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We consider a definition of a weakly convex set which is a generalization of the notion
of a weakly convex set in the sense of Vial and a proximally smooth set in the sense of
Clarke, from the case of the Hilbert space to a class of Banach spaces with the modulus
of convexity of the second order. Using the new definition of the weakly convex set with
the given modulus of nonconvexity we prove a new retraction theorem and we obtain new
results about continuity of the intersection of two continuous set-valued mappings (one of
which has nonconvex images) and new affirmative solutions of the splitting problem for
selections. We also investigate relationship between the new definition and the definition
of a proximally smooth set and a smooth set.
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1. Introduction

We begin by some definitions for a Banach space (E,‖ · ‖) over R. Let Br(a) = {x ∈ E | ‖x − a‖ � r}. Let cl A denote the
closure and int A the interior of the subset A ⊂ E . The diameter of the subset A ⊂ E is defined as diam A = supx,y∈A‖x − y‖.
The distance from the point x ∈ E to the subset A ⊂ E is defined as �(x, A) = infa∈A‖x − a‖. For a subset A ⊂ E , let Ud(A)

be the open d-neighborhood of A, i.e.

Ud(A) = {
x ∈ E

∣∣ �(x, A) < d
}
.

The Hausdorff distance between two subsets A, B ⊂ E is defined as follows

h(A, B) = max
{

sup
a∈A

�(a, B), sup
b∈B

�(b, A)
}
.

We denote the convex hull of the set A by co A.

Definition 1.1. (See [2,10].) Let x0, x1 ∈ E , ‖x1 − x0‖ � 2d. The set

Dd(x0, x1) =
⋂

a∈E: {x0,x1}⊂Bd(a)

Bd(a)

is called a strongly convex segment of radius d, and the set
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Fig. 1.

Fig. 2.

Do
d(x0, x1) = Dd(x0, x1) \ {x0, x1}

is called a strongly convex segment of radius d without extreme points.

Definition 1.2. (See Vial [19] and Fig. 1.) A subset A of a normed space is called weakly convex (in the sense of Vial) with
constant R > 0, if for any pair of points x0, x1 ∈ A such that 0 < ‖x1 − x0‖ < 2R the set A ∩ Do

R(x0, x1) is nonempty.

Definition 1.3. (See Clarke et al. [7,8].) A subset A of a normed space E is called proximally smooth with constant d > 0, if
the distance function x → �(x, A) is Frechet differentiable on the tube Ud(A)\A.

Definition 1.4. (See Polyak [17].) Let E be a Banach space and let a subset A ⊂ E be convex and closed. The modulus of
convexity δA : [0,diam A) → [0,+∞) is the function defined by

δA(ε) = sup

{
δ � 0

∣∣∣ Bδ

(
x1 + x2

2

)
⊂ A, ∀x1, x2 ∈ A: ‖x1 − x2‖ = ε

}
.

It is obvious that δA(0) = 0.

Definition 1.5. (See Polyak [17] and Fig. 2.) Let E be a Banach space and let a subset A ⊂ E be convex and closed. If the
modulus of convexity δA(ε) is strictly positive for all ε ∈ (0,diam A), then we call the set A uniformly convex (with modulus
δA(·)).

We proved in [3] that every uniformly convex set A 
= E is bounded and if the Banach space E contains a nonsingleton
uniformly convex set A 
= E then it admits a uniformly convex equivalent norm. We also proved that the function ε →
δA(ε)/ε is increasing (see also [14, Lemma 1.e.8]), and for any uniformly convex set A 
= E there exists a constant C > 0
such that δA(ε) � Cε2 [3].

Let δE be the modulus of convexity for the Banach space E , i.e. the modulus of convexity for the closed unit ball in E .

Definition 1.6. Let E be a Banach space. Let a subset A ⊂ E be closed and d ∈ (0,diam A). The modulus of nonconvexity
γA : [0,d) → [0,+∞) is defined as
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Fig. 3.

γA(ε) = inf

{
γ > 0

∣∣∣ Bγ

(
x1 + x2

2

)
∩ A 
= ∅, ∀x1, x2 ∈ A: ‖x1 − x2‖ � ε

}

and γA(0) = 0.

It is easy to see that the modulus of nonconvexity is a nondecreasing function. Besides, we shall further suppose that
the modulus of nonconvexity is continuous from the right. Otherwise we shall redefine the modulus by continuity from the
right.

Definition 1.7. (See Fig. 3.) Let E be a Banach space, and let a subset A ⊂ E be closed. We shall call the set A weakly convex
with modulus of nonconvexity γA(ε), ε ∈ [0,d) (d � diam A), if the modulus of nonconvexity γA satisfies the inequality

0 � γA(ε) <
ε

2
, ∀ε ∈ [0,d).

It is obvious that the equality γA(ε) = 0 for all ε ∈ [0,diam A) means (for the closed set A) convexity of the set A.
Hereafter the text “weakly convex” means weakly convex in the sense of Definition 1.7.

Example 1.1. Let E = H be the Hilbert space and δH(ε) = 1 −
√

1 − ε2

4 be the modulus of convexity of H. A weakly convex
subset A ⊂ H with modulus γA(ε) = dδH(ε/d), ε ∈ [0,d), d > 0, is weakly convex in the sense of Vial with constant d and
proximally smooth with constant d (see [6–8,10,19], in particular [2]). These three properties are equivalent in the Hilbert
space.

The relationship between weak convexity in the sense of Vial and proximal smoothness of a set in a Banach space is
much more complicated (see [2] for details).

The next lemma is a simple consequence of similarity.

Lemma 1.1. (See [16, Lemma 2.7.1].) Let a space E be uniformly convex with modulus δE . Then for all x, y ∈ B1(0), such that ‖x− y‖ =
ε > 0, and for any β ∈ (0, 1

2 ] the following inequality holds

B2βδE (ε)

(
(1 − β)x + β y

) ⊂ B1(0).

Lemma 1.2. Let a space E be uniformly convex with modulus δE . Then for any ε,η such that 0 < ε/2 < η < ε < 2 the following
inequality holds

δE(η)

η
� δE(ε)

ε
− 2

ε − η

ε · η δE
(
r(ε)

)
,

where r(ε) = 1
4 ( ε

2 − δE (ε)).

By the Day–Nordlander theorem [9], δE (ε) � ε2

4 < ε/2 for all ε ∈ (0,2). Hence r(ε) > 0 for all ε ∈ (0,2).

Proof. Let’s fix ε ∈ (0,2), α ∈ (0, ε
4 − 1

2 δE (ε)) and λ ∈ (0,1). Choose points x1, x2 ∈ ∂ B1(0), such that ‖x1 − x2‖ = ε and
δE (ε) + α > δ, where δ = sup{r � 0 | Br(z) ⊂ B1(0)} and z = 1 (x1 + x2).
2
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For any natural number k we define the point ak ∈ ∂ B1(0) with the property ‖ak − z‖ � δ + 1
k . Let yk

i be the homothetic
image of the point xi under the homothety with center ak and coefficient λ, i = 1,2; let zk be the homothetic image of the
point z under the homothety with center ak and coefficient λ.

By construction, ‖yk
1 − yk

2‖ = λε and ‖zk − ak‖ � λδ + λ 1
k . By the triangle inequality and by the property of chosen

points xi , ak we have ‖xi − ak‖ � ‖ x1−x2
2 ‖ − ‖ak − z‖ � 1

4 ( ε
2 − δA(ε)) = r(ε) > 0 for i = 1,2 and sufficiently large k. Let

β = min{λ,1 − λ} ∈ (0, 1
2 ]. By Lemma 1.1 we have B2βδE (r(ε))(yk

i ) ⊂ B1(0), i = 1,2. Hence

δE(λε) �
∥∥∥∥ yk

1 + yk
2

2
− ak

∥∥∥∥ − 2βδE
(
r(ε)

) = ‖zk − ak‖ − 2βδE
(
r(ε)

)
� λδE(ε) + λα + λ

1

k
− 2βδE

(
r(ε)

)
.

Letting α → +0, k → ∞, we obtain

δE(λε) � λδE(ε) − 2βδE
(
r(ε)

)
.

The desired estimate appears if we put λ = η/ε. �
One of the important motivations for consideration of weakly convex sets in the sense of Definition 1.7 is given by the

next theorem.

Theorem 1.1. Let a space E be uniformly convex with modulus δE , d > 0. Let A ⊂ E be a weakly convex set with modulus of noncon-
vexity γA , and suppose that function dδE (ε/d) − γA(ε) is positive for all ε ∈ (0,min{2d,diam A}). Then for any point x ∈ Ud(A) the
set

P A x = {
a ∈ A

∣∣ ‖x − a‖ = �(x, A)
}

is a singleton.

Proof. (1) Nonemptiness of P A x. Let’s fix x ∈ Ud(A)\A. Let points ak ∈ A be such that ‖x − ak‖ → �(x, A). Define nonnegative
numbers εk = ‖x − ak‖ − �(x, A).

Suppose that the sequence {ak}∞k=1 has no converging subsequence. Without loss of generality we may assume that there
exists a number ε0 > 0 such that for any natural k,m the following inequality holds: ‖ak −am‖ � ε0. By the definition of εk ,
εm we have

max
{‖x − ak‖,‖x − am‖} � εk + εm + �(x, A).

Let � = �(x, A). Then∥∥∥∥x − ak + am

2

∥∥∥∥ � � + εk + εm − (� + εk + εm)δE
(‖ak − am‖/(� + εk + εm)

)
.

Due to the weak convexity of the set A for any α > 0 there exists

akm ∈ BγA(‖ak−am‖)+α

(
ak + am

2

)
∩ A.

Hence

‖x − akm‖ �
∥∥∥∥x − ak + am

2

∥∥∥∥ + γA
(‖ak − am‖) + α

� � + εk + εm + α − (� + εk + εm)δE
(‖ak − am‖/(� + εk + εm)

) + γA
(‖ak − am‖).

Let’s choose d1 ∈ ( 1
2 d,d) and a sequence αk > 0, αk → 0, such that for all sufficiently large k,m the inequality � + εk + εm +

αk < d1 < d holds. Then by Lemma 1.2

(� + εk + εm)δE
(‖ak − am‖/(� + εk + εm)

)
� d1δE

(‖ak − am‖
d1

)

and we have the estimate

‖x − akm‖ � � + εk + εm + αk − dδE

(‖ak − am‖
d

)
+ γA

(‖ak − am‖) −
(

d1δE

(‖ak − am‖
d1

)
− dδE

(‖ak − am‖
d

))

� � + εk + εm + αk −
(

d1δE

(‖ak − am‖
d

)
− dδE

(‖ak − am‖
d

))
.

1
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By Lemma 1.2 it follows that

d1δE

(‖ak − am‖
d1

)
− dδE

(‖ak − am‖
d

)
� 2(d − d1)δE

(
r
(‖ak − am‖/d1

))
.

From the inequalities ε0 � ‖ak − am‖ < 2d1 and r(ε) = 1
4 ( ε

2 − δE (ε)) � 1
4 ( ε

2 − ε2

4 ) > 0, it follows that for all k,m the value
δE (r(‖ak − am‖/d1)) is bounded from below by a positive constant c > 0. Hence for sufficiently large k,m (when εk + εm +
αk < 2(d − d1)c), ‖x − akm‖ < �. Contradiction. Therefore, the sequence {ak}∞k=1 has a converging subsequence and P A x 
= ∅.

(2) The set P A x is a singleton. The proof is similar to the step (1). If �(x, A) = ‖x − ai‖, i = 1,2, a1,a2 ∈ A, then we have∥∥∥∥x − a1 + a2

2

∥∥∥∥ � �(x, A) − �(x, A)δE
(‖a1 − a2‖/�(x, A)

)
,

and for all α > 0,

∃a ∈ BγA(‖a1−a2‖)+α

(
a1 + a2

2

)
∩ A.

Now by choosing 0 < α < �(x, A)δE (‖a1 − a2‖/�(x, A)) − γA(‖a1 − a2‖), we obtain that

‖x − a‖ �
∥∥∥∥x − a1 + a2

2

∥∥∥∥ + γA
(‖a1 − a2‖

) + α � �(x, A) − �(x, A)δE
(‖a1 − a2‖/�(x, A)

)
+ γA

(‖a1 − a2‖
) + α < �(x, A).

Contradiction. �
By Theorem 1.1 and the results from [2] it follows that if the space E is additionally uniformly smooth then each weakly

convex set with the modulus γA (for which dδE (ε/d) − γA(ε) > 0) is proximally smooth with constant d > 0. We note that
d is not the largest possible constant for the proximal smoothness of the set A.

It’s easy to see that the proximal smoothness with constant d > 0 implies the weak convexity. Suppose that (for simplic-
ity) the subset A ⊂ E is compact in the strong topology of the Banach space E and proximally smooth with constant d > 0.
Then the set A is weakly convex with some modulus of nonconvexity γA(ε), ε ∈ (0,min{2d,diam A}). Indeed, the compact-
ness of the set A implies that the values of modulus from Definition 1.6 are achieved for every ε ∈ (0,min{2d,diam A}) at
some points a1,a2 ∈ A, ‖a1 − a2‖ � ε. This means that for the point x = 1

2 (a1 + a2) we have �(x, A) = γA(ε) � 0. Using
inequality �(x, A) � 1

2 ε, we obtain from the estimate 1
2 ε < d and from proximal smoothness of the set A (see [2, Theo-

rem 2.4]) that the set P A x is a singleton and �(x, A) = γA(ε) < 1
2 ε.

2. The order of function γA

Before further considerations we shall make some remarks. Consider for simplicity a set A on the Euclidean plane.
Let the boundary ∂ A be a smooth closed curve x = x(s), y = y(s), where s is the natural parameter. Suppose that the
curve ∂ A contains no straight segments. In this case the radius of curvature of ∂ A at the point (x(s), y(s)) equals R(s) =
(x′2(s) + y′2(s))3/2/|x′′(s)y′(s) − y′′(s)x′(s)|. If the radius R(s) is finite and positive at the point (x(s), y(s)) (and this takes
place for a.e. values of parameter s), then the curve at the neighborhood of the point (x(s), y(s)) is similar to the circle of
radius R(s).

If additionally, the set A is not locally convex at the point (x(s), y(s)) (i.e. for any r > 0 the set A ∩ Br((x(s), y(s))) is
nonconvex), then for a small ε > 0 the function γA(ε) has the order no smaller than ε2 (more precisely, γA(ε) � R2(s) −√

R2(s) − ε2

4 ).
We shall show that the situation above is typical: if the set A is nonconvex, then the modulus of nonconvexity for A

satisfies the estimate γA(ε) � Const · ε2. As we have mentioned above the modulus of nonconvexity for convex set A equals
zero.

If the subset A of the Banach space E is a symmetric cavern (i.e. A = cl(E\B), where B is a closed convex bounded
symmetric body), then γA(ε) � Const · ε2. The proof follows by the fact that in this case the function γA(ε) has the same
order as the function

σE,B(ε) = sup

{
1 − ‖x + y‖B

2

∣∣∣ x, y ∈ ∂ B, ‖x − y‖B � ε

}
,

introduced in [4]. Here ‖ · ‖B is the norm in the space E with the unit ball B . In [4] and [5] the inequality 1 −
√

1 − ε2

4 �
σE,B(ε) was proved. In fact, it is the “dual” of the Day–Nordlander theorem. It can be proved similarly as the Day–Nordlander
theorem (see [9, §3, pp. 60–62] for details). The proof is the same except that instead of function δX (ε) = infϕ 
(ε,ϕ) one
should consider on page 62 the function σX (ε) = supϕ 
(ε,ϕ).
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Let the subset A ⊂ E from a Banach space E be a cavern, i.e. A = cl(E\B) where the set B ⊂ E is a closed convex and
bounded body, 0 ∈ int B . We shall estimate the value of γA(ε).

For any closed convex and bounded set B ⊂ E , 0 ∈ int B , we define the Minkowski function

μB(x) = inf{t > 0 | x ∈ t B}, ∀x ∈ E.

For any bounded set C ⊂ E we define B-diameter of the set C as follows

diamB C = sup
x,y∈C

μB(x − y).

For any closed convex bounded sets A, B, C ⊂ E we define the modulus

σ A,B
C (ε) = inf

{
σ � 0

∣∣∣ (
σ A + x + y

2

)
∩ (E\ int C) 
= ∅, ∀x, y ∈ A: μB(x − y) � ε

}

and the modulus

σC (ε) = σ
B1(0),B1(0)

C (ε). (2.1)

Moduli σ A,B
C and σC generalize the definition from [4] to arbitrary convex sets.

It is obvious from the definition of σC that if C is a convex body then we have for all admissible ε > 0 for the set
A = cl(E\C) = cl(E\ int C),

γA(ε) = σC (ε). (2.2)

The next lemmas are direct consequences of the definition of σ A,B
C .

Lemma 2.1. For any bounded closed convex bodies A, B, C ⊂ E and t > 0, the following holds:

(1) σ t A,B
C (ε) = 1

t
σ A,B

C (ε), ∀ε ∈ (0,diamB C);

(2) σ A,t B
C (ε) = σ A,B

C (tε), ∀ε ∈
(

0,
1

t
diamB C

)
; and

(3) σ A,B
tC (ε) = tσ A,B

C

(
ε

t

)
, ∀ε ∈ (0, t diamB C).

Lemma 2.2. For any bounded closed convex bodies A′, B ′, A, B, C ⊂ E and ε ∈ (0,diamB C),

(1) if A′ ⊂ A then σ A′,B
C (ε) � σ A,B

C (ε); and

(2) if B ′ ⊂ B then σ A,B ′
C (ε) � σ A,B

C (ε).

Theorem 2.1. Suppose that the subset A ⊂ E of a Banach space E is a cavern. Let Br(0) ⊂ cl(E\A) ⊂ B R(0). Then for all ε ∈ (0,2r)
we have

γA(ε) � ε2

8R2
r.

Proof. Let B = cl(E\A) be a closed convex body. Using Lemmas 2.1 and 2.2 we get

σB(ε) = σ
B1(0),B1(0)
B (ε) = rσ Br(0),B R (0)

B

(
ε

R

)
� rσ B,B

B

(
ε

R

)
.

Using the result of Banaś [4] we obtain

σ B,B
B

(
ε

R

)
� σH

(
ε

R

)
= 1 −

√
1 − ε2

4R2
� ε2

8R2
.

By invoking formula (2.2) we complete the proof. �
Of course, a weakly convex set is not necessarily a cavern. But if such set A is connected and nonconvex, then it has

“cavern-like” parts, and hence γA(ε) � Const · ε2.
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Hereafter all Banach spaces will have the modulus of convexity of the second order at zero and will contain weakly
convex sets with modulus of nonconvexity of the second order, too. There are many such spaces besides Hilbert spaces, for
example lp , p ∈ (1,2) (see [2,6,9] for details).

We shall define a special condition.

Definition 2.1. Let δ be the modulus of convexity for some closed convex set A and γ the modulus of nonconvexity for
some closed weakly convex set B . We shall say that condition (i) is valid for the moduli δ and γ if:

(1) for all s ∈ [0, s0] there exists a solution t = ts > s of the equation δ(t − s) − γ (t) = 0,
(2) the function δ(t − s) − γ (t) is positive and increasing for all admissible t > ts and
(3) for all s ∈ [0, s0] there exists a solution t(s) of the equation δ(t − s) − γ (t) = s

2 .

In the case when δ(t) = dδE (t/d) is the modulus of convexity for the ball Bd(0) in the Banach space E we shall define
the solution t(s) as tE (s).

Remark 2.1. Definition 2.1 has a technical character (it is useful for further proofs) and it is not so exotic. Suppose that for
sufficiently small t > 0 our moduli have the second order at zero and are defined by formulae δ(t) = c1t2 + o(t2), t → +0,
γ (t) = c2t2 + o(t2), t → +0, and c1 > c2 > 0. Then for sufficiently small numbers s > 0 the function t → δ(t − s) − γ (t) is
positive and increasing, and t(s) � √

s, s → +0.

Remark 2.2. Suppose that a Banach space E has modulus of convexity δE of the second order and a closed subset A ⊂ E is
weakly convex with the modulus of nonconvexity γA of the second order, too. Taking into account that for all 0 < d < d1,

dδE (ε/d) � d1δE (ε/d1), ∀ε ∈ (0,2d) (see [3, Lemma 2.1]), and dδE (ε/d) � ε2

d , ε → +0, we can conclude that there exists a
number d > 0 such that dδE (ε/d) > γA(ε), ∀ε ∈ (0,2d). If additionally the space E is smooth then by Theorem 1.1 and [2,
Theorem 2.4] we obtain that the set A is proximally smooth with constant d.

3. Properties of weakly convex sets

Theorem 3.1. Let d > 0. Let a subset A of a Banach space E be weakly convex with modulus γA(ε), ε ∈ [0,d) and the subset B ⊂ E be
uniformly convex with modulus δB(ε), ε ∈ [0,diam B) and diam B < d. Let δB(ε) > γA(ε) for all ε ∈ [0,diam B). Then the set A ∩ B,
if nonempty, is weakly convex with modulus γA∩B(ε) � γA(ε), ε ∈ [0,diam A ∩ B) and connected.

Proof. The weak convexity of the intersection and the estimate for the modulus follows by definitions.
Suppose that the set A ∩ B is not connected. This means that there exist two nonempty closed disjoint sets A1 ⊂ A ∩ B

and A2 = (A ∩ B)\A1. Choose k = 1 and points a1 ∈ A1, b1 ∈ A2.
Due to weak convexity of the set A ∩ B there exists a point w ∈ 1

2 (ak + bk) + (γA(‖ak − bk‖) + αk)B1(0), w ∈ A. The
numbers αk are chosen by the conditions αk → 0 and 0 < αk < 1

2 ( 1
2 ‖ak − bk‖ − γA(‖ak − bk‖)).

One of the inclusions w ∈ A1 or w ∈ A2 is true. If w ∈ A1, then denote ak+1 = w , bk+1 = bk . If w ∈ A2, then denote
ak+1 = ak , bk+1 = w . In this way we build the sequences {ak}∞k=1 ⊂ A1, {bk}∞k=1 ⊂ A2.

Let lk = ‖ak −bk‖. Then 0 � lk+1 � 1
2 lk +γA(lk)+αk < lk . Hence lk → l � 0. Taking the limit k → ∞ and using continuity of

the function γA from the right we get 1
2 l � γA(l). It follows from Definitions 1.6 and 1.7 that l = 0. Therefore, ‖ak − bk‖ → 0.

We proved in [3] that for any uniformly convex set B there exists a number c > 0 such that the modulus of convexity
for the set B can be estimated as follows δB(ε) � cε2, ε ∈ (0,diam B).

It follows from the construction of points ak+1 that ak+1 = ak , or

‖ak+1 − ak‖ � 1

2
‖ak − bk‖ + γA

(‖ak − bk‖
) + αk � 3

4
lk + c

2
l2k .

In the latter case bk+1 = bk and

lk+1 = ‖ak+1 − bk‖ � 3

4
lk + c

2
l2k =

(
3

4
+ c

2
lk

)
lk � 4

5
lk,

for all k > k0. Thus there exists a number d > 0, such that lk � d( 4
5 )k . It follows from the estimate

‖ak+1 − ak‖ � 3d

4

(
4

5

)k

+ c

2
d

(
4

5

)2k

� K

(
4

5

)k

,

which is valid for sufficiently large k, that for such k and m > k,

‖am − ak‖ =
m−1∑

‖an+1 − an‖ �
m−1∑

K

(
4

5

)n

� 5K

(
4

5

)k

,

n=k n=k
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the latter means that the sequence {ak} is fundamental. Since ‖ak − bk‖ → 0 thus the sequence {bk} is also fundamental.
By the closedness of the sets A1 and A2 and from the condition ‖ak − bk‖ → 0 we conclude that ak → x ∈ A1, bk → x ∈ A2.
Hence A1 ∩ A2 
= ∅. �

For any closed subset A ⊂ E , a point x ∈ Ud(A) and a number s > 0 we define the set-valued projection

P A(x, s) = {
a ∈ A

∣∣ ‖x − a‖ � �(x, A) + s
}
.

It follows by definition that P A(x, s) 
= ∅ for all s > 0. Apart from this, under conditions of Theorem 1.1, P A(x,0) = P A x is a
singleton.

Theorem 3.2. Let a Banach space E be uniformly convex with modulus δE . Let a subset A ⊂ E be weakly convex with modulus γA(ε),
ε ∈ [0,2d). Let dδE (ε/d) > γA(ε) for all ε ∈ (0,2d). Suppose that the condition (i) from Definition 2.1 is satisfied. Then

P A(x, s) ⊂ BtE (s)(P A x).

Proof. Let a = P A x and b ∈ P A(x, s), s � s0. Let’s define the point y ∈ [b, x] by the condition ‖x − y‖ = �(x, A) = ‖x − a‖. Let
w = a+b

2 , z = a+y
2 .

It follows from the inequality ‖b − y‖ � s that ‖w − z‖ � s/2. In the triangle bya we see that ‖y − a‖ � ‖a − b‖ − s.
Let � = �(x, A). Note that ‖a − b‖ − s � ‖y − a‖ < 2� < 2d. If the inequality �δE ((‖a − b‖ − s)/�) − γA(‖a − b‖) > s

2
holds, then for some α > 0 we have �δE ((‖a −b‖− s)/�)−γA(‖a −b‖) > s

2 +α. Using the inequality �δE ((‖a −b‖− s)/�) <

�δE ((‖a − y‖)/�), we obtain

a0 ∈ BγA(‖a−b‖)+α(w) ∩ A, BγA(‖a−b‖)+α(w) ⊂ int B�δE ((‖a−b‖−s)/�)(z).

Hence

‖a0 − x‖ � ‖a0 − w‖ + ‖w − z‖ + ‖z − x‖ � γA
(‖a − b‖) + α + s

2
+ �(x, A)

− �(x, A)δE
((‖a − b‖ − s

)
/�(x, A)

)
< �(x, A).

This contradiction shows that dδE ((‖a − b‖ − s)/d) − γA(‖a − b‖) < �δE ((‖a − b‖ − s)/�) − γA(‖a − b‖) � s
2 and by the

conditions of the theorem, ‖a − b‖ � tE(s). The point b ∈ P A(x, s) was arbitrary and the theorem is thus proved. �
Corollary 3.1. Under the assumptions of Theorem 3.2, the projection P A x uniformly continuously depends on x. More precisely, if
‖x1 − x2‖ < s0 and x1, x2 ∈ Ud(A), then ‖P A x1 − P A x2‖ � tE(‖x1 − x2‖). Moreover, tE(s) � √

s, s → +0.

Theorem 3.3. Suppose that the assumptions of Theorem 3.2 hold and d1 ∈ (0,d). Then for any point x ∈ E the set A ∩ Bd1 (x), if
nonempty, is weakly convex with modulus γA∩Bd1 (x)(ε) � γA(ε), ε ∈ [0,diam A ∩ Bd1 (x)), and path connected.

Proof. Weak convexity of the intersection follows from the definitions.
Fix any pair of points x, y ∈ A such that 0 < ‖x − y‖ < 2d1. For any number t ∈ [0;1] we denote zt = (1 − t)x + ty. The

map z �→ P A z is single-valued and continuous (Corollary 3.1) on the set Ud1 (A), hence it is single-valued and continuous
on the set U ′ = Ud1 (A) ∪ A. Since zt ∈ U ′ for all t ∈ [0;1] there is a unique point a(t) with {a(t)} = P A zt . The function
a : [0;1] → A is continuous and defines the desired curve Γ = {a(t): t ∈ [0;1]} which connects points x and y. �
Theorem 3.4. Let E be a uniformly convex space with modulus δE . Let A ⊂ E be a weakly convex set with modulus of nonconvex-
ity γA(ε), ε ∈ [0,diam A). Let A ⊂ Br(a), 2r < d and γA(ε) < dδE (ε/d) for all ε ∈ [0,diam A). Suppose that the assumptions of
Theorem 3.2 hold. Then the set A is a continuous retract of E.

Proof. Let x ∈ E\A. Let B = cl co A ⊂ Br(a), y = P B x. Due to the uniform convexity of the space E the metric projection
on the set B is continuous. We observe that this projection is uniformly continuous (see [13] and [3, Example 3.2]) on the
balls.

Since y = y(x) ∈ B ⊂ Br(a) we have �(y, A) � 2r < d. By Theorem 1.1 and Corollary 3.1 there exists a unique metric
projection z = P A y which uniformly continuously depends on y. Therefore, z(x) = P A(P B x) is the desired retraction, see
Fig. 4. �
Remark 3.1. We remark that function z(x) from Theorem 3.4 is uniformly continuous on the balls.

Let us also mention that Theorem 3.4 remains valid in any uniformly convex and smooth Banach space for any proximally
smooth set A with constant d and A ⊂ Br(a), d < 2r. Instead of Theorem 1.1 and Corollary 3.1 one must use the results from
[2, Theorem 2.4].
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Fig. 4. Scheme of retraction.

Theorem 3.5. Let (T ,ρ) be a metric space. Let F1, F2 : (T ,ρ) → 2R
n

be set-valued mappings, continuous in the Hausdorff metric.
Suppose that for a point t0 ∈ T the set F1(t0) is uniformly convex with modulus δ(ε), and the set F2(t0) is weakly convex with modulus
γ (ε). Let γ (ε) < δ(ε) for all ε < min{diam F1(t0),diam F2(t0)}. Let H(t) = F1(t) ∩ F2(t) 
= ∅ for all t ∈ T . Then the mapping H(t)
is continuous at the point t = t0 in the Hausdorff metric.

Proof. It follows from the uniform convexity of the set F1(t0) that it is bounded (see [12], [3, Theorem 2.1]). Due to the
continuity in the Hausdorff metric we conclude that there exists a number δ > 0 such that the set cl

⋃
ρ(t,t0)<δ F (t) is

compact. By the Closed Graph Theorem [1] the set-valued mapping H(t) is upper semicontinuous at the point t = t0, i.e.

∀ε > 0 ∃δ > 0 ∀t: ρ(t, t0) < δ, H(t) ⊂ H(t0) + Bε(0),

or

lim sup
t→t0

H(t) ⊂ H(t0). (3.1)

If the set H(t0) is a singleton then the continuity of the set-valued mapping H at the point t0 follows by its upper semi-
continuity. Next we shall assume that the set H(t0) consists of more than one point.

Suppose that lower semicontinuity fails, i.e. that

H(t0) 
⊂ lim inf
t→t0

H(t).

Thus there exist a number ε0 > 0 and points tk ∈ T , tk → t0, such that

H(t0) 
⊂ H(tk) + Bε0(0), for any natural k.

For any k there exists a point hk ∈ H(t0) with

hk /∈ H(tk) + Bε0(0).

Since the set H(t0) is compact, thus without loss of generality we may assume that hk → h0 ∈ H(t0) and

h0 /∈ H(tk) + Bε0/2(0), for any natural k. (3.2)

Let us define the set H0 = lim supk→∞ H(tk) ⊂ H(t0). By construction h0 ∈ H(t0)\H0, hence H0 
= H(t0).
Let x0 ∈ P H0 h0. For h0 ∈ F1(t0) ∩ F2(t0) and x0 ∈ H0 put l = ‖h0 − x0‖ > 0.
Using uniform convexity of F1(t0) we get

Bδ(l)

(
x0 + h0

2

)
⊂ F1(t0).

Due to the weak convexity of the set F2(t0) and finite dimension of images of the mapping F2 we can find a point

f ∈ Bγ (l)

(
x0 + h0

2

)
∩ F2(t0).

By continuity of the map F2 there exist points fk ∈ F2(tk) with fk → f . Besides, for ε = (δ(l)−γ (l))/3 we can find a natural
number k0, such that for all k > k0 the following holds:
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fk ∈ Bδ(l)−ε

(
x0 + h0

2

)
⊂ F1(tk), (3.3)

and

fk ∈ Bγ (l)+ε

(
x0 + h0

2

)
∩ F2(tk). (3.4)

By the formulae (3.3) and (3.4) it follows that fk ∈ H(tk) for all k > k0. Hence f = limk→∞ fk ∈ H0.
At the same time

‖h0 − f ‖ �
∥∥∥∥h0 − x0 + h0

2

∥∥∥∥ +
∥∥∥∥ f − x0 + h0

2

∥∥∥∥ � 1

2
‖x0 − h0‖ + γ

(‖x0 − h0‖
)
< ‖x0 − h0‖.

This contradicts with the inclusion x0 ∈ P H0 h0. Thus, H(t) is lower semicontinuous at the point t = t0. �
Let F : (T ,ρ) → 2(E,‖·‖) be a set-valued mapping. If for any t ∈ T the set F (t) is uniformly convex with modulus δF (t)(ε) �

δ(ε) > 0, ε ∈ (0,diam F (t)), and δ is an increasing function, then we shall say that the set-valued mapping F is uniformly
convex with modulus δ.

If for any t ∈ T the set F (t) is weakly convex with modulus of nonconvexity γF (t)(ε) � γ (ε), ε ∈ [0,diam F (t)), γ (0) = 0,
γ (ε) < ε

2 for admissible ε > 0 and function γ is continuous from the right and nondecreasing then we shall say that the
set-valued mapping F is uniformly weakly convex with modulus γ .

Definition 3.1. Let a set-valued mapping F1 : (T ,ρ) → 2(E,‖·‖) be uniformly convex with modulus δ and a set-valued map-
ping F2 : (T ,ρ) → 2(E,‖·‖) uniformly weakly convex with modulus γ . We shall say that condition (ii) is valid for the moduli
δ and γ if

(1) for all s ∈ [0, s0] there exists a solution t = ts > s of the equation δ(t − s) − γ (t) = 0,
(2) the function δ(t − s) − γ (t) is positive and increasing for all admissible t > ts ,
(3) for all s ∈ [0, s0] there exists a solution t(s) of the equation δ(t − s) − γ (t) = s

2 .

It follows from the results of the second paragraph that condition (ii) is possible only if moduli δ and γ are of the
second order at zero.

We say that set-valued mapping F is uniformly continuous with modulus of continuity ω � 0 if for any t1, t2 ∈ T the
inequality h(F (t1), F (t2)) � ω(ρ(t1, t2)) holds.

Theorem 3.6. Let F1, F2 : (T ,ρ) → 2(E,‖·‖) . Let the values of F2 be uniformly convex with modulus δ(ε). Let the values of F1 be
uniformly weakly convex with modulus γ (ε). Suppose that set-valued mapping Fi is uniformly continuous with modulus ωi , i = 1,2.
Let the condition (ii) holds.

Let H(t) = F1(t) ∩ F2(t) 
= ∅ for all t ∈ T and suppose that for some M > 0 the inclusion
⋃

t∈T H(t) ⊂ BM(0) holds. Then

h
(

H(t1), H(t2)
)
�

{
2ω1 + 3ω2 + t(ω1+ω2

2 ), ω1+ω2
2 < s0,

ω1+ω2
s0

M, ω1+ω2
2 � s0.

(3.5)

Here ωi = ωi(ρ(t1, t2)), i = 1,2.

Proof. Let c1 ∈ H(t1). We shall show that for any number λ, which is strictly larger than the right side of the formula (3.5),
there exists a point c2 ∈ H(t2) with ‖c1 − c2‖ � λ. This will prove the theorem.

Fix d ∈ H(t2). If ω1 + ω2 � 2s0, then, taking c2 = d, we obtain that

h
(

H(t1), H(t2)
)
� ‖c1 − c2‖ � 2M � ω1 + ω2

s0
M.

Suppose that ω1 + ω2 < 2s0. Fix k > 1, such that inequality kω1 + k2ω2 < 2s0 holds. For the point c1 ∈ H(t1) = F1(t1) ∩
F2(t1) we can find the point b ∈ F2(t2) such that ‖b − c1‖ � kω2.

Fix the point bπ ∈ F1(t2) which satisfies the condition ‖b − bπ‖ � k · �(b, F1(t2)). Invoking the inequality �(b, F1(t1)) �
‖b − c1‖ � kω2 we get the following estimate

‖b − bπ‖ � k�
(
b, F1(t2)

)
� kh

(
F1(t1), F1(t2)

) + k�
(
b, F1(t1)

)
� kω1 + k‖b − c1‖ � kω1 + k2ω2.

Define the point a ∈ [d,b] ∩ H(t2) as the one which is nearest to the point b. The set [d,b] ∩ H(t2) is nonempty because
it contains the point d. Put n = 1, a1 = a.
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Consider the following cases:

(1) δ(‖an − b‖) > γ (‖an − bπ‖) + 1
2 ‖b − bπ‖ or

(2) δ(‖an − b‖) � γ (‖an − bπ‖) + 1
2 ‖b − bπ‖.

If the case (1) takes place then we choose

αn = min

{
1

n
,

1

2

(
δ
(‖an − b‖) − γ

(‖an − bπ‖) − 1

2
‖b − bπ‖

)
,

1

2

(‖an − bπ‖
2

− γ
(‖an − bπ‖))}

> 0.

By the uniform weak convexity of F1 with the modulus γ there exists a point

w ∈ Bγ (‖an−bπ ‖)+αn

(
an + bπ

2

)
∩ F1(t2) ⊂ Bδ(‖an−b‖)

(
an + b

2

)
⊂ F2(t2), (3.6)

and

‖bπ − w‖ �
∥∥∥∥bπ − an + bπ

2

∥∥∥∥ +
∥∥∥∥an + bπ

2
− w

∥∥∥∥ � 1

2
‖an − bπ‖ + γ

(‖an − bπ‖) + αn < ‖an − bπ‖.

Now we put n = n + 1, an = w and again consider cases (1) or (2).
If the case (2) does not take place for all natural n, then we obtain from the construction of the points {an} that the

sequence ln = ‖an − bπ‖ satisfies the condition 0 � ln+1 � ln
2 + γ (ln) + αn < ln . It follows by the Weierstrass theorem that

the sequence ln converges to some number l � 0 from the right. Using the continuity of the function γ from the right and
taking the limit we deduce that l

2 � γ (l). The latter is possible only in the case l = 0 (see the definition of γ ).
Thus, if for all n ∈ N the case (2) does not take place then H(t2) � an → bπ , i.e. bπ ∈ H(t2). Taking c2 = bπ we have

‖c1 − c2‖ = ‖c1 − bπ‖ � ‖c1 − b‖ + ‖b − bπ‖ � kω2 + kω1 + k2ω2.

The number k > 1 was arbitrary, hence

h
(

H(t1), H(t2)
)
� ω1 + 2ω2.

Suppose that for some n ∈ N the case (2) occurs and ‖an − bπ‖ > ‖b − bπ‖. Taking into account that ‖an − b‖ > ‖an −
bπ‖ − ‖b − bπ‖, we conclude from the inequality of the case (2), that

δ
(‖an − bπ‖ − ‖b − bπ‖) − γ

(‖an − bπ‖) � 1

2
‖b − bπ‖.

From the condition (ii) of the theorem we get

‖an − bπ‖ � t

(
1

2
‖b − bπ‖

)
� t

(
kω1 + k2ω2

2

)
.

By choosing c2 = an we obtain

h
(

H(t1), H(t2)
)
� ‖c1 − c2‖ � ‖c1 − b‖ + ‖b − bπ‖ + ‖an − bπ‖ � kω2 + kω1 + k2ω2 + t

(
kω1 + k2ω2

2

)
.

By taking the limit k → 1 + 0, we finally prove the theorem. The case ‖an − bπ‖ � ‖b − bπ‖, which follows from the last
estimate and from the inequality ‖b − bπ‖ � kω1 + k2ω2, also gives formula (3.5). �
Remark 3.2. For convex valued mapping F2 a similar result was proved in [3, Theorem 3.1].

Remark 3.3. If additionally the conditions of Theorem 3.1 hold for sets F1(t) and F2(t), then the values of the map H in
Theorem 3.6 are connected.

Remark 3.4. In our case the moduli δ and γ are of the second order and we have that t(s) is of the order
√

s when s → 0.
For the Hilbert space this result was proved by Ivanov [10].
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4. Application to selection problems

Theorem 4.1. Let E be a uniformly convex Banach space with modulus δE . Let Φ ⊂ E be a collection of weakly convex sets with
modulus of nonconvexity γ (ε) (in the sense of Section 3), and suppose that all sets from Φ are contained in some ball. Let d > 0. Let
the condition (ii) holds for moduli dδE (t/d) and γ (t). Let dδE (t/d) > γ (t) for all admissible t > 0. Suppose that any set H ∈ Φ is
contained in (each in its own) ball of radius r > 0 and 2r < d.

Then the collection Φ has a uniformly continuous selection, i.e. there exists a uniformly continuous in the Hausdorff metric function
s : Φ → E such that for all H ∈ Φ we have s(H) ∈ H.

Proof. Without loss of generality we shall assume that the sets from the family Φ are contained in the ball B R(0) and for
any H ∈ Φ we have �(0, cl co H) � r1 > 0. Consider Ψ = {cl co H | H ∈ Φ}. The metric projection of zero y(H) = Pcl co H 0
on the sets from Ψ is a uniformly continuous selection defined of Ψ . We have proved in [3, Lemma 3.1] that for any
H1, H2 ∈ Φ (taking into account the condition h(cl co H1, cl co H1) � h(H1, H1))∥∥y(H1) − y(H2)

∥∥ � 2h(H1, H2) + f E
(
h(H1, H2)

)
,

where

f E(t) =
{

δ−1(t/2), t < 2
E ,

Rt

E

, t � 2
E .

Here δ(ε) = RδE (ε/R), 
E = δ(2r1).
Let y = y(H). From �(y, H) � 2r < d using Theorem 1.1 we conclude that there exists a unique metric projection

z(H) = P H y.
If 2h(H1, H2) + f E (h(H1, H2)) < (d − 2r)/2, then, by defining yi = y(Hi), zi = z(Hi), i = 1,2, we get ‖y1 − y2‖ <

(d − 2r)/2.
Consider a metric subspace T of the metric space ((E,Φ), (‖ · , · ‖ + h(·,·))). Elements of T are pairs (x, H) ∈ (E,Φ)

such that �(x, H) < d. Consider the set-valued mappings F1(x, H) = H , F2(x, H) = B�(x,H)(x) from T into E . The set-valued
mapping F1 is uniformly weakly convex with modulus γ and uniformly continuous with modulus ω1(t) = t . The set-valued
mapping F2 is uniformly convex with modulus dδE (ε/d).

For points (yi, Hi), i = 1,2, we have

h
(

F2(y1, H1), F2(y2, H2)
) = ‖y1 − y2‖ + ∣∣�(y1, H1) − �(y2, H2)

∣∣
� ‖y1 − y2‖ + ∣∣�(y1, H1) − �(y1, H2)

∣∣ + ∣∣�(y1, H2) − �(y2, H2)
∣∣,

|�(y1, H1) − �(y1, H2)| � h(H1, H2), and from the condition ‖y1 − y2‖ � (d − 2r)/2 we obtain that

�(y1, H2) � ‖y1 − y2‖ + �(y2, H2) � (d − 2r)/2 + 2r = (d + 2r)/2 < d.

Put z12 ∈ H2: ‖y1 − z12‖ = �(y1, H2). Using Corollary 3.1 we get |�(y1, H2) − �(y2, H2)| � ‖y1 − y2‖ + ‖z2 − z12‖ � ‖y1 −
y2‖ + tE(‖y1 − y2‖).

Thus in the case 2h(H1, H2)+ f E (h(H1, H2)) < (d − 2r)/2 projections zi = F1(yi, Hi)∩ F2(yi, Hi) uniformly continuously
depend on sets Hi , i = 1,2, by Theorem 3.6, i.e.

‖z1 − z2‖ � ω
(
h(H1, H2)

)
,

where ω(h(H1, H2)) is superposition of the function 2h(H1, H2) + f E (h(H1, H2)) and the function from the right side of
formula (3.5).

If 2h(H1, H2) + f E (h(H1, H2)) � (d − 2r)/2, then by the strict monotonicity (increasing) of the function f E , there exists
a number C > 0, such that h(H1, H2) > C . In this case

‖z1 − z2‖ � 2R � 2R

C
h(H1, H2).

Therefore, s(H) = z(H) is a uniformly continuous selection. �
Example 4.1. One can apply these results to certain questions about continuous selections of set-valued mappings [15,18].
Let a space E be uniformly convex, a sets A, B ⊂ E be such that B is uniformly convex with modulus δ(ε), ε ∈ [0,diam B),
and A is weakly convex with modulus γ (ε), ε ∈ [0,diam A). Let for some d > 0 the inequalities 2 diam B < d and γ (ε) <

dδE (ε/d) for all ε ∈ [0,min{2d,diam A}) hold. Suppose that the condition (i) is valid for pairs δ(ε), γ (ε) and dδE (ε/d),
γ (ε). Then there exist uniformly continuous functions a : A + B → A and b : A + B → B such that for any c ∈ A + B we have
a(c) + b(c) = c.
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Proof. By Theorem 3.6 the set-valued mapping A + B � c → H(c) = B ∩ (c − A) is uniformly continuous. By definition the
set H(c) is weakly convex with modulus of nonconvexity γ for all c ∈ A + B . By the boundedness of the set B , all sets H(c),
c ∈ A + B , are contained in some ball. Furthermore for any point c ∈ A + B each set H(c) is contained in the ball of radius
no larger than 2 diam B < d. By Theorem 4.1 there exists a uniformly continuous selection b(c) = s(H(c)) ∈ B , where the
function s(·) is from Theorem 4.1; a(c) = c − b(c) ∈ A. �
5. A class of weakly convex sets

We shall show that simple smooth closed surfaces of codimension 1 are weakly convex sets. In this section the space E
will be an arbitrary reflexive Banach space.

We introduce the normal cone N(A, x) to the set A at the point x ∈ A as follows

N(A, x) = {
p ∈ E∗ ∣∣ (p, x − a) � −αx

(‖x − a‖) · ‖x − a‖ · ‖p‖, ∀a ∈ A
}
,

where the function αx : [0,diam A) → [0,+∞) and limt→+0 αx(t) = 0.
Let A ⊂ E be any closed set with the property cl int A = A and x ∈ A. Suppose that the set ∂ A has the following proper-

ties: ∂ A is path connected, ∀x ∈ ∂ A,

N(∂ A, x) ∩ ∂ B∗
1(0) = (

N(A, x) ∩ ∂ B∗
1(0)

) ∪ (
N

(
cl(E\A), x

) ∩ ∂ B∗
1(0)

)
,

where

N(A, x) ∩ ∂ B∗
1(0) = {p}, N

(
cl(E\A), x

) ∩ ∂ B∗
1(0) = {−p},

and there exists infinitely small at zero function α : [0,diam A) → [0,+∞) with the property

N(A, x) = {
p ∈ E∗ ∣∣ (p, x − a) � −α

(‖x − a‖) · ‖x − a‖ · ‖p‖, ∀a ∈ A
}
, ∀x ∈ ∂ A,

N
(
cl(E\A), x

) = {
p ∈ E∗ ∣∣ (p, x − a) � −α

(‖x − a‖) · ‖x − a‖ · ‖p‖, ∀a ∈ cl(E\A)
}
, ∀x ∈ ∂ A.

Then we say that the set ∂ A is a smooth closed surface of codimension 1 with a function of smoothness α. Roughly speaking,
smooth closed surface of codimension 1 is the smooth path connected boundary between some set A and its complementary
set cl(E\A).

Let r > 0. Define for any point x ∈ ∂ A and for unit vector p ∈ N(∂ A, x) the vector y ∈ E with ‖y‖ = (p, y) = 1. We say
that a smooth closed surface ∂ A is simple, if for any 2-dimensional affine plane L, such that {x, x + y} ⊂ L, the intersection
L ∩ ∂ A ∩ Br(x) is a path connected planar curve. We call r > 0 the parameter of simplicity.

Theorem 5.1. Let E be a reflexive Banach space. Suppose that A ⊂ E is a closed set, cl int A = A, and ∂ A is a simple smooth closed
surface of codimension 1 with the function of smoothness α and the parameter of simplicity r > 0. Then the set ∂ A is weakly convex
with the modulus of nonconvexity γA(ε) � ε(α(ε)+α(ε/2)) for all ε ∈ [0,min{r, ε0}); where ε0 = sup{t > 0 | α(τ )+α(τ/2) < 1

2 ,

∀τ ∈ (0, t)}.

Proof. Let ε ∈ (0,min{r, ε0}), x1, x2 ∈ ∂ A such that ‖x1 − x2‖ = ε. Let p1 ∈ N(A, x1)∩∂ B∗
1(0) or p1 ∈ N(cl(E\A), x1)∩∂ B∗

1(0).
Let H1 = {x ∈ E | (p1, x1 − x) = 0} = x1 + ker p1.

Consider Fig. 5. Define M = {x ∈ E | |(p1, x1 − x)| � α(‖x1 − x‖) · ‖x1 − x‖}. Using the reflexivity of the space E let y ∈ E ,
‖y‖ = 1, (p1, y) = 1. Let L = aff{x1, x1 + y, x2}. Let x̃ = 1

2 (x1 + x2), from the definition of L and from the definition of
smooth closed surface �(x2, H1 ∩ L) = �(x2, H1) � α(ε)ε, hence �(x̃, H1 ∩ L) � ε

2 α(ε). Let x̃1 ∈ H1 ∩ L be a point such that
‖x̃ − x̃1‖ = �(x̃, H1 ∩ L).

Let γ be the connected part of the planar curve L ∩ ∂ Bε/2(x1) ∩ M , which intersects the line H1 ∩ L, and lies in the
same hyperplane with the point x̃ with respect to the line aff{x1, x1 + y}. By the simplicity of the surface ∂ A and by the
inequality ε < r there exists z ∈ γ ∩ ∂ A. From the inclusion z ∈ M we have �(z, H1 ∩ L) � α(ε/2) ε

2 . Let z1 ∈ H1 ∩ L be a
point such that ‖z − z1‖ = �(z, H1 ∩ L).

Choose the right direction of the line H1 ∩ L from the point x1 to the point w = H1 ∩ L ∩ γ .
By the triangle inequality we have from the triangle x1 x̃x̃1,

ε

2
− ε

2
α(ε) � ‖x1 − x̃1‖ � ε

2
+ ε

2
α(ε)

and from the triangle x1zz1,

ε

2
− ε

2
α

(
ε

2

)
� ‖x1 − z1‖ � ε

2
+ ε

2
α

(
ε

2

)
.
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Fig. 5. Proof of Theorem 5.1.

If the point x̃1 lies to the right of the point w then

‖x̃1 − w‖ = ‖x1 − x̃1‖ − ‖x1 − w‖ � ε

2
α(ε).

If the point x̃1 lies to the left of the point w then

‖x̃1 − w‖ = ‖x1 − w‖ − ‖x1 − x̃1‖ � ε

2
α(ε).

In both cases ‖x̃1 − w‖ � ε
2 α(ε).

In the same way we obtain that ‖z1 − w‖ � ε
2 α( ε

2 ).
From this we deduce that

‖z1 − x̃1‖ � ‖x̃1 − w‖ + ‖z1 − w‖ � ε

2
α(ε) + ε

2
α

(
ε

2

)
.

Finally, for any x1, x2 ∈ ∂ A, ‖x1 − x2‖ = ε, x̃ = 1
2 (x1 + x2) there exists z ∈ ∂ A such that

‖x̃ − z‖ � ‖x̃ − x̃1‖ + ‖z − z1‖ + ‖x̃1 − z1‖ � ε

(
α(ε) + α

(
ε

2

))
<

ε

2
. �

We observe that under the conditions of Theorem 5.1 both sets A and cl(E\A) are weakly convex. The proof easily
follows from Theorem 5.1.

Let E be a Banach space and a subset A ⊂ E be closed. We shall say that unit vector n ∈ E is a proximall normal to the
set A at the point x ∈ ∂ A if there exists r > 0 such that

A ∩ int Br(x + rn) = ∅.

Theorem 5.2. Let space E be uniformly convex with modulus of convexity of the second order and uniformly smooth, and let subsets
A ⊂ E and cl(E\A) be weakly convex with modulus γ (ε) of the second order and cl int A = A. Then N(A, x) ∩ ∂ B∗

1(0) = {p(x)},
N(cl(E\A), x) ∩ ∂ B∗

1(0) = {−p(x)}, at any point x ∈ ∂ A and p(x) uniformly continuously depends on the point x ∈ ∂ A.

Proof. By Remark 2.2 the sets A and cl(E\A) are proximally smooth with some parameter d > 0. Using the results of
Ivanov [11, Theorem 2] we have that for any point x ∈ ∂ A there exists a proximally normal vector n(x) to the set A at the
point x ∈ ∂ A (and proximally normal vector −n(x) to the set cl(E\A) at the point x ∈ ∂ A) and n(x) uniformly continuously
depends on x. By uniform smoothness of the space E for any vector n ∈ E , ‖n‖ = 1, there exists unit vector p(n) ∈ E∗ with
(p(n),n) = 1 and p(n) uniformly continuously depends on n (see [9,14]). Again by the smoothness of the space E we have
that p(x) = p(n(x)) ∈ N(A, x) is uniformly continuous on x ∈ ∂ A. �
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6. Epilogue

1. We see from the results above that in the spaces with modulus of convexity of the second order the notion of weakly
convex set is very effective.

2. Some of the results can be proved in a more general setting of uniformly convex Banach spaces: Theorem 3.4, or
Theorems 3.1, 3.2, and 3.3 (see [2] for details). However, the proofs in [2] are much more complicated.

We wish to point out that the results above are interesting and nontrivial even in the finite-dimensional case.
3. We agree with Banaś that the modulus σ from [4] and [5] is sometimes much more convenient in applications than

the standard modulus of smoothness [9,14]. In fact, the modulus of nonconvexity is a modification of modulus σ from [4]
for the nonconvex case.

Also, Theorem 5.1 shows a deep relationship between weakly convex sets and smooth sets. In conclusion, we formulate
the following:

Conjecture 6.1. Let the space E be uniformly convex (and smooth?), the subsets A ⊂ E and cl(E\A) closed and weakly convex with
modulus γ (ε) and cl int A = A. If limε→+0 γ (ε)/ε = 0, then the unit normal vector to the set A at the point x ∈ ∂ A uniformly
continuously depends on the point x ∈ ∂ A.
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