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Abstract

Bredon has constructed a 2-dimensional compact cohomology manifold which is not homologically locally connected, with
respect to the singular homology. In the present paper we construct infinitely many such examples (which are in addition metrizable
spaces) in all remaining dimensions n � 3.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

We begin by fixing terminology, notations and formulating some elementary facts. We shall use singular homology
Hn, singular cohomology Hn and Čech cohomology Ȟ n groups with integer coefficients Z. By HLC and clc spaces
we shall denote homology and cohomology locally connected spaces with respect to singular homology and Čech
cohomology, respectively. The general references for terms undefined in this paper will be [3–6,8,16].

Definition 1.1. (Cf. [3, Corollary 16.19, p. 377].) A finite-dimensional cohomology locally connected space X is an
n-dimensional cohomology manifolds (n-cm) if

Ȟ p
(
X,X \ {x}) =

{
Z, for p = n,

0, for p �= n,

for all x ∈ X.

We denote the segment [0,1] by I, the n-dimensional cube by I
n, and the quotient space of a space X by its subset

B by X/B . The double d(X,B) of X with respect to B is the quotient space of the product X × {0,1}, where {0,1}
is the two point set, by identification of the points (x,0) with (x,1) for every x ∈ B .
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Definition 1.2. (Cf. [3, Theorem 16.27, p. 385].) A space X is said to be a cohomology manifold with boundary B if
B is a closed nowhere dense subspace of X and the double d(X,B) is a cohomology n-manifold.

Bredon constructed a 2-dimensional compact cohomology manifold which is not homologically locally connected
(non-HLC) space [3, Example 17.13, p. 131]. Every metrizable 2-dimensional locally compact cohomology manifold
is a topological 2-manifold and therefore it is a HLC space (see e.g. [3, Theorem 16.32, p. 388]).

The main goal of the present paper is to construct for all remaining dimensions n � 3, infinitely many n-di-
mensional compact metrizable cohomology manifolds which are not homologically locally connected.

Main Theorem 1.3. Let Mn be an n-dimensional compact manifold (possibly with boundary), n � 3. Then there
exists a compact subset C of the interior int(Mn) of Mn such that the quotient space Mn/C is a non-homologically
locally connected n-dimensional metrizable cohomology manifold.

2. Preliminaries

Let G be any multiplicative (in general non-Abelian) group. By the commutator of two elements a, b ∈ G we mean
the following product [a, b] = a−1b−1ab ∈ G. Let Gn be the lower central series of G which is defined inductively:
G1 = G,Gn+1 = [Gn,G], where [Gn,G] is the normal subgroup of G generated by the following set of commutators:
{[a, b]: a ∈ Gn,b ∈ G}.

If F is a free group, the factor group F/Fn is called a free nilpotent group. Let A ∗ B be the free product of groups
A and B . Every non-neutral element x of A ∗ B is then uniquely expressible in the reduced form as x = u1u2 · · ·un,
where all ui ∈ A ∪ B are non-neutral elements of the groups A and B , and if ui ∈ A then ui+1 ∈ B (if ui ∈ B then
ui+1 ∈ A, respectively), for i ∈ {1,2, . . . , n − 1}.

Following Rhemtulla [14, p. 578], we define for an element b ∈ B of order > 2 the mapping wb :A ∗ B → Z as
follows: Let (x, b) denote the multiplicity of b in x, i.e. the number of occurrences of b in the reduced form of x.
Similarly, let (x, b−1) be the multiplicity of b−1 in x. Write wb(x) = (x, b) − (x, b−1). For example, let a be an
element of group A order of which is > 2. Then

wb

([ab, ba]) = w
(
b−1a−1a−1b−1ab2a

) = −2. (1)

By the commutator length of g ∈ G, denoted by cl(g), we denote the minimal number of the commutators of the
group G whose product is equal to g. If such a number does not exist then we set cl(g) = ∞. We also set cl(e) = 0
for the neutral element e of the group g ∈ G. Obviously,

cl(g) = ∞ if and only if g /∈ G2,

cl(g1g2) � cl(g1) + cl(g2) (2)

or, equivalently (since cl(g−1) = cl(g))

cl(g2) − cl(g1) − cl(g3) � cl(g1g2g3). (3)

If ϕ :G → G′ is a homomorphism of groups then for every g ∈ G,

cl
(
ϕ(g)

)
� cl(g). (4)

For any path connected space X, the fundamental group π1(X) does not depend on the choice of the base point and
H1(X) is isomorphic to the factor group π1(X)/[π1(X),π1(X)]. If g is a loop in the space X then by [g] we denote
the corresponding element of the fundamental group π1(X).

For the construction of examples and proofs of their asserted properties we shall need some general facts:

Proposition 2.1. (See [10, Proposition 3.4].) The lower central series {Fn} of any free group F has a trivial intersec-
tion, i.e.

⋂∞
n=1 Fn = {e}.

Proposition 2.2. (See [12, Theorem 1.5].) Every free nilpotent group is torsion-free.
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Proposition 2.3. (See [11, Exercise 2.4.13].) Let F be any free group on two generators a, b. Then the subgroup F2
is freely generated by the commutators [an, bm], where n and m are non-zero integers.

Suppose that b ∈ B and its order is > 2. The main properties of the function wb of Rhemtulla which are necessary
for our proofs are formulated in the following three propositions:

Proposition 2.4. (See [14, p. 579].) For any elements x ∈ A and y ∈ B∣∣wb(xy)
∣∣ �

∣∣wb(x)
∣∣ + ∣∣wb(y)

∣∣ + 3.

Proposition 2.5. (See [14, p. 579].) For any commutator [x, y], x ∈ A and y ∈ B , |wb([x, y])| � 9.

By induction, using Propositions 2.4 and 2.5, one gets the following:

Proposition 2.6. (See [14, p. 579].) For any k commutators [xi, yi], xi ∈ A and yi ∈ B , i = 1,2, . . . , k,∣∣∣∣∣wb

(
k∏

i=1

[xi, yi]
)∣∣∣∣∣ � 12k − 3.

Proposition 2.7. Let A ∗ B be the free product of groups A and B . Let a ∈ A and b ∈ B be arbitrary elements of
order > 2. Then sup(cl([ab, ba]n): n ∈ N) = ∞.

Proof. Suppose that sup(cl([ab, ba]n): n ∈ N) = k. Then for all n the element [ab, ba]n is a product of � k com-
mutators. It follows by Proposition 2.6 that |wb([ab, ba]n)| � 12k − 3. On the other hand since the word [ab, ba]
is cyclicaly reduced, we have the equality wb([ab, ba]n) = −2n which generalizes the equality (1) (cf. [14, Proof of
Lemma 2.28, p. 579] and [14, Proof of Lemma 2.26, Case 1, p. 578]). If n is large enough then |−2n| > 12k − 3 and
we get a contradiction. �
Remark 2.8. If the order of the element b is 2 or, more generally, if b2a = ab2 in a group G then [a, b]2n =
[[a, b]−n, b] and [a, b]2n+1 = [a[a, b]−n, b], i.e. cl([a, b]2n) = 1 = cl([a, b]2n+1) for every n.

Proof. Since [a, b] = b−1[a, b]−1b it follows that [a, b]n = b−1[a, b]−nb. By multiplying both sides of the equality
by [a, b]n we get [a, b]2n = [[a, b]−n, b]. Since b[a, b]n = [a, b]−nb and [a, b]2n+1 = [a, b]na−1b−1ab[a, b]n we get
[a, b]2n+1 = [a[a, b]−n, b]. �
Proposition 2.9. (Borsuk [1].) Consider a triple of continua Ŵ ⊃ W ⊃ X where the space W is a strong deformation
retract of Ŵ . Then the quotient space W/X is a strong deformation retract of Ŵ/X. In particular, W/X and Ŵ/X

then have the same homotopy type.

3. Construction of compactum C

Let P be any inverse sequence of finite polyhedra with piecewise-linear bonding mappings:

P0
f0←− P1

f1←− P2
f2←− · · · .

We denote the infinite mapping cylinder of P by C(f0, f1, f2, . . .) (cf. [15]) and we denote the natural compactifi-
cation of this infinite mapping cylinder by lim←−P with the symbol P̃ (cf. [9]). Let C(f0, f1, f2, . . .)

∗ be the one-point
compactification of the infinite mapping cylinder. Denote the compactification point by p∗. Obviously, the quotient
space P̃ by lim←−P is homeomorphic to C(f0, f1, f2, . . .)

∗.

Proposition 3.1. (See [9].) If P0 is a point then P̃ is an absolute retract (AR).



1172 U.H. Karimov, D. Repovš / Topology and its Applications 155 (2008) 1169–1174
Proposition 3.2. Suppose that in the inverse sequence P the dimensions of all polyhedra are � n and let P0 be a
one-point space. Consider lim←−P as a subspace of the cube I

2n+1. Then the quotient space I
2n+1 by lim←−P is homotopy

equivalent to C(f0, f1, f2, . . .)
∗.

Proof. Obviously dim P̃ � n+ 1 and therefore P̃ is embeddable into I
2n+3. According to Proposition 3.1, P̃ is an AR

and therefore a strong deformation retract of any AR which contains it. In particular, P̃ is a strong deformation retract
of I

2n+3.
Applying now Borsuk Theorem 2.9 to the triple I

2n+3 ⊃ P̃ ⊃ lim←−P , we can conclude that the quotient space of
I

2n+3 by lim←−P is homotopy equivalent to the quotient space P̃ by lim←−P , i.e. to the space C(f0, f1, f2, . . .)
∗.

The homotopy type of the quotient space I
2n+3/ lim←−P does not depend on the embedding of lim←−P to I

2n+3, by The-
orem 2.9 and West and Klee [2]. Therefore, applying again Theorem 2.9 to the triple I

2n+3 ⊃ I
2n+1 ⊃ lim←−P , we can

conclude that I
2n+3/ lim←−P is homotopy equivalent to I

2n+1/ lim←−P and thus I
2n+1/lim←−P � C(f0, f1, f2, . . .)

∗. �
Suppose that P0 is a singleton and that for n > 0 Pn is a bouquet of 4 oriented circles with the base point pn.

The fundamental group π1(Pn) is a free group with natural generators xn,1, xn,2, xn,3, xn,4. Consider π1(Pn) as a free
product of free groups F(xn,1;xn,2) and F(xn,3;xn,4). Let yn,1, yn,2 and yn,3, yn,4 be free generators of the commu-
tator subgroups of the groups F(xn,1;xn,2) and F(xn,3;xn,4), respectively. For example, according to Proposition 2.3
we can suppose that: yn,1 = [xn,1, xn,2], yn,2 = [x2

n,1, x
2
n,2], yn,3 = [xn,3, xn,4], yn,4 = [x2

n,3, x
2
n,4].

Suppose that f0 is a trivial mapping and that for n > 0, the mapping fn :Pn+1 → Pn is piecewise-linear and such
that fn(pn+1) = (pn) and fn�(xn+1,i ) = yn,i , for i = 1,2,3,4, where fn� is a homomorphism of the corresponding
fundamental groups induced by fn. All homomorphisms fn� are monomorphisms since by our choice the elements
yn,1, yn,2 and yn,3, yn,4 are free generators. Therefore we can consider the elements xn,i for i = 1,2,3,4 as elements
of the group

F = Fx1,1;x1,2;x1,3;x1,4 . (5)

The 1-dimensional compactum C = lim←−P is embeddable into the interior (0,1)3 of the cube I
3. Hereafter we shall

fix such an embedding. Since yn,i belongs to the commutator subgroup of π1(Pn) and since dimPn = 1 it follows
that fn∗ :H∗(Pn+1) → H∗(Pn) is a trivial mapping. By the Universal Coefficient Theorem the mapping H ∗(Pn) →
H ∗(Pn+1) is also trivial and the following holds:

Ȟ ∗(C) ∼= Ȟ ∗(pt). (6)

4. Proof of Main Theorem

To prove Main Theorem 1.3 we must first prove the following:

Theorem 4.1. The 1-dimensional singular homology group of the quotient space I
3/C is uncountable.

Proof. Let In be the segment connecting pn+1 and pn in the space C(f0, f1, f2, . . .)
∗. Since fn� maps the groups

F(xn+1,1, xn+1,2) and F(xn+1,3, xn+1,4) to F(xn,1, xn,2) and F(xn,3, xn,4), respectively, the space C(f0, f1, f2, . . .)
∗

splits, i.e. it is the union of two closed subspaces, the intersection of which is the segment {p∗} ∪ (
⋃∞

i=0 In).
Suppose that H1(I

3/C) were countable. Then H1(C(f0, f1, f2, . . .)
∗) would also be countable, according to Propo-

sition 3.2. From the following Mayer–Vietoris exact sequence:

H1(P1) → H1
(
C(f0)

) ⊕ H1
(
C(f1, f2, f3, . . .)

∗) → H1
(
C(f0, f1, f2, . . .)

∗) → 0

it would then follow that the group H1(C(f1, f2, f3, . . .)
∗) is countable.

Define inductively a sequence of loops gn with the base point p1 ∈ C(f1, f2, f3, . . .)
∗. Let g1 be any loop in P1

representing a commutator of the group π1(P1). Suppose that the loops gi are defined for i � n − 1. Then define the
loop gn in the following way. Consider the set of loops g

ε1
1 g

ε2
2 g

ε3
3 · · ·gεn−1

n−1 , where every εi is equal to 0 or ±1. This
set is finite and therefore there exists the maximum of the commutator length of its elements. Call this number Kn.
We have

cl
([

g
ε1g

ε2g
ε3 · · ·gεn−1

])
� Kn. (7)
1 2 3 n−1



U.H. Karimov, D. Repovš / Topology and its Applications 155 (2008) 1169–1174 1173
Consider the elements xn,1, xn,3 as elements of the group F (see (5)). These are non-neutral elements of the com-
mutator subgroup and therefore by Proposition 2.1 there exists a finite number mn such that xn,1 /∈ Fmn and xn,3 /∈ Fmn .
Let Ymn = C(f1, f2, f3, . . .)

∗/C(fmn+1, fmn+2, fmn+3 . . .)∗. There is a homomorphism π1(Ymn) → F/Fmn . Since by
Proposition 2.2 the free nilpotent group F/Fmn has no torsion, it follows that the order of any element which does
not lie in the kernel of this homomorphism must be infinite. Therefore the orders of the natural elements x̃n,1 and x̃n,3
which correspond to xn,1 and xn,3 in π1(Ymn) are infinite.

The polyhedron Ymn splits in two finite polyhedra, therefore the group π1(Ymn) is a free product of two groups.
According to Proposition 2.7 there exists a number Ln such that

cl
([x̃n,1x̃n,3, x̃n,3x̃n,1]Ln

)
> 2Kn + n. (8)

Let gn be a loop in Pmn ∪ (
⋃mn−1

i=1 Ii) ⊂ C(f1, f2, f3, . . .)
∗ which represents the element [x̃n,1x̃n,3, x̃n,3x̃n,1]Ln .

Then by an inductive procedure we get a sequence of loops {gn: n ∈ N}.
Consider now the sequence ε of units and zeros: ε = (ε1, ε2, ε3, . . .). To every such sequence there corresponds

an element [gε] = [gε1
1 g

ε2
2 g

ε3
3 · · ·] of the group π1(C(f0, f1, f2, . . .)

∗). (Note that the infinite product of loops is not
always defined but in our case obviously there exists a loop gε such that its projection to the space Ymn is homotopy
equivalent to the projection of g

ε1
1 g

ε2
2 g

ε3
3 · · ·gεk

k for k � mn, and the element [gε] is well-defined.)
Since the set of all sequences of units and zeros is uncountable whereas by our hypothesis the group

H1(C(f1, f2, f3, . . .)
∗) is countable, it follows that there exist two elements [gε] and [gε′ ] generating the same

element in the homology group and such that εi �= ε′
i for an infinite set of indices {i}. The element [gε′ ][(gε)]−1

belongs to the commutator subgroup of π1(C(f1, f2, f3, . . .)
∗) or equivalently, it has a finite commutator length

cl([gε′ ][gε]−1) = k < ∞. Let n be a number such that

n > k (9)

and εn �= ε′
n. We can suppose that εn = 1 and ε′

n = 0. Consider the mapping Πn :π1(C(f1, f2, f3, . . .)
∗) → π1(Yn).

By (4) we have the following:

cl
(
Πn

([
gε′][

gε
]−1)) � k. (10)

On the other hand

Πn

([
gε′][

gε
]−1) = [

g
ε′

1
1 g

ε′
2

2 · · ·gε′
n−1

n−1

][gn]−1[g−εn−1
n−1 · · ·g−ε2

2 g
−ε1
1

]
.

By equality (3) we therefore have the following:

cl
([gn]

) − cl
([

g
ε′

1
1 g

ε′
2

2 · · ·gε′
n−1

n−1

]) − cl
([

g
−εn−1
n−1 · · ·g−ε2

2 g
−ε1
1

])
� cl

(
Πn

([
gε′][

gε
]−1))

. (11)

By (8) we have that cl([gn]) > 2Kn + n. By (7) we have also that

cl
([

g
ε′

1
1 g

ε′
2

2 · · ·gε′
n−1

n−1

])
� Kn

and

cl
([

g
−εn−1
n−1 · · ·g−ε2

2 g
−ε1
1

])
� Kn.

It follows that the left side of the inequality (11) is not less than (2Kn + n) − Kn − Kn = n. However, by (10) the part
on the right does not exceed k. We thus get a contradiction to (9). �
Corollary 4.2. The singular cohomology group H ∗of the space I

3/C is non-trivial.

Proof. Suppose that singular cohomology groups H 1 and H 2 of the space I
3/C were trivial. Then by the Universal

Coefficient Theorem for singular homology and cohomology it would follow that

Hom
(
H1

(
I

3/C
)
,Z

) = 0 and Ext
(
H1

(
I

3/C
)
,Z

) = 0.

Therefore by the Nunke Theorem (cf. [3, Theorem 15.6, p. 372] or [13]) it would follow that H1(I
3/C) = 0. This

would contradict Theorem 4.1. �
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Theorem 4.3. The space I
3/C is a non-homologically locally connected (non-HLC) 3-dimensional compact metriz-

able cohomology manifold with boundary.

Proof. For HLC paracompact spaces the singular cohomology and Čech cohomology are naturally isomorphic
[3, Theorem 1.1, p. 184]. The Čech cohomology of the space I

3/C is trivial—by the Vietoris–Begle Theorem and
since the Čech cohomology of the space C is trivial (see (6)), but singular cohomology is non-trivial, as it was shown
in Corollary 4.2. Therefore I

3/C is not an HLC space.
Other assertions of the theorem immediately follow by Wilder’s monotone mapping theorem (see [3, Theo-

rem 16.33, p. 389]). �
Remark 4.4. Theorem 4.3 shows that the statement of the first author in the paper [7] preceding theorem on page 531
(page 113 in English) should be corrected as follows: Every homologically locally connected (HLC) acyclic with
respect to Cech cohomology compactum is an acyclic space with respect to the singular, Borel–Moore, Steenrod–
Sitnikov, Vietoris and Čech homology.

Proof of Main Theorem. Since we can suppose that I
n/C ⊂ Mn/C and since the boundary of I

n/C is an (n − 1)-
dimensional sphere, n � 3, it follows by the Mayer–Vietoris exact sequence that H1(I

n/C) is isomorphic to the
subgroup of H1(M

n/C).
By Theorem 4.1, the group H1(I

n/C) is uncountable. Therefore

the group H1
(
Mn/C

)
is uncountable. (12)

Suppose that H1(M
n/C) were an HLC space. Then its Čech cohomology would be finitely generated, by Wilder’s

theorem (see e.g. [3, Theorem 17.4, p. 127]). Since for HLC spaces Čech and singular cohomology are isomorphic, it
would follow that H 1(Mn/C) and H 2(Mn/C) must be finitely generated. Then by the Universal Coefficient Formula
for singular homology and cohomology it would follow that the groups Hom(H1(M

n/C),Z) and Ext(H1(M
n/C),Z)

are finitely generated. It would then follow, by Bredon’s Theorem [3, Proposition 14.7, p. 367], that the group
H1(M

n/C) must be finitely generated and therefore countable. This contradicts (12). Hence the proof of Theorem 1.3
is completed. �
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