∈ A and b ∈ B such that a < b and
∏
j∈vr

o
(
a(i),b( j)

)n j ∈ Ui

for all i ∈ ur and r ∈ 2.

Proof. There is no loss of generality in assuming that Ui is an ε-ball around a point ti for some fixed ε > 0. Set Nr =∑
j∈vr

n j , r ∈ 2, and let δ = ε/max{|N0|, |N1|}. Passing to an uncountable subset of A, if necessary, we may additionally
assume that the numbers nδ given by Theorem 2.3 for the sequence za(i) , i ∈ k, are the same for all a ∈ A.

Let a ∈ A and bm ∈ B, m < nδ , be such as in Theorem 2.1, i.e. for all i < k, j < l, and m < N we have a < bm and
osc(a(i),bm( j)) = osc(a(i),b0( j)) + m. For each r ∈ 2 and i ∈ ur put t′

i = ∏
j∈vr

o(a(i),b0( j))n j . Let t′′
i be such that the Nr -th

power of t′′
i equals tit′

i
−1, and let W i be the δ-ball around t′′

i , where i ∈ k. By the definition of nδ , there exists m < nδ such
that

zm
a(i) ∈ W i

for all i < k. Set b = bm . Then∏
j∈vr

o
(
a(i),b( j)

)n j ∈
∏
j∈vr

o
(
a(i),b0( j)

)Nr zm·Nr
a(i) ⊂ t′

i W
Nr
i .

The W i ’s were chosen in such a way that W Nr
i is a subset of the ε-ball around tit′

i
−1. This completes our proof. �

The following proposition is reminiscent of [7, Theorem 7.10].

Proposition 2.5. If X, Y ⊂ ω1 are disjoint, then there is no continuous injection of any uncountable subspace of sgrp(L X ) into LY .

Proof. Suppose to the contrary that such an injection g of an uncountable subset Q of sgrp(L X ) into LY exists. Passing
to an uncountable subset of Q , if necessary, we may assume that there exist m ∈ ω, a 	-system C of subsets of X of size

m with a root d, and a sequence (n′
j) j<m of positive integers, such that sc = ∏

j∈m w
n′

j

c( j) ∈ Q and g : sc 	→ w f (c) , where
f : C → Y is an injection. It is also clear that there is no loss of generality in assuming that d = ∅.

For each ξ < ω1, let cξ ∈ C and ζξ ∈ Y be such that f (cξ ) > ζξ and if ξ < ξ ′ , then cξ < ζξ ′ . Let Θ ⊂ ω1 be uncountable
such that for some open neighborhood V ⊂ T, w f (cξ )(ζξ ) /∈ V̄ for all ξ ∈ Θ .

Applying the continuity of g at sc to Wξ = {w ∈ LY : w(ζξ ) /∈ V̄ }, we can find a basic open neighborhood Uξ of scξ in Q
such that g(Uξ ) ⊂ Wξ . Applying the 	-system lemma [4, Theorem 1.6] and the second countability of T again, we see that
there exist k0 ∈ ω, an uncountable Θ ′ ⊂ Θ , open neighborhoods (U ′

i)i∈k0 in T, and aξ ∈ [X]k0 such that for all ξ ∈ Θ ′:

(i) {aξ : ξ ∈ Θ ′} is a 	-system with a root a;
(ii) the set {w ∈ Q : ∀i < k0 (w(aξ (i)) ∈ U ′

i)} contains scξ and is a subset of Uξ ;
(iii) |cξ ∩ f (cξ )| does not depend on ξ ; and
(iv) |(aξ \ a) ∩ ζξ | does not depend on ξ .

Let A be the collection of all aξ ∪ {ζξ } \ a, ξ ∈ Θ ′ , and let k be the size of elements of A. Let also B be the collection of
all cξ ∪ { f (cξ )}, where ξ ∈ Θ ′ , and l = m + 1.

Now, let k = u0 �u1 and l = v0 � v1 be the partitions of k and l defined as follows: u1 = {|(aξ \a)∩ζξ |}, v1 = {|cξ ∩ f (cξ )|},
u0 = k \ u1, and v0 = k \ v1 (conditions (iv) and (iii) mean that the partitions do not depend on a particular ξ ∈ Θ ′). For
every j ∈ l we put

n j =
⎧⎨
⎩

n′
j, if j < |cξ ∩ f (cξ )|,

1, if j = |cξ ∩ f (cξ )|,
n′ , if j > |cξ ∩ f (cξ )|.
j−1
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Finally, for every i ∈ k we define Ui as follows:

Ui =
⎧⎨
⎩

U ′
i+|a|, if i < |(aξ \ a) ∩ ζξ |,

V , if i = |(aξ \ a) ∩ ζξ |,
U ′

i+|a|−1, if i > |(aξ \ a) ∩ ζξ |.
Applying Proposition 2.4, it is possible to find ξ < ξ ′ ∈ Θ ′ such that

a = aξ ∪ {ζξ } < cξ ′ ∪ {
f (cξ ′)

} = b and∏
j∈vr

o
(
a(i),b( j)

)n j ∈ Ui for all i ∈ ur and r ∈ 2.

The Ui ’s and n j ’s were defined in such a way that the second condition under r = 1 gives w f (cξ ′ )(ζξ ) ∈ V , and for r = 0
this gives

scξ ′
(
aξ (i)

) =
∏
j∈m

wcξ ′ ( j)
(
aξ (i)

)n′
j ∈ U ′

i

for all i � |a|, while for i < |a| the above trivially holds by (i) and (ii). But now scξ ′ ∈ Uξ even though g(scξ ′ )(ζξ ) =
w f (cξ ′ )(ζξ ) ∈ V , contradicting the choice of Uξ . The proof is thus finished. �
Proof of Theorem 2.2. The “+1” in the definition of the function o clearly ensures that the closure in sgrp(L X ) of any
countable subset of sgrp(L X ) is countable. Indeed, suppose that H is a countable subset of L X and α ∈ ω1 is such that
α > ξ for all ξ with wξ |X ∈ H . Thus t(γ ) = 1 for every t ∈ sgrp(H) and γ � α. Let us fix s = ∏

i�n wmi
ξi

|X ∈ sgrp(L X ).
Without loss of generality, ξ0 < ξ1 < · · · < ξn and mn �= 0. If ξn > α,

s
(
max{α, ξn−1}

) = z
mn(osc(max{α,ξn−1},ξn)+1)

max{α,ξn−1} �= 1,

and consequently s is not in the closure of sgrp(H).
Therefore, if sgrp(L X ) were not hereditarily Lindelöf, it would contain an uncountable discrete subspace Q . The above

means that for every q ∈ Q there exists a basic open subset Uq � q of T
ω1 such that Uq ∩ Q = {q}. Since each Uq depends

on finitely many coordinates, we can find an uncountable Y ⊂ X such that |ω1 \ Y | = ω1 and Q |Y = {q|Y : q ∈ Q } is still
discrete. Then any injection g : Q |Y → Lω1\Y is continuous, which contradicts Proposition 2.5. �

The following technical statement will be crucial in the next section.

Corollary 2.6. Let C ⊂ [ω1]l be an uncountable family of pairwise disjoint sets and (n j) j<l be a sequence of integers with
∑

j<l n j �= 0.
Then for every X ⊂ ω1 such that

⋃
C ⊂ X, the subspace

{∏
j<l

w
n j

c( j)

∣∣X: c ∈ C
}

of ΣX is hereditarily Lindelöf.

Proof. Almost literal repetition of the proof of Proposition 2.5 (just a couple of the first lines should be omitted) gives us
that there is no continuous injection from any uncountable subspace of {∏ j<l w

n j

c( j)|X: c ∈ C} into LY provided Y ∩⋃
C = ∅.

Now it suffices to apply the same argument as in the proof of Theorem 2.2. �
In the same way we can also prove the following proposition, which shows that it is essential in Theorem 1.1 to consider

finite powers and not just finite products.

Proposition 2.7. For every finite family {X0, . . . , Xn} of uncountable pairwise disjoint subsets of ω1 , the product sgrp(L X0) × · · · ×
sgrp(L Xn ) is an L-space.

On the other hand, it is easy to prove that grp(L X ) is not hereditarily Lindelöf. We shall use the following consequence
of [7, Proposition 7.13].

Proposition 2.8. For every β < ω1 the set {wξ |β: ξ < ω1} is countable.
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For a cardinality τ we denote by A(τ ) the one-point compactification of the discrete space of size τ . The following
proposition corresponds to [7, Theorem 7.2].

Proposition 2.9. grp(L X ) contains a copy of A(ω1).

Proof. Using Proposition 2.8 we can construct two increasing transfinite sequences (ξβ)β<ω1 and (ζβ)β<ω1 of ordinals with
the following properties:

(i) ζβ > ξβ for all β < ω1;
(ii) ξβ ′ > ζβ for all β < β ′ < ω1; and

(iii) wξβ′ | sup{ζβ : β < β ′} = wζβ′ | sup{ζβ : β < β ′} for all β ′ < ω1.

A direct verification shows that {wζβ · w−1
ξβ

: β < ω1} ∪ {0} is a copy of A(ω1). �
3. An example of a Lindelöf group

In this section we shall construct an example of a Lindelöf group G containing L X of the form grp(L X ∪ K ) for a meager
σ -compact subgroup K of T

ω1 defined below. This group has uncountable tightness, and hence Theorem 1.1 cannot be
used here to deduce that Gn is not Lindelöf for some n ∈ ω. We do not know whether all finite powers of the group G
constructed in Example 3.1 are Lindelöf.

Let

K = {(
zpα
α

)
α<ω1

: ∀α < ω1 (pα ∈ Z) ∧ (
sup

{|pα |: α < ω1
}

< ∞)}
.

It is clear that K is a meager σ -compact subgroup of T
ω1 . In addition, [7, Theorem 7.14] implies that L X ∩ prX K is at most

countable for every X ∈ [ω1]ω1 .

Example 3.1. Let X be an uncountable subset of ω1 and G = grp(L X ) · prX K . Then G is Lindelöf.

First we shall prove some auxiliary statements. At this point we need to go a bit deeper into the construction of the
function o, see [7, Section 2]. Summarizing Facts 1 and 2 from [7] we conclude that there exists a function L : {(α,β) ∈
ω2

1: α � β} → [ω1]<ω with the following properties:

(i) L(α,β) ⊂ α and L(α,β) = ∅ if and only if α = 0 or α = β;
(ii) if α � β � γ and L(β,γ ) < L(α,β), then L(α,γ ) = L(β,γ ) ∪ L(α,β); and

(iii) if β is limit, then limα→β min L(α,β) = β .

The definition of o also involves such a standard object as a coherent sequence of functions, i.e. a sequence (eα)α∈ω1 such
that eα : α → ω, eα is finite-to-one, and for arbitrary α < β , the set {ξ < α: eα(ξ) �= eβ(ξ)} is finite. Now, osc(α,β) is the
cardinality of the set Osc(eα, eβ, L(α,β)) defined as follows:

{
ξ ∈ L(α,β) \ min L(α,β): eα

(
ξ−) = eβ

(
ξ−) ∧ eα(ξ) > eβ(ξ)

}
,

where ξ− is the greatest element of L(α,β) smaller than ξ .

Lemma 3.2. Let a ∈ [ω1]k and (ni)i∈k be a finite sequence of integers with the property
∑

i∈k ni = 0. Then the set {∑i∈k osc(α,a(i)) ·
ni: α < a(0)} is finite.

Proof. Assuming the converse, we can find an ordinal η � a(0) and a sequence (ξn)n∈ω of ordinals converging to η such
that ξn < ξn+1 and |∑i∈k osc(ξn,a(i)) · ni | � n. Let γ0, γ1 < η be such that L(η,a(i)) < γ0 for all i ∈ k and L(γ ,η) > γ0 for
all γ1 � γ < η, and ea(i)|(γ0, η) = ea( j)|(γ0, η) for all i, j ∈ k (this can be done by the facts above). Then for every i ∈ k
and γ1 � γ < η, L(γ ,a(i)) = L(γ ,η) ∪ L(η,a(i)), and hence Osc(eγ , ea(i), L(γ ,a(i))) = Osc(eγ , ea(i), L(η,a(i)) ∪ L(γ ,η)). Let
qγ = Osc(eγ , ea(i), L(γ ,η)) (it does not depend on i by our choice of γ1). Therefore

∣∣Osc
(
eγ , ea(i), L

(
γ ,a(i)

))∣∣ = ∣∣Osc
(
eγ , ea(i), L

(
η,a(i)

))∣∣ + qγ + sγ ,

where sγ ∈ {0,1} is the number indicating whether min L(γ ,η) is included into

Osc
(
eγ , ea(i), L

(
γ ,a(i)

)) = Osc
(
eγ , ea(i), L

(
η,a(i)

) ∪ L(γ ,η)
)

or not. Set M = maxi∈k |L(η,a(i))|. Then for every γ ∈ (γ1, η) we have
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∣∣∣∣
∑
i∈k

osc
(
γ ,a(i)

) · ni

∣∣∣∣ =
∣∣∣∣
∑
i∈k

∣∣Osc
(
eγ , ea(i), L

(
γ ,a(i)

))∣∣ · ni

∣∣∣∣

=
∣∣∣∣
∑
i∈k

(∣∣Osc
(
eγ , ea(i), L

(
η,a(i)

))∣∣ + qγ + sγ
) · ni

∣∣∣∣

=
∣∣∣∣
∑
i∈k

∣∣Osc
(
eγ , ea(i), L

(
η,a(i)

))∣∣ · ni +
∑
i∈k

qγ · ni +
∑
i∈k

sγ · ni

∣∣∣∣

=
∣∣∣∣
∑
i∈k

∣∣Osc
(
eγ , ea(i), L

(
η,a(i)

))∣∣ · ni +
∑
i∈k

sγ · ni

∣∣∣∣ � (kM + 1)
∑
i∈k

|ni |,

which is a contradiction. �
Proof of Example 3.1. Assuming that G is not Lindelöf, we can find an increasing family {Uα: α < ω1} of open subsets of
T

X covering G and an element gα ∈ G \ Uα . Using the standard 	-system argument, we can find an uncountable family
B ⊂ [X]l of pairwise disjoint sets, a sequence (n j) j<l of integers, x ∈ grp(L X ), and {yb: b ∈ B} ⊂ prX K such that

x ·
{∏

j∈l

w
n j

b( j) · yb: b ∈ B

}
⊂ {gα: α < ω1},

and hence2 the intersection(
x ·

{∏
j∈l

w
n j

b( j): b ∈ B

}
· prX K

)
∩ {gα: α < ω1}

is uncountable. Two cases are possible:
Case 1.

∑
j∈l n j �= 0. In this case Corollary 2.6 implies that {∏ j∈l w

n j

b( j): b ∈ B} is hereditarily Lindelöf, hence x ·
{∏ j∈l w

n j

b( j): b ∈ B} · prX K is Lindelöf being a continuous image of a product of a Lindelöf space with a σ -compact, and
therefore this set is contained in some Uξ , which contradicts the fact that it contains uncountably many gα ’s.

Case 2.
∑

j∈l n j = 0. Passing to an uncountable subset of B , if necessary, we can additionally assume that B = {bξ : ξ <

ω1} and bξ > bη provided that η < ξ . Let y′
b(α) = ∏

j∈l w
n j

b( j)(α) if α < b(0), and y′
b(α) = 1 otherwise, where b ∈ B . Applying

Lemma 3.2, we conclude that y′
b ∈ K for all b ∈ B . In addition, it is easy to see that C = {∏ j∈l w

n j

bξ ( j) · (y′
bξ

)−1: ξ < ω1} ∪ {1}
is a copy of A(ω1). Therefore

x ·
{∏

j∈l

w
n j

b( j): b ∈ B

}
· prX K = x ·

{∏
j∈l

w
n j

b( j) · (y′
b

)−1 · y′
b: b ∈ B

}
· prX K ⊂ x · C · prX K · prX K ,

and the latter set is a σ -compact subset of G , and hence it is contained in some Uα , which is a contradiction. �
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