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0. Introduction

The category of compact Hausdorff topological spaces is probably the most convenient topological category for a categor-
ical topologist. A situation is usual when some results are first obtained for compacta and then extended with much effort
to a wider class of spaces and maps, see e.g. factorization theorems for inverse limits [13]. Many classical construction
on topological spaces lead to covariant functors in the category of compacta, and categorical methods proved to be effi-
cient tools to study hyperspaces, spaces of measures, symmetric products etc. [17]. We can mention the hyperspace functor
exp [15], the inclusion hyperspace functor G [8], the probability measure functor P [5], and the capacity functor M which
was recently introduced by Zarichnyi and Nykyforchyn [18] to study non-additive regular measures on compacta.

Functors exp, P , G , M have rather good properties. The functors exp and P belong to a defined by Ščepin class of normal
functors, while G and M satisfy all requirements of normality but preservation of preimages, hence are only weakly normal.
They are functorial parts of monads [15,18].

Unfortunately the functors exp and G lose most of their nice properties when they are extended from the category of
compacta to the category of Tychonoff spaces. Moreover, a meaningful extension usually is not unique. An interested reader
is referred, e.g. to [1], where four extensions to the category of Tychonoff spaces of the probability measure functor P are
discussed, and two of them are investigated in detail.

The aim of this paper is extend the inclusion hyperspace functor, the capacity functor and monads for these functors
from the category of compacta to the category of Tychonoff spaces, and to study properties of these extensions. We will use
“fine tuning” of standard definitions of hyperspaces and inclusion hyperspaces to “save” as much topological and categorical
properties valid for the compact case as possible.
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1. Preliminaries

In the sequel a compactum is a compact Hausdorff topological space. The unit segment I = [0;1] is considered as a sub-
space of the real line R with the natural topology. We say that a function ϕ : X → I separates subsets A, B ⊂ X if ϕ|A ≡ 1,
ϕ|B ≡ 0. If such ϕ exists for A and B and is continuous, then we call these sets completely separated. We write A ⊂

op
X or

A ⊂
cl

X if A is respectively an open or a closed subset of a space X . The set of all continuous functions from a space X to

a space Y is denoted by C(X, Y ).
See [7] for definitions of category, functor, natural transformation, monad (triple), morphism of monads. For a category

C we denote the class of its objects by Ob C . The category of Tychonoff spaces T ych consists of all Tychonoff (= completely
regular) spaces and continuous maps between them. The category of compacta C omp is a full subcategory of T ych and
contains all compacta and their continuous maps. We say that a functor F1 in T ych or in C omp is a subfunctor of a functor
F2 in the same category if there is a natural transformation F1 → F2 with all components being embeddings. Similarly
a monad F1 is a submonad of a monad F2 if there is a morphism of monads F1 → F2 such that all its components are
embeddings.

From now on we denote the set of all non-empty closed subsets of a topological space X by exp X , though sometimes
this notation is used for the set of all compact non-empty subsets, and the two meaning can even coexist in one text [6].
A lot of topologies on exp X can be found in literature. The upper topology τu is generated by the base which consist of all
sets {F ∈ exp X | F ⊂ U }, where U is open in X . The lower topology τl has the subbase {{F ∈ exp X | F ∩ X �= ∅} | U ⊂

op
X}.

The Vietoris topology τv is the least topology that contains both the upper and the lower topologies. It is de facto the
default topology on exp X , to the great extent due to an important fact that, for a compact Hausdorff space X , the space
exp X with the Vietoris topology is compact and Hausdorff. It f : X → Y is a continuous map of compacta, then the map
exp f : exp X → exp Y , which sends each non-empty closed subset F of X to its image f (Y ), is continuous. Thus we obtain
the hyperspace functor exp : C omp → C omp.

A non-empty closed with respect to the Vietoris topology subset F ⊂ exp X is called an inclusion hyperspace if
A ⊂ B ∈ exp X , A ∈ F imply B ∈ F . The set G X of all inclusion hyperspaces on the space X is closed in exp2 X , hence
is a compactum with the induced topology if X is a compactum. This topology can also be determined by a subbase which
consists of all sets of the form

U+ = {F ∈ G X | there is F ∈ F , F ⊂ U },
U− = {F ∈ G X | F ∩ U �= ∅ for all F ∈ F },

with U open in X . If the map G f : G X → GY for a continuous map f : X → Y of compacta is defined as G f (G) =
{B ⊂

cl
Y | B ⊃ f (A) for some A ∈ F }, F ∈ G X , then G is the inclusion hyperspace functor in C omp.

We follow a terminology of [18] and call a function c : exp X ∪ {∅} → I a capacity on a compactum X if the three
following properties hold for all closed subsets F , G of X :

(1) c(∅) = 0, c(X) = 1;
(2) if F ⊂ G , then c(F ) � c(G) (monotonicity);
(3) if c(F ) < a, then there exists an open set U ⊃ F such that for any G ⊂ U we have c(G) < a (upper semicontinuity).

The set of all capacities on a compactum X is denoted by M X . It was shown in [18] that a compact Hausdorff topology is
determined on M X with a subbase which consists of all sets of the form

O −(F ,a) = {
c ∈ M X

∣∣ c(F ) < a
}
,

where F ⊂
cl

X , a ∈ R, and

O +(U ,a) = {
c ∈ M X

∣∣ c(U ) > a
} = {

c ∈ M X
∣∣ there exists a compactum F ⊂ U , c(F ) > a

}
,

where U ⊂
op

X , a ∈ R. The same topology can be defined as weak∗ topology, i.e. the weakest topology on M X such that for

each continuous function ϕ : X → [0;+∞) the correspondence which sends each c ∈ M X to the Choquet integral [3] of ϕ
w.r.t. c∫

X

ϕ(x)dc(x) =
+∞∫
0

c
({

x ∈ X
∣∣ ϕ(x) � a

})
da

is continuous. If f : X → Y is a continuous map of compacta, then the map M f : M X → MY is defined as follows:
M f (c)(F ) = c( f −1(F )), for c ∈ M X and F ⊂

cl
Y . This map is continuous, and we obtain the capacity functor M in the cat-

egory of compacta.
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A monad F in a category C is a triple (F , ηF ,μF ), with F : C → C a functor, ηF : 1C → F and μF : F 2 → F natural
transformations, such that μF X ◦ ηF F X = μF X ◦ FηF X = 1F X , μF X ◦ FμF X = μF X ◦ μF F X for all objects X of C . Then
F , ηF ,μF are called respectively the functorial part, the unit and the multiplication of F. For the inclusion hyperspace monad
G = (G, ηG ,μG) the components of the unit and the multiplication are defined by the formulae [11]:

ηG X(x) = {F ∈ exp X | F 
 x}, x ∈ X,

and

μG X(F) =
{

F ∈ exp X
∣∣∣ F ∈

⋂
H for some H ∈ F

}
, F ∈ G2 X .

In the capacity monad M = (M, ηM ,μM) [18] the components of the unit and the multiplication are defined as follows:

ηM(x)(F ) =
{

1, x ∈ F ,

0, x /∈ F ,
x ∈ X, F ⊂

cl
X,

and

μM X(C)(F ) = sup
{
α ∈ I

∣∣ C
({

c ∈ M X | c(F ) � α
})

� α
}
, C ∈ M2, F ⊂

cl
X .

An internal relation between the inclusion hyperspace monad and the capacity monad is presented in [18,9].
It is well known that the correspondence which sends each Tychonoff space X to its Stone–Čech compactification β X is

naturally extended to a functor β : T ych → C omp. For a continuous map f : X → Y of Tychonoff spaces the map β f : β X →
βY is the unique continuous extension of f . In fact this functor is left adjoint [7] to the inclusion functor U which embeds
C omp into T ych. The collection i = (i X)X∈Ob T ych of natural embeddings of all Tychonoff spaces into their Stone–Čech
compactifications is a unique natural transformation 1T ych → Uβ (a unit of the adjunction, cf. [7]).

In this paper “monotonic” always means “isotone”.

2. Inclusion hyperspace functor and monad in the category of Tychonoff spaces

First we modify the Vietoris topology on the set exp X for a Tychonoff space X . Distinct closed sets in X have distinct
closures in β X , but the map eexp X which sends each F ∈ exp X to Clβ X F ∈ expβ X generally is not an embedding when the
Vietoris topology are considered on the both spaces, although is continuous. It is easy to prove:

Lemma 2.1. Let X be a Tychonoff space. Then the unique topology on exp X, such that eexp X is an embedding into expβ X with the
Vietoris topology, is determined by a base which consists of all sets of the form

〈U1, . . . , Uk〉 = {
F ∈ exp X

∣∣ F is completely separated from X \ (U1 ∪ · · · ∪ Uk), F ∩ Ui �= ∅, i = 1, . . . ,k
}
,

with all Ui open in X.

Observe that our use of the notation 〈· · ·〉 differs from its traditional meaning [15], but agrees with it if X is a com-
pactum. Hence this topology coincides with the Vietoris topology for each compact Hausdorff space X , but may be weaker
for noncompact spaces. The topology is not changed when we take a less base which consists only of 〈U1, . . . , Uk〉 for
Ui ⊂

op
X such that U2 ∪ · · · ∪ Uk is completely separated from X \ U1. We can also equivalently determine our topology with

a subbase which consists of the sets

〈U 〉 = {F ∈ exp X | F is completely separated from X \ U }
and

〈X, U 〉 = {F ∈ exp X | F ∩ U �= ∅}
with U running over all open subsets of X .

Observe that the sets of the second type form a subbase of the lower topology τl on exp X , while a subbase which
consists of the sets of the first form determines a topology that is equal or weaker than the upper topology τu on exp X .
We call it an upper separation topology (not only for Tychonoff spaces) and denote by τus . Thus the topology introduced
in the latter lemma is a lowest upper bound of τl and τus . From now on we always consider exp X with this topology, if
otherwise is not specified. We also denote by expl X , expu X and expus X the set exp X with the respective topologies.

If f : X → Y is a continuous map of Tychonoff spaces, then we define the map exp f : exp X → exp Y by the formula
exp f (F ) = Cl f (F ). The equality eexpY ◦exp f = expβ f ◦ eexp X implies that exp f is continuous, and we obtain an extension
of the functor exp in C omp to T ych. Unfortunately, the extended functor exp does not preserve embeddings.

Now we consider how to define “valid” inclusion hyperspaces in Tychonoff spaces.
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Lemma 2.2. Let a family F of non-empty closed sets of a Tychonoff space X is such that A ⊂ B ⊂
cl

X, A ∈ F imply B ∈ F . Then the

following properties are equivalent:

(a) F is a compact set in expl X ;
(b) for each monotonically decreasing net (Fα) of elements of F the intersection

⋂
α Fα also is in F .

Each such F is closed in expus X , hence in exp X. If X is compact, then these conditions are also equivalent to:

(c) F is an inclusion hyperspace.

Proof. Assume (a), and let (Fα) be a monotonically decreasing net of elements of F . If
⋂

α Fα /∈ F , then the collection
{〈X, X \ Fα〉} is an open cover of F that does not contain a finite subcover, which contradicts the compactness of F in the
lower topology. Thus (a) implies (b).

Let (b) hold, and we have a cover of F by subbase elements 〈X, Uα〉, α ∈ A. If there is no finite subcover, then F
contains all sets of the form X \ (Uα1 )∪· · ·∪ Uαk , α1, . . . ,αk ∈ A. These sets form a filtered family, which may be considered
as a monotonically decreasing net of elements of F . Hence, by the assumption, F contains their non-empty intersection
B = X \ ⋃

α∈A Uα that does not intersect any of Uα . This contradiction shows that each open cover of F by subbase
elements contains a finite subcover, and by Alexander Lemma F is compact, i.e. (a) is valid.

Let F satisfy (b), and let C be a point of closure of F in expus X . Then for each neighborhood U ⊃ C there is F ∈ F
such that F is completely separated from X \ U , therefore Cl U ∈ F . The set U of all closures Cl U , with U a neighborhood
of C , is filtered. Therefore

⋂
U = C ∈ F , hence F is closed in expus X . If X is a compactum, then F satisfies the definition

of inclusion hyperspace, i.e. (c) is true.
It is also obvious that an inclusion hyperspace on a compactum satisfies (b). �
Therefore we call a collection F of non-empty closed sets of a Tychonoff space X a compact inclusion hyperspace in

X if A ⊂ B ⊂
cl

X , A ∈ F imply B ∈ F , and F is compact in the lower topology on exp X . Note that the lower topology is

non-Hausdorff for non-degenerate X . The set of all compact inclusion hyperspaces in X will be denoted by Ǧ X .
Let G∗ X be the set of all inclusion hyperspaces G in β X with the property: if A, B ⊂

cl
β X , A ∩ X = B ∩ X , then A ∈ G ⇐⇒

B ∈ G . Observe that each such G does not contain subsets of β X \ X .
The latter lemma implies:

Proposition 2.3. A collection F ⊂ exp X is a compact inclusion hyperspace if and only if it is equal to {G ∩ X | G ∈ G} for a unique
G ∈ G∗ X.

We denote the map Ǧ X → Gβ X which sends each F ∈ Ǧ X to the respective G by eG X . It is easy to see that eG X(F ) is
equal to {G ∈ expβ X | G ∩ X ∈ F }.

We define a Tychonoff topology on Ǧ X by the requirement that eG X is an embedding into Gβ X . An obvious inclusion
Gβ f (G∗ X) ⊂ G∗Y for a continuous map f : X → Y allows to define a continuous map Ǧ f : Ǧ X → ǦY as a restriction
of the map Gβ f , i.e. by the equality Gβ f ◦ eG X = eG Y ◦ Ǧ f . Of course, Ǧ f (F ) = {G ⊂

cl
Y | G ⊃ f (F ) for some F ∈ F } for

F ∈ Ǧ X . A functor Ǧ in the category of Tychonoff spaces is obtained. Its definition implies that eG = (eG X)X∈Ob T ych is
a natural transformation Ǧ → U Gβ , with all components being embeddings, therefore Ǧ is a subfunctor of U Gβ . Note also
that eG X = Ǧi X for all Tychonoff spaces X .

Due to the form of the standard subbase of Gβ X , we obtain:

Proposition 2.4. The topology on Ǧ X can be determined by a subbase which consists of all sets of the form

U+ = {F ∈ Ǧ X | there is F ∈ F , F is completely separated from X \ U },
U− = {F ∈ Ǧ X | F ∩ U �= ∅ for all F ∈ F },

with U open in X.

Observe that this interpretation of U+, U− for Tychonoff spaces agrees with the standard one for compact Hausdorff
spaces.

As it was said before, the functor exp : T ych → T ych does not preserve embeddings, thus we cannot regard exp exp X as
a subspace of exp expβ X , although exp X is a subspace of expβ X . We can only say that image under exp of the embedding
exp X → expβ X is continuous. Therefore a straightforward attempt to embed Ǧ X into exp2 X fails, while Ǧ X is embedded
into exp2 β X .
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Now we will show that the topology on Ǧ X is the weak topology with respect to a collection of maps into the unit
interval.

Lemma 2.5. Let a map ϕ : X → I be continuous. Then the map ψ : exp X → I which sends each non-empty closed subset F ⊂ X to
supx∈F ϕ(x) (or infx∈F ϕ(x)) is continuous.

Proof. We prove for sup, the other case is analogous. Let supx∈F ϕ(x) = β < α, α,β ∈ I . The set U = ϕ−1([0; α+β
2 )) is open,

and F is completely separated from X \ U , hence F ∈ 〈U 〉. If G ∈ exp X , G ∈ 〈U 〉, then supx∈F ϕ(x) � α+β
2 < α as well, and

the preimage of the set [0;α) under the map ψ is open.
Now let supx∈F ϕ(x) = β > α, α,β ∈ I . There exists a point x ∈ F such that ϕ(x) >

α+β
2 , hence F intersects the open

set U = ϕ−1((
α+β

2 ;1]). Then 〈X, U 〉 
 F , and G ∈ exp X , G ∈ 〈X, U 〉 implies supx∈G ϕ(x) � α+β
2 > α. Therefore the preimage

ψ−1(α;1] is open as well, which implies the continuity of ψ . �
Lemma 2.6. Let a function ψ : exp X → I be continuous and monotonic. Then ϕ attains its minimal value on each compact inclusion
hyperspace F ∈ Ǧ X .

Proof. If ψ is continuous and monotonic, then it is lower semicontinuous with respect to the lower topology. Then the
image of the compact set F under ψ is compact in the topology {I ∩ (a,+∞) | a ∈ R} on I , therefore ψ(F ) contains a least
element. �
Proposition 2.7. The topology on Ǧ X is the weakest among topologies such that for each continuous function ϕ : X → I the map mϕ

which sends each F ∈ Ǧ X to min{supF ϕ | F ∈ F } is continuous. If ψ : exp X → I is a continuous monotonic map, then the map
which sends each F ∈ Ǧ X to min{ψ(F ) | F ∈ F } is continuous w.r.t. this topology.

Proof. Let ψ : exp X → I be a continuous monotonic map, and min{ψ(F ) | F ∈ F } < α, then there is F ∈ F such that
ψ(F ) < α. Due to continuity there is a neighborhood 〈U1, . . . , Uk〉 
 F such that ψ(G) < α for all G ∈ 〈U1, . . . , Uk〉. For
ϕ is monotonic, the inequality ψ(G) < α is valid for all G ∈ 〈U1 ∪ · · · ∪ Uk〉. Therefore min{ψ(G) | G ∈ G} < α for all G ∈
(U1 ∪ · · · ∪ Uk)

+ , and the latter open set contains F .
If min{ψ(F ) | F ∈ F } > α, then ψ(F ) > α for all F ∈ F . The function ψ is continuous, hence each F ∈ F is in a basic

neighborhood 〈U0, U1, . . . , Uk〉 in exp X such that for all G in this neighborhood the inequality ψ(G) > α holds. We can
assume that U1 ∪ U2 ∪ · · · ∪ Uk is completely separated from X \ U0, then ψ(G) > α also for all G ∈ 〈X, U1, U2, . . . , Uk〉. The
latter set is an open neighborhood of F in the lower topology. The set F is compact in expl X , therefore we can choose
a finite subcover 〈U 1

1, . . . , U 1
k1

, . . . , 〈Un
1, . . . , Un

kn
of F such that G ∈ 〈Ul

1, . . . , Ul
kl
〉, 1 � l � n, implies ψ(G) > α. Then F is in

an open neighborhood

U =
⋂{(

U 1
j1

∪ U 2
j2

∪ · · · ∪ Un
jn

)− ∣∣ 1 � j1 � k1, 2 � j2 � k2, . . . , n � jn � kn
}
.

Each element G of any compact inclusion hyperspace G ∈ U intersects all Ul
1, . . . , Ul

kl
for at least one l ∈ {1, . . . ,n}, therefore

min{ψ(G) | G ∈ G} > α for all G ∈ U . Thus min{ψ(F ) | F ∈ F } is continuous w.r.t. F ∈ Ǧ X .
Due to Lemma 2.5 it implies that the map m : Ǧ X → IC(X,I) , m(F ) = (mϕ(F ))ϕ∈C(X,I) for F ∈ Ǧ X , is continuous.
Now let F ∈ U+ for U ⊂

op
X , i.e. there is F ∈ F and a continuous function ϕ : X → I such that ϕ|F ≡ 0, ϕ|X\U = 1. Then

mϕ(F ) < 1/2, and for any G ∈ Ǧ X the inequality mϕ(G) < 1/2 implies G ∈ U+ .
If F ∈ U− , U ⊂

op
X , then due to the compactness of F we can choose V ⊂

op
X such that F ∈ V − , and there is a continuous

map ϕ : X → I such that ϕ|V = 1, ϕ|X\U = 0. Then mϕ(F ) = 1 > 1/2, and for each G ∈ Ǧ X the inequality mϕ(G) > 1/2
implies G ∈ U− . Therefore the inverse to m is continuous on m(Ǧ X), thus the map m : Ǧ X → IC(X,I) is an embedding, which
completes the proof. �
Remark 2.8. It is obvious that the topology on Ǧ X can be equivalently defined as the weak topology w.r.t. the collection of
maps mϕ : Ǧ X → I , mϕ(F ) = max{infF ϕ | F ∈ F }, for all ϕ ∈ C(X, I).

Further we will need the subspace

Ĝ X = {F ∈ Ǧ X | for all F ∈ F there is a compactum K ⊂ F , K ∈ F } ⊂ Ǧ X .

It is easy to see that its image under eG X : Ǧ X ↪→ Gβ X is the set

G∗ X = {
G ∈ G∗ X

∣∣ for all G ∈ G there is a compactum K ⊂ G ∩ X, K ∈ G
}
,

and Ǧ f (Ĝ X) ⊂ ĜY for each continuous map f : X → Y of Tychonoff spaces. Thus we obtain a subfunctor Ĝ of the functor
Ǧ : T ych → T ych.
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Lemma 2.9. Let X be a Tychonoff space. Then μGβ X ◦ ǦeG X(Ǧ2 X) ⊂ eG X(Ǧ X).

The composition in the above inclusion is legal because Ǧβ X = Gβ X .

Proof. Let F ∈ Ǧ2 X , F = μGβ X ◦ ǦeG X(F), and F , G ⊂
cl

β X are such that F ∩ X = G ∩ X . Assume F ∈ F , then there is H ∈ F

such that F ∈ G for all G ∈ ClGβ X eG X(H), therefore for all G ∈ eG X(H). It is equivalent to F ∩ X ∈ H for all H ∈ H ⊂ Ǧ X ,
which in particular implies that F ∩ X �= ∅. By the assumption, G ∩ X ∈ H for all H ∈ H as well, hence G ∈ G for all
G ∈ eG X(H). The set of all H ∈ Ǧ X such that H 
 A is closed for any A ∈ exp X , thus G ∈ G for all G ∈ ClGβ X eG X(H). We
infer that G ∈ F , and F ∈ Ǧ X . �

For eG X is an embedding, we define μ̌G X as a map Ǧ2 X → Ǧ X such that eG X ◦ μ̌G X = μGβ X ◦ ǦeG X . This map is
unique and continuous. Following the latter proof, we can see that

μ̌G(F) =
{

F ∈ exp X
∣∣∣ F ∈

⋂
H for some H ∈ F

}
, F ∈ Ǧ2 X,

i.e. the formula is the same as in C omp.
For the inclusion ηGβ X ◦ i X(X) ⊂ eG X(Ǧ X) is also true, there is a unique map η̌G X : X → Ǧ X such that eG X ◦ ηG X =

ηGβ X ◦ i X , namely η̌G X(x) = {F ∈ exp X | F 
 x} for each x ∈ X , and this map is continuous. It is straightforward to prove
that the collections η̌G = (η̌G X)X∈Ob T ych and μ̌G = (μ̌G X)X∈Ob T ych are natural transformations respectively 1T ych → Ǧ and
Ǧ2 → Ǧ .

Theorem 2.10. The triple Ǧ = (Ǧ, η̌G , μ̌G) is a monad in T ych.

Proof. Let X be a Tychonoff space and i X its embedding into β X . Then:

eG X ◦ μ̌X ◦ η̌Ǧ X = μβ X ◦ ǦeG X ◦ η̌Ǧ X = μβ X ◦ ηGβ X ◦ eG X = 1Gβ X ◦ eG X = eG X,

thus μ̌G X ◦ Ǧη̌X = μ̌G X ◦ η̌G Ǧ X = 1Ǧ X , similarly we obtain the equalities μ̌G X ◦ Ǧη̌G X = 1Ǧ X and μ̌G X ◦ Ǧμ̌G X =
μ̌G X ◦ μ̌G Ǧ X . �

For Ǧ X , η̌G X , μ̌G X coincide with G X , ηG X , μG X for any compactum X , the monad Ǧ is an extension of the monad G

in C omp to T ych.

3. Functional representation of the capacity monad in the category of compacta

In the sequel X is a compactum, c is a capacity on X and ϕ : X → R is a continuous function. We define the Sugeno
integral of ϕ with respect to c by the formula [10,14]:

∨∫
X

ϕ(x) ∧ dc(x) = sup
{

c
({

x ∈ X
∣∣ ϕ(x) � α

}) ∧ α
∣∣ α ∈ I

}
.

The following theorem was recently obtained (in an equivalent form) by Radul [12] under more restrictive conditions,
namely restrictions of normalizedness and non-expandability were also imposed. Therefore for the readers convenience we
provide a formulation and a short proof of a version more suitable for our needs.

Theorem 3.1. Let X be a compactum, c a capacity on X. Then the functional i : C(X, I) → I , i(ϕ) = ∫ ∨
X ϕ(x) ∧ dc(x) for ϕ ∈ C(X, I),

has the following properties:

(1) for all ϕ,ψ ∈ C(X, I) the inequality ϕ � ψ (i.e. ϕ(x) � ψ(x) for all x ∈ X ) implies i(ϕ) � i(ψ) (i is monotonic);
(2) i satisfies the equalities i(α ∧ ϕ) = α ∧ i(ϕ), i(α ∨ ϕ) = α ∨ i(ϕ) for any α ∈ I , ϕ ∈ C(X, I).

Conversely, any functional i : C(X, I) → I satisfying (1), (2) has the form i(ϕ) = ∫ ∨
X ϕ(x)∧dc(x) for a uniquely determined capacity

c ∈ M X.

In the two following lemmata i : C(X, I) → I is a functional that satisfies (1), (2).

Lemma 3.2. If α ∈ I and continuous functions ϕ,ψ : X → I are such that {x ∈ X | ϕ(x) � α} ⊂ {x ∈ X | ψ(x) � α} and i(ϕ) � α,
then i(ψ) � α.
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Proof. For α = 0 the statement is trivial. Otherwise assume i(ϕ) � α. Let 0 � β < α. For ϕ,ψ are continuous, there is γ ∈
(β;α) such that the closed sets F = ψ−1([0;β]) and G = ϕ−1([γ ,1]) have an empty intersection. Then, by Brouwer–Tietze–
Urysohn Theorem, there is a continuous function θ : X → [β;γ ] such that θ |F ≡ β , θ |G ≡ γ . Then we define a function
f : X → I as follows:

f (x) =
{

ψ(x), x ∈ F ,

θ(x), x /∈ F ∪ G,

ϕ(x), x ∈ G.

Then γ ∨ f = γ ∨ ϕ , thus

γ ∨ i( f ) = i(γ ∨ f ) = i(γ ∨ ϕ) = γ ∨ i(ϕ) = α,

and i( f ) = α. Taking into account β ∧ f = β ∧ ψ , we obtain

β = β ∧ i( f ) = i(β ∧ f ) = i(β ∧ ψ) = β ∧ i(ψ),

thus i(ψ) � β for all β < α. It implies i(ψ) � α. �
Obviously if {x ∈ X | ϕ(x) � α} = {x ∈ X | ψ(x) � α}, then i(ϕ) � α if and only if i(ψ) � α.

Lemma 3.3. For each closed set F ⊂ X and β ∈ I the equality

inf
{

i(ϕ)
∣∣ ϕ � α ∧ χF

} = α ∧ inf
{

i(ψ)
∣∣ ϕ � χF

}
is valid.

Proof. It is sufficient to observe that for all 0 � β < α the sets {β ∧ϕ | ϕ � α ∧χF } and {β ∧ψ | ψ � χF } coincide, therefore
by the previous lemma:

β ∧ inf
{

i(ϕ)
∣∣ ϕ � α ∧ χF

} = β ∧ inf
{

i(ψ)
∣∣ ψ � χF

} = β ∧ α ∧ inf
{

i(ψ)
∣∣ ψ � χF

}
.

For the both expressions inf{i(ϕ) | ϕ � α ∧ χF } and α ∧ inf{i(ψ) | ψ � χF } do not exceed α, they are equal. �
Proof of the theorem. It is obvious that Sugeno integral w.r.t. a capacity satisfies (1), (2). If i is Sugeno integral w.r.t.
some capacity c, then the equality c(F ) = inf{i(ψ) | ψ � χF } must hold for all F ⊂

cl
X . To prove the converse, we assume

that i : C(X, I) → I satisfies (1), (2) and use the latter formula to define a set function c. It is obvious that the first two
conditions of the definition of capacity hold for c. To show upper semicontinuity, assume that c(F ) < α for some F ⊂

cl
X ,

α ∈ I . Then there is a continuous function ϕ : X → I such that ϕ � χF , i(ϕ) < α. Let i(ϕ) < β < α, then

i(ϕ) = β ∧ i(ϕ) = i(β ∧ ϕ) � β ∧ c
({

x ∈ X
∣∣ ϕ(x) � β

})
,

which implies c({x ∈ X | ϕ(x) � β}) < β < α. The set U = {x ∈ X | ϕ(x) > β} is an open neighborhood of F such that c(G) < α
for all G ⊂

cl
X , G ⊂ U . Thus c is upper semicontinuous and therefore it is a capacity.

The two previous lemmata imply that for any ϕ ∈ C(X, I) we have

i(ϕ) = sup
{
α ∈ I

∣∣ i(ϕ) � α
} = sup

{
α ∈ I

∣∣ c
({

x ∈ X
∣∣ ϕ(x) � α

})
� α

}
= sup

{
α ∧ c

({
x ∈ X

∣∣ ϕ(x) � α
}) ∣∣ α ∈ I

} =
∨∫

X

ϕ(x) ∧ dc(x). �

Lemma 3.4. Let ϕ : X → I be a continuous function. Then the map δϕ : M X → I which sends each capacity c to
∫ ∨

X ϕ(x) ∧ dc(x) is
continuous.

Proof. Observe that

δϕ
−1([0;α)

) = O −
(
ϕ−1([0;α]),α)

, δϕ
−1((α;1]) = O +

(
ϕ−1((α;1]),α)

for all α ∈ I . �
Corollary 3.5. The map X → IC(X,I) which sends each capacity c on X to (δϕ(c))ϕ∈C(X,I) is an embedding.

Recall that its image consists of all monotonic functionals from C(X, I) to I which satisfy (1), (2). Therefore from now
on we identify each capacity and the respective functional. By the latter statement the topology on M X can be equivalently
defined as weak∗ topology using Sugeno integral instead of Choquet integral. We also write c(ϕ) for

∫ ∨
X ϕ(x) ∧ dc(x).

The following observation is a trivial “continuous” version of [10, Theorem 6.5].
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Proposition 3.6. Let C ∈ M X and ϕ ∈ C(X, I). Then μM X(C)(ϕ) = C(δϕ).

Proof. Indeed, the both sides are greater or equal than α ∈ I if and only if C{c ∈ M X | c(ϕ) � α} � α. �
It is also easy to see that ηM X(x)(ϕ) = ϕ(x) for all x ∈ X , ϕ ∈ C(X, I). Thus we have obtained a description of the capacity

monad M in terms of functionals which is a complete analogue of the description of the probability monad P [5,15]. Now
we can easily reprove the continuity of ηM X and μM X , as well as the fact that M = (M, ηM ,μM) is a monad.

4. Extensions of the capacity functor and the capacity monad to the category of Tychonoff spaces

We will extend the definition of capacity to Tychonoff spaces. A function c : exp X ∪ {∅} → I is called a regular capacity
on a Tychonoff space X if it is monotonic, satisfies c(∅) = 0, c(X) = 1 and the following property of upper semicontinuity or
outer regularity: if F ⊂

cl
X and c′(F ) < α, α ∈ I , then there is an open set U ⊃ F in X such that F and X \ U are completely

separated, and c′(G) < α for all G ⊂ U , G ⊂
cl

X .

This definition implies that each closed set F is contained in some zero-set Z such that c(F ) = c(Z).
Each capacity c on any compact space Y satisfies also the property which is called τ -smoothness for additive measures

and have two slightly different formulations [1,16]. Below we show that they are equivalent for Tychonoff spaces.

Lemma 4.1. Let X be a Tychonoff space and m : exp X ∪ {∅} → I a monotonic function. Then the two following statements are
equivalent:

(a) for each monotonically decreasing net (Fα) of closed sets in X and a closed set G ⊂ X, such that
⋂

α Fα ⊂ G, the inequality
infα c(Fα) � c(G) is valid;

(b) for each monotonically decreasing net (Zα) of zero-sets in X and a closed set G ⊂ X, such that
⋂

α Zα ⊂ G, the inequality
infα c(Zα) � c(G) is valid.

Proof. It is obvious that (a) implies (b). Let (b) hold, and let a net (Fα) and a set G satisfy the conditions of (a). We denote
the set of all pairs (Fα,a) such that a ∈ X \ Fα by A, and let Γ be the set of all non-empty finite subsets of A. The space
X is Tychonoff, hence for each pair (Fα,a) ∈ A there is a zero-set Zα,a ⊃ Fα such that Zα,a /
 a. For γ = {(α1,a1), . . . ,

(αk,ak)} ∈ Γ we put Zγ = Zα1,a1 ∩ · · · ∩ Zαk,ak . If Γ is ordered by inclusion, then (Zγ )γ ∈Γ is a monotonically decreasing net
such that

⋂
γ ∈Γ Zγ = ⋂

α Fα ⊂ G , thus infα c(Fα) � infγ ∈Γ Zγ � c(G), and (a) is valid. �
We call a function c : exp X → I a τ -smooth capacity if it is monotonic, satisfies c(∅) = 0, c(X) = 1 and any of the two

given above equivalent properties of τ -smoothness. It is obvious that each τ -smooth capacity is a regular capacity, but the
converse is false. E.g. the function c : exp N ∪ {∅} → I which is defined by the formulae c(∅) = 0, c(F ) = 1 as F ⊂ N, F �= ∅,
is a regular capacity that is not τ -smooth. For compacta the two classes coincide.

From now all capacities are τ -smooth, if otherwise is not specified.
Now we show that capacities on a Tychonoff space X can be naturally identified with capacities with a certain property

on the Stone–Čech compactification β X .

Lemma 4.2. Let c be a capacity on β X. Then the following statements are equivalent:

(1) for each closed sets F , G ⊂ β X such that F ∩ X ⊂ G, the inequality c(F ) � c(G) is valid;
(2) for each monotonically decreasing net (ϕγ ) of continuous functions β X → I and a continuous function ψ : β X → I such that

infγ ϕγ (x) � ψ(x) for all x ∈ X, the inequality infγ c(ϕγ ) � c(ψ) is valid.

Proof. (1) �⇒ (2). Let c(ψ) < α, α ∈ I , then c(Z0) < α for the closed set Z0 = {x ∈ β X | ψ(x) � α}. The intersection Z of the
closed sets Zγ = {x ∈ β X | ϕγ (x) � α} satisfies the inclusion Z ∩ X ⊂ Z0, hence by (1): c(Z) � c(Z0). Due to τ -smoothness
of c we obtain infγ c(Zγ ) � c(Z). Therefore there exists an index γ such that c({x ∈ β X | ϕγ (x) � α}) < α, thus c(ϕγ ) < α,
and infγ c(ϕγ ) < α, which implies the required inequality.

(2) �⇒ (1). Let a continuous function ψ : β X → I be such that ψ |G = 1. Denote the set of all continuous functions
ϕ : β X → I such that ϕ|F ≡ 1 by F . We consider the order on F which is reverse to natural: ϕ ≺ ϕ′ if ϕ � ϕ′ , then the
collection F can be regarded as a monotonically decreasing net such that (ϕ(x))ϕ∈F converges to 1 for all x ∈ X ∩ G , and
to 0 for all x ∈ X \ G . Therefore infϕ∈F ϕ(x) � ψ(x) for all x ∈ X , hence, by the assumption: infϕ∈F c(ϕ) � c(ψ). Thus

inf
{

c(ϕ)
∣∣ ϕ : β X → I is continuous,ϕ|F ≡ 1

}
� inf

{
c(ψ)

∣∣ ψ : β X → I is continuous,ψ |G ≡ 1
}
,

i.e. c(F ) � c(G). �
We define the set of all c ∈ Mβ X that satisfy (1) ⇐⇒ (2) by M∗ X .
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Condition (1) implies that, if closed sets F , G ⊂ β X are such that F ∩ X = G ∩ X , then c(F ) = c(G). Therefore we can
define a set function č : exp X ∪ {∅} → I as follows: if A ⊂

cl
X , then č(A) = c(F ) for any set F ⊂

cl
β X such that F ∩ X = A.

Obviously č(A) = inf{c(ψ) | ψ ∈ C(β X, I), ψ � χA}.
The following observation, although almost obvious, is a crucial point in our exposition.

Proposition 4.3. A set function c′ : exp X ∪ {∅} → I is equal to č for some c ∈ M∗ X if and only if c′ is a τ -smooth capacity on X.

Therefore we define the set of all capacities on X by M̌ X and identify it with the subset M∗ X ⊂ Mβ X . We obtain an
injective map eM X : M̌ X → Mβ X , and from now on we assume that a topology on M̌ X is such that eM X is an embedding.
Thus M̌ X for a Tychonoff X is Tychonoff as well.

If c is a capacity on X and ϕ : X → I is a continuous function, we define the Sugeno integral of ϕ w.r.t. c by the usual
formula:

c(ϕ) =
∨∫

X

ϕ(x) ∧ dc(x) = sup
{
α ∧ c

{
x ∈ X

∣∣ ϕ(x) � α
} ∣∣ α ∈ I

}
.

For any continuous function ϕ : X → I we denote by βϕ its Stone–Čech compactification, i.e. its unique continuous
extension to a function β X → I .

Proposition 4.4. Let c ∈ M∗ X and č is defined as above. Then for any continuous function ϕ : X → I we have č(ϕ) = c(βϕ).

Proof. It is sufficient to observe that

č
({

x ∈ X
∣∣ ϕ(x) � α

}) = c
({

x ∈ β X
∣∣ βϕ(x) � α

})
. �

Thus the topology on M̌ X can be equivalently defined as the weak∗-topology using Sugeno integral. It also immediately
implies that the following theorem is valid.

Theorem 4.5. Let X be a Tychonoff space, c a capacity on X. Then the functional i : C(X, I) → I , i(ϕ) = ∫ ∨
X ϕ(x) ∧ dc(x) for ϕ ∈

C(X, I), has the following properties:

(1) for all ϕ,ψ ∈ C(X, I) the inequality ϕ � ψ (i.e. ϕ(x) � ψ(x) for all x ∈ X ) implies i(ϕ) � i(ψ) (i is monotonic);
(2) i satisfies the equalities i(α ∧ ϕ) = α ∧ i(ϕ), i(α ∨ ϕ) = α ∨ i(ϕ) for any α ∈ I , ϕ ∈ C(X, I);
(3) for each monotonically decreasing net (ϕα) of continuous functions X → I and a continuous function ψ : X → I such that

infα ϕα(x) � ψ(x) for all x ∈ X, the inequality infα i(ϕα) � i(ψ) is valid.

Conversely, any functional i : C(X, I) → I satisfying (1)–(3) has the form i(ϕ) = ∫ ∨
X ϕ(x) ∧ dc(x) for a uniquely determined ca-

pacity c ∈ M̌ X.

Condition (3) is superfluous for a compact space X , but cannot be omitted for noncompact spaces. E.g. the functional,
which sends each ϕ ∈ C(R, I) to supϕ , has properties (1), (2), but fails to satisfy (3).

The following statement is an immediate corollary of an analogous theorem for the compact case.

Proposition 4.6. The topology on M̌ X can be equivalently determined by a subbase which consists of all sets of the form

O +(U ,α) = {
c ∈ M̌ X

∣∣ there is F ⊂
cl

X, F is completely separated from X \ U , c(F ) > α
}

for all open U ⊂ X, α ∈ I , and of the form

O −(F ,α) = {
c ∈ M̌ X

∣∣ c(F ) < α
}

for all closed F ⊂ X, α ∈ I .

Like the compact case, for a continuous map f : X → Y of Tychonoff spaces we define a map M̌ f : M̌ X → M̌Y by the
two following equivalent formulae: M̌ f (c)(F ) = c( f −1(F )), with c ∈ M̌ X , F ⊂

cl
Y (if set functions are used), or M̌ f (c)(ϕ) =

c(ϕ ◦ f ) for c ∈ M̌ X , ϕ ∈ C(X, I) (if we regard capacities as functionals). The latter representation implies the continuity
of M̌ f , and we obtain a functor M̌ in the category T ych of Tychonoff spaces that is an extension of the capacity functor M
in C omp.
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The map eM X : M̌ X → Mβ X coincides with M̌i X , where i X is the embedding X ↪→ β X (we identify M̌β X and
Mβ X ), and the collection eM = (eM X)X∈Ob T ych is a natural transformation from the functor M̌ to the functor U Mβ , with
U : C omp → T ych being the inclusion functor. Observe that ηMβ X(X) ⊂ M∗ X = eM X(M̌ X), therefore there is a contin-
uous restriction η̌M X = ηMβ X |X : X → M̌ X which is a component of a natural transformation eM : 1T ych → M̌ . For all
x ∈ X ∈ Ob T ych, F ⊂

cl
X the value η̌G X(x)(F ) is equal to 1 if x ∈ F , otherwise is equal to 0.

Lemma 4.7. Let X be a Tychonoff space. Then μMβ X ◦ M̌eM X(M̌2 X) ⊂ eM X(M̌ X).

Proof. Let C ∈ M̌2 X , and F , G ⊂
cl

β X are such that F ∩ X ⊂ G . Then for all c ∈ M∗ X we have c(F ) � c(G), thus for each α ∈ I:

{
c ∈ M̌ X

∣∣ eM X(c)(F ) � α
} ⊂ {

c ∈ M̌ X
∣∣ eM X(c)(G) � α

}
,

hence

M̌eM X(C)
({

c ∈ Mβ X
∣∣ c(F ) � α

})
) = C

(
eM X−1({c ∈ Mβ X

∣∣ c(F ) � α
}))

� C
(
eM X−1({c ∈ Mβ X

∣∣ c(G) � α
}))

= M̌eM X(C)
({

c ∈ Mβ X
∣∣ c(G) � α

})
,

thus

μMβ X ◦ M̌eM X(C)(F ) = sup
{
α ∧ M̌eM X(C)

({
c ∈ Mβ X

∣∣ c(F ) � α
})}

� sup
{
α ∧ M̌eM X(C)

({
c ∈ Mβ X

∣∣ c(G) � α
})} = μMβ X ◦ M̌eM X(C)(G),

which means that μMβ X ◦ M̌eM X(C) ∈ M∗ X = eM X(M̌ X). �
For eM X : M̌ X → Mβ X is an embedding, there is a unique map μ̌M X : M̌2 X → M̌ X such that

μMβ X ◦ MeM X = eM X ◦ μ̌M X , and this map is continuous. It is straightforward to verify that the collection μ̌M =
(μ̌M X)X∈Ob T ych is a natural transformation M̌2 → M̌ , and μ̌M X can be defined directly, without involving Stone–Čech
compactifications, by the usual formulae:

μ̌M X(C)(F ) = sup
{
α ∧ C

({
c ∈ M̌ X

∣∣ c(F ) � α
})}

, C ∈ M̌2 X, F ⊂
cl

X,

or

μ̌M X(C)(ϕ) = C(δϕ), ϕ ∈ C(X, I), where δϕ(c) = c(ϕ) for all c ∈ M̌ X .

Theorem 4.8. The triple M̌ = (M̌, η̌M , μ̌M) is a monad in T ych.

Proof is a complete analogue of the proof of Proposition 2.10.
This monad is an extension of the monad M = (M, ηM ,μM) in C omp in the sense that M̌ X = M X , η̌M X = ηM X and

μ̌M X = μM X for each compactum X .

Proposition 4.9. Let for each compact inclusion hyperspace F on a Tychonoff space X the set function iM
G X(F ) : exp X ∪ {∅} → I be

defined by the formula

iM
G X(F )(A) =

{
1, A ∈ F ,

0, A /∈ F ,
A ⊂

cl
X .

Then iK
G X is an embedding Ǧ X ↪→ M̌ X, and the collection iK

G = (iK
G X)X∈Ob T ych is a morphism of monads Ǧ → M̌.

Thus the monad Ǧ is a submonad of the monad M̌.
Now let

M∗ X = {
c ∈ Mβ X

∣∣ c(A) = sup
{

c(F )
∣∣ F ⊂ A ∩ X is compact

}
for all A ⊂

cl
β X

}
.

It is easy to see that M∗ X ⊂ M∗ X . As a corollary we obtain

Proposition 4.10. A set function c′ : exp X ∪ {∅} → I is equal to č for some c ∈ M∗ X if and only if c′ is a τ -smooth capacity on X and
satisfies the condition c′(A) = sup{c′(F ) | F ⊂ A is compact} for all A ⊂ X (inner compact regularity).
cl
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If a set function satisfies (1)–(4), we call it a Radon capacity. The set of all Radon capacities on X is denoted by M̂ X
and regarded as a subspace of M̌ X . An obvious inclusion Mβ f (M∗ X) ⊂ M∗Y for a continuous map f : X → Y of Tychonoff
spaces implies M̌ f (M̂ X) ⊂ M̂Y . Therefore we denote the restriction of M̌ f to a mapping M̂ X → M̂Y by M̂ f and obtain
a subfunctor M̂ of the functor M̌ .

Question 4.11. What are necessary and sufficient conditions for a functional i : C(X, I) → I to have the form i(ϕ) =∫ ∨
X ϕ(x) ∧ dc(x) for a some capacity c ∈ M̂ X?

Here is a necessary condition: for each monotonically increasing net (ϕα) of continuous functions X → I and a continuous
function ψ : X → I such that supα ϕα(x) � ψ(x) for all x ∈ X , the inequality supα i(ϕα) � i(ψ) is valid.

The problem of existence of a restriction of μ̌M X to a map M̂2 X → M̂ X is still unsolved and is connected with a similar
question for inclusion hyperspaces by the following

Proposition 4.12. Let X be a Tychonoff space. If μ̌M X(M̂2 X) ⊂ M̂ X, then μ̌G X(Ĝ2 X) ⊂ Ĝ X .

Proof. We will consider equivalent inclusions μMβ X(M2∗ X) ⊂ M∗ X and μGβ X(G2∗ X) ⊂ G∗ X . The latter one means that, for
each set A ⊂

cl
X and compact set G ⊂ Gβ X such that each element F of any inclusion hyperspace B ∈ G contains a com-

pactum K ∈ B, K ⊂ X , there is a compact set H ⊂ A, H ∈ ⋂
G .

Assume that μGβ X(G2∗ X) �⊂ G∗ X , then there are A ⊂
cl

X and a compact set G ⊂ G∗ X such that all inclusion hyperspaces

in G contain subsets of A, but there are no compact subsets of A in
⋂

G . For each B ∈ G let a capacity cB be defined as
follows:

cB(F ) =
{

1, F ∈ B,

0, F /∈ B,
F ⊂

cl
β X .

It is obvious that cB ∈ M∗ X , and the correspondence B �→ cB is continuous, thus the set B = {cB | B ∈ G} ⊂ Mβ X is compact.
Therefore the capacity C ∈ M2β X , defined as

C(F ) =
{

1, F ⊃ B,

0, F �⊃ B,
F ⊂

cl
Mβ X,

is in M∗(M∗ X). Then μMβ X(C)(Clβ X A) = 1, but there is no compact subset K ⊂ A such that cB(K ) �= 0 for all B ∈ G ,
therefore μMβ X(C)(K ) = 0 for all compact K ⊂ A = Clβ X A ∩ X , and μMβ X(C) /∈ M∗ X . �

It is still unknown to the authors:

Question 4.13. Does the converse implication hold? Do all locally compact Hausdorff or (complete) metrizable spaces satisfy
the condition of the previous statement?

5. Topological properties of the functors Ǧ , Ĝ , M̌ and M̂

Recall that a continuous map of topological spaces is proper if the preimage of each compact set under it is compact.
A perfect map is a closed continuous map such that the preimage of each point is compact. Any perfect map is proper [4].

From now on all maps in this section are considered continuous, and all spaces are Tychonoff if otherwise not specified.

Remark 5.1. We have already seen that properties of the functors M̌ and M̂ are “parallel” to properties of the functors Ǧ
and Ĝ . Therefore in this section we present only formulations and proofs of statements for M̌ and M̂ . All of them are valid
also for Ǧ and Ĝ , and it is an easy exercise to simplify the proofs for capacities to obtain proofs for compact inclusion
hyperspaces.

Proposition 5.2. Functors M̌ and M̂ preserves the class of injective maps.

Proof. Let f : X → Y be injective. If c, c′ ∈ M̌ X and A ⊂
cl

X are such that c(A) �= c′(A), then B = Cl f (A) ∈ ⊂
cl

Y , and

M̌ f (c)(B) = c( f −1(B)) = c(A) �= c′(A) = c′( f −1(B)) = M̌ f (c)(B), hence M̌ f (c) �= M̌ f (c′), and M̌ f is injective, as well as
its restriction M̂ f . �
Proposition 5.3. Functors M̌ and M̂ preserve the class of closed embeddings.
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Proof. Let a map f : X → Y be a closed embedding (thus a perfect map), then for the Stone–Čech compactification
β f : β X → βY the inclusion β f (β X \ X) ⊂ βY \ Y is valid [4]. We know that Mβ X(M∗ X) ⊂ M∗Y , Mβ X(M∗ X) ⊂ M∗Y .

Let c ∈ Mβ X \ M∗ X , then there are F , G ⊂
cl

Mβ X such that F ∩ X ⊂ G , but c(F ) > c(G). Then f (F ) and f (G) are closed in

βY , and f (F ) \ f (G) ⊂ f (β X \ X) ⊂ βY \ Y .
The sets F ′ = f −1( f (F )) and G ′ = f −1( f (G)) are closed in β X and satisfy F ′ ∩ X = F ∩ X , G ′ ∩ X = G ∩ X , thus c(F ′) =

Mβ f (c)( f (F )) > c(G ′) = Mβ f (c)( f (G)), which implies Mβ f (c) /∈ M∗Y . Thus (Mβ f )−1(M∗Y ) = M∗ X , and the restriction
Mβ f |M∗ X : M∗ X → M∗Y is perfect, therefore closed. It is obvious that this restriction is injective, thus is an embedding. For
the maps Mβ f |M∗ X and M̌ f are homeomorphic, the same holds for the latter map.

Now let c ∈ Mβ X \ M∗ X , i.e. there is F ⊂
cl

β X such that c(F ) > sup{c(K ) | K ⊂ F ∩ X is compact}. The compact set F ′ =
β f (F ) is closed in Cl f (X) ⊂ βY . Observe that F = (β f )−1(F ′) and obtain:

sup
{

Mβ f (c)(L)
∣∣ L ⊂ F ′ ∩ Y is compact

} = sup
{

c
(
(β f )−1(L)

) ∣∣ L ⊂ F ′ ∩ Y is compact
}

� sup
{

c(K )
∣∣ K ⊂ F ∩ X is compact

}
< c(F ) = Mβ f (c)

(
F ′),

and Mβ f (c) /∈ M∗ X . The rest of the proof is analogous to the previous case. �
It allows for a closed subspace X0 ⊂ X to identify M̌ X0 and M̂ X0 with the images of the map M̌i and M̂i, with

i : X0 ↪→→ X being the embedding.
We say that a functor F in T ych preserves intersections (of closed sets) if for any space X and a family (iα : Xα ↪→ X)

of (closed) embeddings the equality
⋂

α F Xα = F X0 holds, i.e.
⋂

α F iα(Xα) = F i0(X0), where i0 is the embedding of X0 =⋂
α Xα into X . This notion is usually used for functors which preserve (closed) embeddings, therefore we verify that:

Proposition 5.4. Functors M̌ and M̂ preserve intersections of closed sets.

Proof. Let c ∈ M̌ X and closed subspaces Xα ⊂ X , α ∈ A, are such that c ∈ M̌ Xα for all α ∈ A. Let 2A
f be the set of all

non-empty finite subsets of A. It is a directed poset when ordered by inclusion. For all F ⊂
cl

X and {α1, . . . ,αk} ∈ 2A
f we have

c(F ) = c(F ∩ Xα1 ∩ · · · ∩ Xαk ). The monotonically decreasing net (F ∩ Xα1 ∩ · · · ∩ Xαk ){α1,...,αk}∈2A
f

converges to F ∩ X0, with

X0 = ⋂
α∈A Xα . Thus c(F ) = c(F ∩ X0), which implies c ∈ M̌ X0.

The statement for M̂ is obtained as a corollary due to the following observation: if X0 ⊂ X is a closed subspace, then
M̂ X0 = M̂ X ∩ M̌ X0. �

Therefore for each element c ∈ M̌ X there is a least closed subspace X0 ⊂ X such that c ∈ M̌ X0. It is called the support of
c and denoted supp c.

It is unknown to the author whether the functor M̌ preserve finite or countable intersections.

Proposition 5.5. Functor M̂ preserves countable intersections.

Proof. Let c ∈ M̂ X belong to all M̂ Xn for a sequence of subspaces Xn ⊂ X , n = 1,2, . . . . If A ⊂
cl

F , ε > 0, then there is

a compactum K1 ⊂ A ∩ X1 such that c(K1) > c(A) − ε/2. Then choose a compactum K2 ⊂ K1 ∩ X2 such that c(K2) >

c(K1) − ε/4, . . . , a compactum Kn ⊂ Kn−1 ∩ Xn such that c(Kn) > c(Kn−1) − ε/2n , etc. The intersection K = ⋂∞
n=1 Kn is

a compact subset of A ∩ X0, X0 = ⋂∞
n=1 Xn , and c(K ) > C(A) − ε. Thus sup{c(K ) | K ⊂ A ∩ X0 is compact} = c(A) for all

A ⊂
cl

X , i.e. c ∈ M̂ X0. �

It is easy to show that M̌ and M̂ do not preserve uncountable intersections.
We say that a functor F in T ych (or in C omp) preserves preimages if for each continuous map f : X → Y and a closed

subspace Y0 ⊂ Y the inclusion F f (b) ∈ F Y0 for b ∈ F X implies b ∈ F ( f −1(Y0)), or, more formally, F f (b) ∈ F j(F Y0) implies
b ∈ F i(F ( f −1(Y0))), where i : f −1(Y0) ↪→ X and j : Y0 ↪→ Y are the embeddings.

Proposition 5.6. Functors M̌ and M̂ do not preserve preimages.

It is sufficient to recall that the capacity functor M : C omp → C omp, being the restriction of the two functors in question,
does not preserve preimages [18].

Proposition 5.7. Let f : X → Y is a continuous map such that f (X) is dense in Y . Then M̌ f (M̌ X) is dense in M̌Y , and M̂ f (M̂ X) is
dense in M̂Y .
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Proof. Let Mω X be the set of all capacities on X with finite support, i.e.

Mω X =
⋃

{M K | K ⊂ X is finite}.
Then Mω X ⊂ M̂ X ⊂ M̌ X , M̌ f (Mω X) = Mω( f (X)), and the latter set is dense in both M̂Y and M̌Y . �
6. Subgraphs of capacities on Tychonoff space and fuzzy integrals

In [18] for each capacity c on a compactum X its subgraph was defined as follows:

sub c = {
(F ,α) ∈ exp X × I

∣∣ α � c(F )
}
.

Given the subgraph sub c, each capacity c is uniquely restored: c(F ) = max{α ∈ I | (F ,α) ∈ sub c} for each F ∈ exp X .
Moreover, the map sub is an embedding M X ↪→ exp(exp X × I). Its image consists of all sets S ⊂ exp X × I such that [18]

the following conditions are satisfied for all closed non-empty subsets F , G of X and all α,β ∈ I:

(1) if (F ,α) ∈ S , α � β , then (F , β) ∈ S;
(2) if (F ,α), (G, β) ∈ S , then (F ∪ G,α ∨ β) ∈ S;
(3) S ⊃ exp X × {0} ∪ {X} × I;
(4) S is closed.

The topology on the subspace sub(M X) ⊂ exp(exp X × I) can be equivalently determined by the subbase which consists of
all sets of the form

V+(U ,α) = {
S ∈ sub(M X)

∣∣ there is (F , β) ∈ S, F ⊂ U , β > α
}

for all open U ⊂ X , α ∈ I , and of the form

V−(F ,α) = {
S ∈ sub(M X)

∣∣ β < α for all (F , β) ∈ S
}

for all closed F ⊂ X , α ∈ I .
Let the subgraph of a τ -smooth capacity c on a Tychonoff space X be defined by the same formula at the beginning of

the section. Consider the intersection sub c ∩ (exp X × {α}). It is equal to Sα(c) × {α}, with Sα(c) = {F ∈ exp X | c(F ) � α}.
The latter set is called the α-section [18] of the capacity c and is a compact inclusion hyperspace for each α > 0. Of course,
S0(c) = exp X is not compact if X is not compact. If 0 � α < β � 1, then Sα(c) ⊃ Sβ , and Sβ(c) = ⋃

0�α<β Sα(c).

We present necessary and sufficient conditions for a set S ⊂ exp X × I to be the subgraph of some capacity c ∈ M̂ X .

Proposition 6.1. Let X be a Tychonoff space. A set S ⊂ exp X × I is a subgraph of a τ -smooth capacity on X if and only if the following
conditions are satisfied for all closed non-empty subsets F , G of X and all α,β ∈ I:

(1) if (F ,α) ∈ S, α � β , then (F , β) ∈ S;
(2) if (F ,α), (G, β) ∈ S, then (F ∪ G,α ∨ β) ∈ S;
(3) S ⊃ exp X × {0} ∪ {X} × I;
(4) S ∩ (exp X × [γ ;1]) is compact in expl X × I for all γ ∈ (0;1].

Such S is closed in exp X × I .

Proof. Let c ∈ M̌ X and S = sub c. It is easy to see that S satisfies (1)–(3). To show that S ∩ (exp X × [γ ;1]) is com-
pact, assume that it is covered by subbase elements U−

i × (ai;bi), Ui ⊂
op

X , i ∈ I . For any α ∈ [γ ;1] the intersection

S ∩ (exp×{α}) = Sα(c) × {α} is compact and covered by U−
i × (ai;bi) for those i ∈ I that (ai,bi) 
 α. Therefore there

is a finite subcover U−
i1

, . . . , U−
ik

of Sα(c), max{ai1 , . . . ,aik } < α < min{bi1 , . . . ,bik }. When a ↗ α, the compact set Sa(c) de-

creases to Sα(c), thus there is a ∈ (max{ai1 , . . . ,aik };α) such that Sa(c) ⊂ U−
i1

∪ · · · ∪ U−
ik

. If we denote b = min{bi1 , . . . ,bik },
we obtain that for each α ∈ [γ ;1] there is an interval (a,b) 
 α such that S ∩ (exp X × (a,b)) is covered by a finite number
of sets U−

i × (ai,bi). For [γ ,1] is compact, we infer that there is a finite subcover of the whole set S ∩ (exp X ×[γ ;1]), thus
(4) holds.

Now let a set S ⊂ exp X × I satisfy (1)–(4), and let Sα = pr1(S ∩ (exp X × I)) for all α ∈ I . By (1) Sα ⊃ Sβ whenever
a < β . Assume Sβ �= ⋂

0<α<β Sα for some β ∈ (0;1], i.e. there is F ∈ exp X such that F ∈ Sα for all α ∈ (0;β), but F /∈ Sβ .
Then the sets (X \ F )− × I and exp X × [0;α), with α ∈ (0;β), form an open cover of the set S ∩ (exp X × [β/2;1]) for
which there is no finite subcover, which contradicts to compactness. Thus Sβ = ⋂

0<α<β Sα . It implies that for (F , β) /∈ S ,
i.e. F /∈ Sβ , there is α ∈ (0;β) such that F /∈ Sα . The set Sα is a compact inclusion hyperspace, thus is closed in exp X . Then
(exp X \ Sα) × (α;1] is an open neighborhood of (F , β) which does not intersect S , hence S is closed in exp X × I .

For each F ∈ exp X we put c(F ) = max{α | (F ,α) ∈ S}. It is straightforward to verify that c is a τ -smooth capacity such
that sub c = S . �
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Proposition 6.2. Let ψ : exp X × I → I be a continuous function such that:

(1) ψ in antitone in the first argument and isotone in the second one;
(2) ψ(F ,α) uniformly converges to 0 as α → 0.

Then the correspondence Ψ : c �→ max{ψ(F , c(F )) | F ∈ exp X} is a well defined continuous function M̌ X → I .

Proof. Let S = sub c. Observe that Ψ can be equivalently defined as Ψ (c) = max{ψ(F ,α) | (F ,α) ∈ S}. The function
ψ : expl X × I → I is upper semicontinuous, and ψ(S) is either {0} or equal to ψ(S ∩ (exp X × [γ ;1])) for some γ ∈ (0;1).
Hence ψ(S) is a compact subset of I , therefore contains a greatest element, and use of “max” in the definition of Ψ is legal.

Assume that Ψ (c) < b for some b ∈ I . We take some a ∈ (Ψ (c);b). There exists γ ∈ I such that ψ(F ,α) < a for all
α ∈ [0;γ ), F ∈ exp X . If (F ,α) ∈ S , α � γ , then there is a neighborhood V = 〈U0, U1, . . . , Uk〉 × (u, v) 
 (F ,α) such that
U1 ∪ · · · ∪ Uk is completely separated from X \ U0, and ψ(G, β) < a for all (G, β) ∈ V . The inequality ψ(G, β) < a holds also
for all (G, β) ∈ 〈X, U1, . . . , Uk〉 × [0, v). Thus we obtain a cover of S ∩ (exp X × [γ ;1]) by open sets in expl X × I , and there
is a finite subcover by sets 〈X, Ul

1, . . . , Ul
kl
〉 × [0, vl), 1 � l � n. We may assume 0 < v1 � v2 � · · · � vn > 1. It is routine but

straightforward to verify that c is in an open neighborhood

U =
⋂{

O −
(

X \ (
Um+1

jm+1
∪ · · · ∪ Un

jn

)
, vm

) ∣∣ 1 � m < n, 1 � jm+1 � km+1, . . . ,1 � jn � kn
}
,

and for each capacity c′ ∈ U the set sub c′ ∩ [γ ;1] is also covered by the sets〈
X, Ul

1, . . . , Ul
kl

〉 × [0, vl), 1 � l � n,

therefore

Ψ
(
c′) � max

{
a,max

{
ψ(F ,α)

∣∣ (F ,α) ∈ S, α � γ
}} = a < b.

Hence Ψ is upper semicontinuous. To prove lower semicontinuity, assume that Ψ (c) > b for some b ∈ I . Then there is
F ∈ exp X such that ψ(F , c(F )) > b. By continuity there are open neighborhood U ⊃ F and γ ∈ (0; c(F )) such that F is
completely separated from X \ U , and for all G ∈ exp X , G completely separated from X \ U , α ∈ I , α > γ the inequality
ψ(G,α) > b is valid. Then c ∈ O +(U ,α), and for all c′ ∈ O +(U ,α) we have Ψ (c′) > b. �

The reason to consider such form of Ψ is that not only Sugeno integral can be represented this way (for ψ(F ,α) =
inf{ϕ(x) | x ∈ F } ∧ α), but a whole class of fuzzy integrals obtained by replacement of “∧” by an another “pseudomultipli-
cation” � : I × I → I [2], e.g. by usual multiplication or the operation h(a,b) = a + b − ab. The latter statement provides
the continuity of a fuzzy integral with respect to a capacity on a Tychonoff space, provided “�” is continuous, isotone in
the both variables and uniformly converges to 0 as the second argument tends to 0 (which is not the case for the h given
above).
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