Cantor set problems
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Introduction

A Cantor set is characterized as a topological space that is totally discon-
nected, perfect, compact and metric. Any two such spaces C; and Cs are home-
omorphic, but if C; and Cy are subspaces of R™, n > 3, there may not be a
homeomorphism of R™ to itself taking C; to Cs. In this case, C; and Cy are said
to be inequivalent embeddings of the Cantor set. There has been recent renewed
attention to properties of embeddings of Cantor sets since these sets arise in the
settings of dynamical systems, ergodic theory and group actions. The bibliogra-
phy, while not complete, gives a sampling of the various mathematical areas where
Cantor sets naturally arise.

A Cantor set C' in R" is tame if it is equivalent to the standard middle thirds
Cantor set. If it is not tame, it is wild. A Cantor set C is strongly homogeneously
embedded in R™ if every self homeomorphism of C' extends to a self homeomor-
phism of R™. At the opposite extreme, a Cantor set C' in R™ is rigidly embedded
if the identity homeomorphism is the only self homeomorphism of C' that extends
to a homeomorphism of R™. A Cantor set C' in R" is slippery if for each Cantor
set D in R™ and for each € > 0, there is a homeomorphism h: R" — R™, within e
of the identity, with h(C) N D = 0.

Zeljko [28] defines the genus of a Cantor set X in R® and the local genus of
points in X. A defining sequence for a Cantor set X C R™ is a sequence (M;) of
compact n-manifolds with boundary such that M;;; C int M; and X = ﬂz M;.
Let D(X) be the set of all defining sequences for X. For a disjoint union of
handlebodies M = | |,., M», we define g(M) = sup{genus(My) : A € A}.

For any subset A C X, and for (M;) € D(X) we denote by MiA the union
of those components of M; which intersect A. The genus of the Cantor set X
with respect to the subset A, ga(X) = inf{ga(X;(M;)) : (M;) € D(X)}, where
ga(X; (M;)) = sup{g(M;*) : i > 0}. For A = {z} we call the number g, (X) the
local genus of the Cantor set X at the point x and denote it by ¢,(X). For A = X
we call the number gx (X) the genus of the Cantor set X and denote it by g(X).

The problems

Antoine [2] produced the first example of a wild Cantor set in R?, the well-
known Antoine’s necklace. Blankinship [6] extended Antoine’s construction to
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higher dimensions, producing wild Cantor sets in Euclidean spaces of dimensions
> 4. Daverman [8] produced an example of a strongly homogenously embedded
Cantor set if R™ for n > 5. His example relied on decomposition theory results
that only applied in high dimensions and on the existence of non simply connected
homology spheres in dimensions > 3.

Question 1. Is there a strongly homogeneously embedded wild Cantor set in R3
or R4, or are such sets necessarily tame?

The Antoine construction can be carefully done with sufficiently many tori at
each stage so as to produce wild Cantor sets that are geometrically self similar
and are Lipschitz homogenously embedded in R3. See [15, 12, 29] for definitions
and details. It is not clear that the Blankinship construction in higher dimensions
can be done so as to produce geometrically self similar Cantor sets.

Question 2. Is there a geometrically self similar wild Cantor set in R* or in
higher dimensions?

Question 3. Are there Lipschitz homogenously embedded wild Cantor sets in R*
or in higher dimensions?

Rushing [18] produced examples in R? of wild Cantor sets of each possible
Hausdorff dimension. At the end of his paper, he stated that a modification of
the Blankinship construction would allow similar results in higher dimensions.
Because of the difficulty in producing a self similar Blankinship construction, it is
not clear how the generalization to higher dimensions would work.

Question 4. Are there wild Cantor sets in R™, n > 4 of arbitrary possible Haus-
dorff dimension?

DeGryse and Osborne [11] produced an example of a wild Cantor set in R?
with simply connected complement. Later, Skora [20] produced such Cantor sets
using a different construction. Rigid wild Cantor sets in R? and in higher dimen-
sions were produced by Wright [24] using variations on the Antoine and Blankin-
ship constructions. Garity, Repovs, and Zeljko [13] recently produced examples of
rigid wild Cantor sets in R? that also had simply connected complement. However
the latter examples necessarily used tori of arbitrarily high genus in the construc-
tion.

Question 5. Is there a rigid Cantor set in R® with simply connected complement
that has local genus n or less at every point, for some fized n?

Bing—Whitehead Cantor sets are a generalization of the Cantor sets produced
by DeGryse and Osborne. Ancel and Starbird [1] and later Wright [26] charac-
terized which Bing—Whitehead constructions actually yield Cantor sets.

Question 6. Is there a modification of the Bing—Whitehead Cantor set construc-
tion that yields rigid Cantor sets with simply connected complements?

Question 7. Are Bing-Whitehead Cantor sets with infinite differences in the
number of Whitehead constructions inequivalently embedded?
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Sher in [19] showed that two equivalent Antoine Cantor sets necessarily had
the same number of components in each stage of their defining sequences. In [12],
the authors and Zeljko show that Antoine Cantor sets with the same number of
components at each stage can be inequivalent. Knot theory techniques are used
in the proof. This leads to the following question.

Question 8. Is it possible to completely classify Antoine Cantor sets using knot
theory invariants?

The following questions deal with the possibility of classifying wild Cantor
sets in R? using various properties.

Question 9. Is there a way of classifying wild Cantor sets in R? using local genus
and other geometric properties?

Question 10. Can one use the volume of the hyperbolic 3-manifolds M3 = S3\ X
where X is a wild Cantor set to distinguish between classes of wild Cantor sets?

The following questions are about the relationship of Hausdorff dimension to
various types of Cantor sets.

Question 11. Can two rigid Cantor sets have different Hausdorff dimensions?
How does Hausdorff dimension detect rigidity of Cantor sets?

Question 12. [s there a rigid Cantor set of minimal Hausdorff dimension?

Question 13. Can two Cantor sets of different genus have the same Hausdorff
dimension? How are Hausdorff dimension and genus of Cantor sets related?

The final few questions deal with homotopy groups of the complement of wild
Cantor sets.

Question 14. Can two different (rigid) Cantor sets have the same fundamental
groups of the complement?

Question 15. Which groups can occur as the fundamental groups of (rigid) wild
Cantor set complements?
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