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On monoids of monotone injective partial selfmaps
of integers with cofinite domains and images

Oleg Gutik and Dušan Repovš

Abstract. We study the semigroup I
%
1.Z/ of monotone injective partial selfmaps of the

set of integers having cofinite domain and image. We show that I
%
1.Z/ is bisimple and all

of its non-trivial semigroup homomorphisms are either isomorphisms or group homomor-
phisms. We also prove that every Baire topology � on I

%
1.Z/, such that .I%1.Z/; �/ is a

Hausdorff semitopological semigroup, is discrete and we construct a non-discrete Haus-
dorff inverse semigroup topology �W on I

%
1.Z/. We show that the discrete semigroup

I
%
1.Z/ cannot be embedded into some classes of compact-like topological semigroups

and that its remainder under the closure in a topological semigroup S is an ideal in S .
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1 Introduction and preliminaries

In this paper all spaces will be assumed to be Hausdorff. We shall denote the first
infinite cardinal by ! and the cardinality of the set A by jAj. Also, we shall denote
the additive group of integers by Z.C/. We shall identify all sets X with their
cardinality jX j.

For a topological space X , a family ¹As j s 2 Aº of subsets of X is called
locally finite if for every point x 2 X there exists an open neighborhood U of x in
X such that the set ¹s 2 A j U \ As ¤ ¿º is finite. A subset A of X is said to be

� co-dense in X if X n A is dense in X ;

� an F� -set in X if A is an intersection of a countable family of open subsets
in X .
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512 O. Gutik and D. Repovš

We recall that a topological space X is said to be

� compact if each open cover of X has a finite subcover;

� countably compact if each open countable cover of X has a finite subcover;

� pseudocompact if each locally finite open cover of X is finite;

� a Baire space if for each sequence A1; A2; : : : ; Ai ; : : : of nowhere dense sub-
sets of X the union

S1
iD1Ai is a co-dense subset of X ;

� Čech complete if X is Tychonoff and for every compactification cX of X the
remainder cX nX is an F� -set in cX ;

� locally compact if every point ofX has an open neighborhood with a compact
closure.

According to [14, Theorem 3.10.22], a Tychonoff topological space X is pseu-
docompact if and only if each continuous real-valued function on X is bounded.

An algebraic semigroup S is called inverse if for any element x 2 S there exists
a unique x�1 2 S such that xx�1x D x and x�1xx�1 D x�1. The element x�1

is called the inverse of x 2 S . If S is an inverse semigroup, then the function
invWS ! S which assigns to every element x of S its inverse element x�1 is
called an inversion.

A band is a semigroup of idempotents. If S is a semigroup, then we shall
denote the subset of idempotents in S by E.S/. If S is an inverse semigroup, then
E.S/ is closed under multiplication. The semigroup operation on S determines
the following partial order 6 on E.S/: e 6 f if and only if ef D fe D e. This
order is called the natural partial order on E.S/. A semilattice is a commutative
semigroup of idempotents. A semilattice E is called linearly ordered or a chain if
its natural order is a linear order. A maximal chain of a semilattice E is a chain
which is properly contained in no other chain of E.

If hWS ! T is a homomorphism from a semigroup S into a semigroup T then
we say that h is

� a trivial homomorphism if h is either an isomorphism or an annihilating ho-
momorphism;

� a group homomorphism if .S/h is a subgroup of T .

If C is an arbitrary congruence on a semigroup S , then we denote by ˆCWS !

S=C the natural homomorphism from S onto the quotient semigroup S=C. A con-
gruence C on a semigroup S is called non-trivial if C is distinct from universal and
identity congruences on S , and a group congruence if the quotient semigroup S=C
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On monoids of monotone injective partial selfmaps of integers 513

is a group. Every inverse semigroup S admits a least (minimal) group congruence
Cmg:

aCmgb if and only if there exists e 2 E.S/ such that ae D be

(see [26, Lemma III.5.2]).
The Axiom of Choice implies the existence of maximal chains in any partially

ordered set. According to [26], a chain L is called an !-chain if L is isomorphic
to ¹0;�1;�2;�3; : : :º with the usual order 6. Let E be a semilattice and e 2 E.
We denote #e D ¹f 2 E j f 6 eº and "e D ¹f 2 E j e 6 f º. By .P<!.�/;�/
we shall denote the free semilattice with identity over a set of cardinality � > !,
i.e., .P<!.�/;�/ is the set of all finite subsets (including the empty set) of � with
the semilattice operation “union”.

If S is a semigroup, then we shall denote the Green relations on S by R, L, J,
D and H (see [9, Section 2.1]):

aRb if and only if aS1 D bS1I

aLb if and only if S1a D S1bI

aJb if and only if S1aS1 D S1bS1I

D D L ıR D R ıLI

H D L \R:

A semigroup S is called simple if S does not contain any proper two-sided
ideals and bisimple if S has only one D-class.

A semitopological (resp. topological) semigroup is a Hausdorff topological
space together with a separately (resp. jointly) continuous semigroup operation.
An inverse topological semigroup with the continuous inversion is called a topo-
logical inverse semigroup. A Hausdorff topology � on an (inverse) semigroup S ,
such that .S; �/ is a topological (inverse) semigroup, is called an (inverse) semi-
group topology.

If ˛WX * Y is a partial map, then by dom˛ and ran˛ we shall denote the do-
main and the range of ˛, respectively. Let I� denote the set of all partial injective
transformations of an infinite set X of cardinality � together with the following
semigroup operation: x.˛ˇ/ D .x˛/ˇ if x 2 dom.˛ˇ/ D ¹y 2 dom˛ j y˛ 2

domˇº, for ˛; ˇ 2 I�. The semigroup I� is called the symmetric inverse semi-
group over the set X (see [9, Section 1.9]). The symmetric inverse semigroup was
introduced by Vagner [29] and it plays a major role in the theory of semigroups.

Let Z be the set of integers with the usual order 6. We shall say that a partial
map ˛WZ * Z is monotone if n 6 m implies .n/˛ 6 .m/˛ for n;m 2 Z. By
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514 O. Gutik and D. Repovš

I
%
1.Z/ we denote a subsemigroup of injective partial monotone selfmaps of Z

with cofinite domains and images, i.e.,

I%1.Z/ D
®
˛ 2 I! j ˛ is monotone; jZ n dom˛j <1 and jZ n ran˛j <1

¯
:

Obviously, I
%
1.Z/ is an inverse submonoid of the semigroup I! . We observe that

I
%
1.Z/ is a countable semigroup. Furthermore, we shall denote the identity of the

semigroup I
%
1.Z/ by I and the group of units of I

%
1.Z/ by H.I/.

Lemma 1.1. A partial injective monotone map ˛ is an element of the semigroup
I
%
1.Z/ if and only if there exist integers d˛ and u˛ such that the following condi-

tions hold:

.m � 1/˛ D .m/˛ � 1 and .nC 1/˛ D .n/˛ C 1

for all integers m 6 d˛ and n > u˛; and ˛ 2 H.I/ if and only if .n C 1/˛ D
.n/˛ C 1 for any integer n.

Proof. The implication .(/ is trivial.
.)/ Since for every element ˛ of the semigroup I

%
1.Z/ the sets Zndom˛ and

Z n ran˛ are finite, we conclude that there exist integers d˛ and u˛ such that the
following condition holds:

m; n 2 dom˛ \ ran˛ for all m 6 d˛ and n > u˛: (�)

Now, since the partial map ˛WZ * Z is monotone, we have that

.m � 1/˛ 6 .m/˛ � 1 and .n/˛ C 1 6 .nC 1/˛

for all m 6 d˛ and n > u˛, and hence we get that

.m � j /˛ 6 .m � .j � 1//˛ � 1 6 � � � 6 .m/˛ � j

and
.n/˛ C j 6 � � � 6 .nC j � 1/˛ C 1 6 .nC j /˛

for any positive integer j , m 6 d˛ and n > u˛. Then by condition (�) we have
that

.m � 1/˛ D .m/˛ � 1 and .nC 1/˛ D .n/˛ C 1

for all integers m 6 d˛ and n > u˛.
It is obvious that if .n C 1/˛ D .n/˛ C 1 for any integer n then ˛WZ ! Z

is a bijective monotone map and hence ˛ 2 H.I/. Conversely, if ˛ 2 H.I/ then
˛WZ * Z is a bijective monotone map and the first assertion of lemma implies
that .nC 1/˛ D .n/˛ C 1 for any integer n.
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The bicyclic semigroup C.p; q/ is the semigroup with the identity 1 generated
by elements p and q subject only to the condition pq D 1. The bicyclic semigroup
is bisimple and every one of its congruences is either trivial or a group congruence.
Moreover, every non-annihilating homomorphism h of the bicyclic semigroup is
either an isomorphism or the image of C.p; q/ under h is a cyclic group (see
[9, Corollary 1.32]).

The bicyclic semigroup plays an important role in the algebraic theory of semi-
groups and in the theory of topological semigroups. For example, the well-known
result of Andersen [1] states that a (0-)simple semigroup is completely (0-)simple
if and only if it does not contain the bicyclic semigroup.

Remark 1.2. Let n be an arbitrary integer. We put C.n;C/ and C.n;�/ to be
semigroups which are generated by partial transformations ˛Cn and ˇCn ; ˛�n and
ˇ�n , respectively, of the set of integers Z, defined as follows:

.i/˛Cn D

´
i; if i 6 n,
i C 1; if i > n,

.i/ˇCn D

´
i; if i 6 n,
i � 1; if i > nC 1,

.i/˛�n D

´
i; if i > n,
i � 1; if i < n,

.i/ˇ�n D

´
i; if i > n,
i C 1; if i < n � 1,

i 2 Z. We remark that C.n;C/ and C.n;�/ are bicyclic semigroups for every
positive integer n. Therefore the semigroup I

%
1.Z/ contains infinitely many iso-

morphic copies of the bicyclic semigroup C.p; q/.

We shall say that a partial map ˛WZ * Z is almost monotone if there exists a
finite subset F in dom˛ such that the restriction ˛jdom˛nF WZ * Z is a monotone
partial map. By I#

1 .Z/ we denote a subsemigroup of injective partial almost
monotone selfmaps of Z with cofinite domains and images, i.e.,

I#
1 .Z/ D

®
˛ 2 I! j ˛ is almost monotone,

jZ n dom˛j <1 and jZ n ran˛j <1
¯
:

Obviously, I#
1 .Z/ is an inverse submonoid of the semigroup I! and I

%
1.Z/ is an

inverse submonoid of I#
1 .Z/. We observe that I#

1 .Z/ is a countable semigroup.
It is well known that topological algebra studies the influence of topological

properties of its objects on their algebraic properties and the influence of algebraic
properties of its objects on their topological properties. There are two main prob-
lems in topological algebra: the problem of non-discrete topologization and the
problem of embedding into objects with some topological-algebraic properties.
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In mathematical literature the question about non-discrete (Hausdorff) topolo-
gization was posed by Markov [23]. Pontryagin gave well-known conditions for
a base at the unity of a group for its non-discrete topologization (see [19, Theo-
rem 4.5] or [27, Theorem 3.9]). Various authors have refined Markov’s question:
can a given infinite group G endowed with a non-discrete group topology be em-
bedded into a compact topological group? Again, for an arbitrary Abelian groupG
the answer is affirmative, but there is a non-Abelian topological group that cannot
be embedded into any compact topological group (see [10, Section 9]).

Also, Ol’shanskiy [25] constructed an infinite countable group G such that ev-
ery Hausdorff group topology on G is discrete. Eberhart and Selden [13] showed
that every Hausdorff semigroup topology on the bicyclic semigroup C.p; q/ is dis-
crete. Bertman and West [7] proved that every Hausdorff topology � on C.p; q/,
such that .C.p; q/; �/ is a semitopological semigroup, is also discrete. Taimanov
[28] gave sufficient conditions on a commutative semigroup to have a non-discrete
semigroup topology.

Many mathematicians have studied the problems of embeddings of topolog-
ical semigroups into compact or compact-like topological semigroups (see [8]).
Neither stable nor �-compact topological semigroups can contain a copy of the
bicyclic semigroup [3,20]. Also, the bicyclic semigroup cannot be embedded into
any countably compact topological inverse semigroup [17]. Moreover, the condi-
tions were given in [5,6] when a countably compact or pseudocompact topological
semigroup cannot contain the bicyclic semigroup.

However, Banakh, Dimitrova and Gutik [6] have constructed (assuming the
Continuum Hypothesis or the Martin Axiom) an example of a Tychonoff count-
ably compact topological semigroup which contains the bicyclic semigroup. The
problems of topologization of semigroups of partial transformations and their em-
beddings into compact-like semigroup were studied in [15, 16].

We showed in [18] that the semigroup I
%
1.N/ of partial cofinite monotone in-

jective transformations of the set of positive integers N has algebraic properties
similar to those of the bicyclic semigroup: it is bisimple and all of its non-trivial
semigroup homomorphisms are either isomorphisms or group homomorphisms.
We proved that every locally compact topology � on I

%
1.N/, such that .I%1.N/; �/

is a topological inverse semigroup, is discrete and we described the closure of
.I
%
1.N/; �/ in a topological semigroup.
In this paper we shall describe Green relations on I

%
1.Z/, show that I

%
1.Z/ is

bisimple and all of its non-trivial semigroup homomorphisms are either isomor-
phisms or group homomorphisms. We shall also prove that every Baire topology
� on I

%
1.Z/, such that .I%1.Z/; �/ is a Hausdorff semitopological semigroup, is

discrete and construct a non-discrete Hausdorff semigroup inverse topology �W on
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On monoids of monotone injective partial selfmaps of integers 517

I
%
1.Z/. We shall show that the discrete semigroup I

%
1.Z/ cannot be embedded

into some classes of compact-like topological semigroups and that its remainder
under the closure in a topological semigroup S is an ideal in S .

2 Algebraic properties of the semigroup I
%
1.Z/

Proposition 2.1. The following assertions hold:

(i) An element ˛ of the semigroup I
%
1.Z/ is an idempotent if and only if

.x/˛ D x for every x 2 dom˛.

(ii) If "; � 2 E.I%1.Z//, then " 6 � if and only if dom " � dom �.

(iii) The semilatticeE.I%1.Z// is isomorphic to .P<!.Z/;�/ under the mapping
."/h D Z n dom ".

(iv) Every maximal chain in E.I%1.Z// is an !-chain.

(v) ˛Rˇ in I
%
1.Z/ if and only if dom˛ D domˇ.

(vi) ˛Lˇ in I
%
1.Z/ if and only if ran˛ D ranˇ.

(vii) ˛Hˇ in I
%
1.Z/ if and only if dom˛ D domˇ and ran˛ D ranˇ.

(viii) I
%
1.Z/ is a simple semigroup and hence J D I

%
1.Z/ � I

%
1.Z/.

(ix) For all idempotents "; ' 2 I
%
1.Z/ there exist infinitely many elements ˛; ˇ 2

I
%
1.Z/ such that ˛ � ˇ D " and ˇ � ˛ D '.

Proof. Statements (i)–(iv) are trivial and they follow from the definition of the
semigroup I

%
1.Z/.

The proofs of (v)–(vii) follow trivially from the fact that I
%
1.Z/ is a regular

semigroup, and by [21, Proposition 2.4.2, Exercise 5.11.2].
(viii) Note that every cofinite subset of Z is order-isomorphic to Z. Let '; 
 2

I
%
1.Z/ be arbitrary. Since the sets Z n dom', Z n dom 
 and Z n ran' are fi-

nite and the sets dom', dom 
 and ran' are order-isomorphic to Z, we conclude
that there exist bijective monotone maps 'domW dom' ! Z, 
domW dom 
 ! Z and
'ranW ran' ! Z. We put dom � D dom 
 , ran � D dom' and � D 
dom �.'dom/

�1.
Then �WZ * Z is a monotone partial map as a composition of monotone par-
tial maps. We define an injective partial map �WZ * Z in the following way:
dom� D Z, ran� D ran 
 and .n/� D .n/..'ran/

�1 � '�1 � � � 
/ for n 2 Z. Then
�WZ * Z is a monotone partial map, being a composition of monotone partial
maps. We put dom � D ran', ran � D ran 
 and � D 'ran � �. Then �WZ * Z
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is a monotone partial map, being a composition of monotone partial maps. Hence

 D � � ' � � and so I

%
1.Z/ is simple.

(ix) Let "; ' 2 E.I%1.Z// be arbitrary. Then by statement (i) we have that
dom " D ran " and dom' D ran'. Since the sets Z n dom " and Z n dom' are
finite and the sets dom " and dom' are order-isomorphic to Z, we conclude that
there exist bijective monotone maps "domW dom " ! Z and 'domW dom' ! Z.
Also, we note that for every integer k the translation �k WZ! ZWn 7! nC k is a
bijective monotone map. Now we define for any integer i

˛i D "dom � �i � .'dom/
�1:

Then we have that

˛i � ˛
�1
i D "dom � �i � .'dom/

�1
� 'dom � �

�1
i � ."dom/

�1

D "dom � �i � I � �
�1
i � ."dom/

�1
D "dom � �i � �

�1
i � ."dom/

�1

D "dom � I � ."dom/
�1
D "dom � ."dom/

�1
D "

and

˛�1i � ˛i D 'dom � �
�1
i � ."dom/

�1
� "dom � �i � .'dom/

�1

D 'dom � �
�1
i � I � �i � .'dom/

�1
D 'dom � �

�1
i � �i � .'dom/

�1

D 'dom � I � .'dom/
�1
D 'dom � .'dom/

�1
D '

for every integer i . This completes the proof of the assertion.

Proposition 2.2. The group of units H.I/ of the semigroup I
%
1.Z/ is isomorphic

to Z.C/.

Proof. Let ˛ be an arbitrary element of H.I/. Then ˛ is a bijective monotone
map from Z onto Z. We fix arbitrary n 2 Z. Then the monotonicity of ˛ implies
that .n/˛ < .n C 1/˛. If .n/˛ C 1 < .n C 1/˛ then there exists an integer m
such that .m/˛ D .n/˛ C 1. But if m > n C 1 or m < n this contradicts the
monotonicity of ˛. Therefore we get that .n/˛ C 1 D .nC 1/˛. Similarly we get
that .n/˛ � 1 D .n � 1/˛. Hence every ˛ 2 H.I/ is a shift of the set of integers.
We define the map hWH.I/! Z.C/ by the formula .˛/h D .n/˛ � n. Since ˛ is
a shift of the set of integers, we conclude that the definition of the map h is correct.
Simple verifications show that hWH.I/! Z.C/ is a group isomorphism.

Since I
%
1.Z/ is an inverse semigroup, Proposition 2.1 (ix) and [24, Lemma 1.1]

imply the following proposition.
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Proposition 2.3. I
%
1.Z/ is a bisimple semigroup.

Propositions 2.2 and 2.3, and [9, Theorem 2.20] imply the following corollary.

Corollary 2.4. Every maximal subgroup of the semigroup I
%
1.Z/ is isomorphic to

Z.C/.

Proposition 2.5. For all ˛; ˇ 2 I
%
1.Z/, both sets ¹� 2 I

%
1.Z/ j ˛ � � D ˇº and

¹� 2 I
%
1.Z/ j � � ˛ D ˇº are finite.

Proof. We denote

A D
®
� 2 I%1.Z/ j ˛ � � D ˇ

¯
; B D

®
� 2 I%1.Z/ j ˛

�1
� ˛ � � D ˛�1 � ˇ

¯
:

ThenA � B and the restriction of any partial map � 2 B to dom.˛�1�˛/ coincides
with the partial map ˛�1 � ˇ. Since every partial map from I

%
1.Z/ is monotone,

we conclude that the set B is finite and hence so is A.

Lemma 2.6. Let S be an arbitrary semigroup and hW I%1.Z/ ! S a semigroup
homomorphism. If there exist distinct idempotents "; ' 2 I

%
1.Z/ such that ."/h D

.'/h then . /h D .I/h for all  2 E.I%1.Z//.

Proof. Since ."/h D .'/h D .' � '/h D .'/h � .'/h D .'/h � ."/h D .' � "/h,
we can assume without loss of generality that " 6 ' in E.I%1.Z//. Therefore, if �
is an idempotent of the semigroup I

%
1.Z/ such that " 6 � 6 ', then ."/h D .�/h.

Hence Proposition 2.1 (ii) implies that we can assume without loss of generality
that jdom' n dom "j D 1.

Let  be an arbitrary idempotent of the semigroup I
%
1.Z/ and let n0 D

min¹Z n dom º � 1. Let � WZ * Z be a partial order preserving injective map
which maps dom' onto Z and n D Z n .dom "/� . Without loss of generality we
can assume that n D n0. Then Q' D ��1 ı ' ı � WZ ! Z is an identity map and
Q" D ��1 ı " ı � is an identity map from Z n ¹n0º onto Z n ¹n0º. Then Q" is a unit
of the semigroup I

%
1.Z/. Since � 2 I

%
1.Z/ and dom " ¦ dom', we have that

. Q'/h D .� � ' � �/h D .�/h � .'/h � .�/h D .�/h � ."/h � .�/h D .Q"/h;

Q" � Q' D .��1 � " � �/ � .��1 � ' � �/ D ��1 � " � .� � ��1/ � ' � �

D ��1 � " � ' � ' � � D ��1 � " � ' � � D ��1 � " � � D Q";

Q' � Q" D .��1 � ' � �/ � .��1 � " � �/ D ��1 � ' � .� � ��1/ � " � �

D ��1 � ' � ' � " � � D ��1 � ' � " � � D ��1 � " � � D Q";

and hence Q" 6 Q'.
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520 O. Gutik and D. Repovš

We observe that Q'; Q" 2 C.n0;C/. Since . Q'/h D .Q"/h, [9, Corollary 1.32]
implies that . Q'/h D .�/h for every idempotent � 2 C.n0;C/. Since i > n0 for
all i 2 Z n dom , the definition of the semigroup I

%
1.Z/ implies that there exists

an idempotent "0 2 C.n0;C/ such that "0 6  6 Q'. Therefore we have that
. /h D ."0/h D . Q'/h. This completes the proof of the lemma.

Theorem 2.7. Let S be a semigroup and hW I%1.Z/! S a non-annihilating homo-
morphism. Then either h is a monomorphism or .I%1.Z//h is a subgroup of S .

Proof. Suppose that hW I%1.Z/! S is not a monomorphism. Then .˛/h D .ˇ/h,
for some distinct ˛; ˇ 2 I

%
1.Z/. We consider two cases:

(i) ˛ and ˇ are not H -equivalent;

(ii) ˛ and ˇ are H -equivalent.

Suppose that case (i) holds. Since I
%
1.Z/ is an inverse semigroup, we have that

either ˛ � ˛�1 ¤ ˇ � ˇ�1 or ˛�1 � ˛ ¤ ˇ�1 � ˇ. Suppose that ˛ � ˛�1 ¤ ˇ � ˇ�1.
In the other case the proof is similar. Since I

%
1.Z/ is an inverse semigroup, we

conclude that
.˛�1/h D ..˛/h/�1 D ..ˇ/h/�1 D .ˇ�1/h

and hence .˛ � ˛�1/h D .˛/h � .˛�1/h D .ˇ/h � .ˇ�1/h D .ˇ � ˇ�1/h. Therefore
the assertion of Lemma 2.6 holds. Since every homomorphic image of an inverse
semigroup is an inverse semigroup, we conclude that .I%1.Z//h is a subgroup
of S .

Suppose that ˛Hˇ. Then by [9, Theorem 2.20] there exist distinct ˛0; ˇ0 2
H.I/ such that .˛0/h D .ˇ0/h. Therefore we have that .I/h D .
/h for 
 D
˛�10 �ˇ0 2 H.I/ and 
 ¤ I. We fix an arbitrary integer i . Let �WZ n ¹iº ! Z n ¹iº
be an identity map. Then .�/h D .� � I/h D .� � 
/h. Hence � is an idempotent of
the semigroup I

%
1.Z/ and ran � ¤ ran.� �
/. Therefore by Proposition 2.1 (vii) the

elements � and ��
 are not H -equivalent in the semigroup I
%
1.Z/. This implies that

there exist distinct non-H -equivalent elements ˛; ˇ in I#
1 .Z/ such that .˛/h D

.ˇ/h and hence case (i) holds. Therefore we get that .I#
1 .Z//h is a subgroup

of S .

Proposition 2.8. Let Cmg be a least group congruence on the semigroup I
%
1.Z/.

Then the quotient semigroup I
%
1.Z/=Cmg is isomorphic to the direct product

Z.C/ � Z.C/.

Proof. Let ˛ and ˇ be Cmg-equivalent elements of the semigroup I
%
1.Z/. Then by

[26, Lemma III.5.2] there exists an idempotent "0 in I
%
1.Z/ such that ˛�"0 D ˇ�"0.
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Since I
%
1.Z/ is an inverse semigroup, we conclude that ˛ � " D ˇ � " for all

" 2 E.I
%
1.Z// such that " 6 "0. Then Lemma 1.1 implies that there exist integers

d and u such that

.m � 1/˛ D .m/˛ � 1; .nC 1/˛ D .n/˛ C 1;

.m � 1/ˇ D .m/ˇ � 1; .nC 1/ˇ D .n/ˇ C 1

for all integers m 6 d and n > u. We put D D min¹.d/˛; .d/ˇº and U D
max¹.u/˛; .u/ˇº. Let "1 be an identity map from Z n ¹D;D C 1; : : : ; U º onto
itself. Then "0 D "1 ı "0 6 "0 and hence we have that ˛ � "0 D ˇ � "0. Therefore
we have showed that if the elements ˛ and ˇ of the semigroup I

%
1.Z/ are Cmg-

equivalent, then there exist integers d and u such that

.m/˛ D .m/ˇ and .n/˛ D .n/ˇ

for all integers m 6 d and n > u.
Conversely, suppose that there exist integers d and u such that

.m/˛ D .m/ˇ and .n/˛ D .n/ˇ

for all integersm 6 d and n > u. Then we have that d 6 u. If d D u or d D u�1
then ˛ D ˇ in I

%
1.Z/ and hence ˛ and ˇ are Cmg-equivalent. If d < u � 1 then

we put "0 to be the identity map of the set Z n ¹.d C 1/˛; : : : ; .u� 1/˛º. Then we
get that .n/.˛ ı"0/ D .n/.ˇ ı"0/ for any n 2 Zn¹d C1; : : : ; u�1º and therefore
˛ �"0 D ˇ �"0. Hence [26, Lemma III.5.2] implies that ˛ and ˇ are Cmg-equivalent
elements of the semigroup I

%
1.Z/.

Now we define the map hW I%1.Z/! Z.C/ � Z.C/ by the formula

.˛/h D
�
.d˛/˛ � d˛; .u˛/˛ � u˛

�
;

where the integers d˛ and u˛ are defined in Lemma 1.1.
We observe that

.d˛ � n/˛ D .d˛/˛ � n and .u˛ C n/˛ D .u˛/˛ C n

for any positive integer n. Hence we have that

.m/˛ �m D .d˛/˛ � d˛ and .n/˛ � n D .u˛/˛ � u˛

for all integers m 6 d˛ and n > u˛.
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Lemma 1.1 implies that there exist integers d0 and u0 such that

.m � 1/˛ D .m/˛ � 1; .nC 1/˛ D .n/˛ C 1;

.m � 1/ˇ D .m/ˇ � 1; .nC 1/ˇ D .n/ˇ C 1;

.m � 1/.˛ � ˇ/ D .m/.˛ � ˇ/ � 1; .nC 1/.˛ � ˇ/ D .n/.˛ � ˇ/C 1

for all integers m 6 d0 and n > u0. Hence for all integers m 6 d0 and n > u0

we have that

.m/.˛ �ˇ/�m D .m/.˛ �ˇ/� .m/˛C .m/˛�m D ..dˇ /ˇ�dˇ /C ..d˛/˛�d˛/;

.n/.˛ � ˇ/� n D .n/.˛ � ˇ/� .n/˛C .n/˛ � n D ..uˇ /ˇ � uˇ /C ..u˛/˛ � u˛/:

This implies that the map hW I%1.Z/! Z.C/ � Z.C/ is a homomorphism.

Theorem 2.7 and Proposition 2.8 imply the following theorem.

Theorem 2.9. Let S be a semigroup and hW I%1.Z/! S a non-annihilating homo-
morphism. Then either h is a monomorphism or .I%1.Z//h is a homomorphic
image of the group Z.C/ � Z.C/.

3 Some remarks on the semigroup I#
1 .Z/

In this section we shall denote the identity of the semigroup I#
1 .Z/ by I and

the group of units of I#
1 .Z/ by H.I/. The proof of the following proposition is

similar to corresponding propositions in Section 2.

Proposition 3.1. The following assertions hold:

(i) E.I#
1 .Z// D E.I

%
1.Z//.

(ii) ˛Rˇ in I#
1 .Z/ if and only if dom˛ D domˇ.

(iii) ˛Lˇ in I#
1 .Z/ if and only if ran˛ D ranˇ.

(iv) ˛Hˇ in I#
1 .Z/ if and only if dom˛ D domˇ and ran˛ D ranˇ.

(v) I#
1 .Z/ is a simple semigroup and hence J D I#

1 .Z/ � I#
1 .Z/.

(vi) For all idempotents "; ' 2 I#
1 .Z/ there exist infinitely many elements ˛; ˇ 2

I#
1 .Z/ such that ˛ � ˇ D " and ˇ � ˛ D '.

(vii) I#
1 .Z/ is a bisimple semigroup.

(viii) For all ˛; ˇ 2 I#
1 .Z/, both sets ¹� 2 I#

1 .Z/ j ˛ � � D ˇº and ¹� 2
I#
1 .Z/ j � � ˛ D ˇº are finite.
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Proposition 3.2. For every ˛ 2 I#
1 .Z/ there exist idempotents "l ; "r ; " in I#

1 .Z/

such that "l � ˛; ˛ � "r ; " � ˛ � " 2 I
%
1.Z/.

Proof. The definition of the semigroup I#
1 .Z/ implies that for every element ˛ of

I#
1 .Z/ there exists a smallest finite (or empty) subset F˛ such that the restriction
˛jdom˛nF˛ WZ * Z is a monotone partial map. We put "l D iddom˛nF˛ to be the
identity map from dom˛ n F˛ onto dom˛ n F˛. Also we set "r D id.dom˛nF˛/˛
and " D "l � "r . Then we have that "l � ˛; ˛ � "r ; " � ˛ � " 2 I

%
1.Z/.

We denote by S1.Z/ the group of all bijective transformations of Z with finite
supports (i.e., ˛ 2 S1.Z/ if and only if the set ¹x 2 Z j .x/˛ ¤ xº is finite).
We observe that S1.Z/ is a subgroup of the group of unitsH.I/ of the semigroup
I#
1 .Z/ and since every element ˛ in H.I/ is an almost monotone bijective self-

map of the set of integers, we get that for every ˛ 2 H.I/ there exists an integer
n˛ such that the set ¹i 2 Z j .i/˛ C n˛ ¤ iº is finite. This observation implies
that S1.Z/ is a normal subgroup of H.I/. Moreover, we have that every element
of the group of units H.I/ has a unique representation ˛ D � � ˇ by the formula
.n/˛ D .n/� C ˇ, n 2 Z, where � 2 ˛ 2 S1.Z/ and ˇ 2 Z.C/. Hence we have
thatH.I/ D S1.Z/ �Z.C/ and it is obvious that S1.Z/\Z.C/ D ¹Iº. Thus the
group Z.C/ acts on S1.Z/ by the conjugation action inH.I/ and hence it follows
by [12, Exercise 2.5.3] that the group H.I/ is isomorphic to the semidirect prod-
uct S1.Z/Ì Z.C/ (or split extension of S1.Z/ by Z.C/). Also, we observe that
since the action of the group Z.C/ on S1.Z/ is not the identity map, we conclude
that the group H.I/ is not isomorphic to the direct product S1.Z/ � Z.C/. We
put eZ.C/ D S1.Z/ Ì Z.C/. Therefore we have proved the following result.

Proposition 3.3. The group of units H.I/ of the semigroup I#
1 .Z/ is isomorphic

to eZ.C/.
Proposition 3.1 (vii) and [9, Theorem 2.20] imply the following corollary.

Corollary 3.4. Every maximal subgroup of the semigroup I#
1 .Z/ is isomorphic

to eZ.C/.
Theorem 3.5. Let S be a semigroup and hW I#

1 .Z/ ! S a non-annihilating ho-
momorphism. Then either h is a monomorphism or .I#

1 .Z//h is a subgroup of S .

Proof. Suppose that hW I#
1 .Z/ ! S is not an monomorphism. Then .˛/h D

.ˇ/h, for some distinct ˛; ˇ 2 I#
1 .Z/.

Suppose that ˛ and ˇ are not H -equivalent. Since I#
1 .Z/ is an inverse semi-

group, we have that either ˛ � ˛�1 ¤ ˇ � ˇ�1 or ˛�1 � ˛ ¤ ˇ�1 � ˇ. Suppose
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that ˛ � ˛�1 ¤ ˇ � ˇ�1. Since I#
1 .Z/ is an inverse semigroup, we conclude that

.˛�1/h D .ˇ�1/h and hence .˛ � ˛�1/h D .ˇ � ˇ�1/h. Therefore the assertion of
Lemma 2.6 holds for the subsemigroup I

%
1.Z/ of the semigroup I#

1 .Z/. Now by
Proposition 3.1 (i) and since every homomorphic image of an inverse semigroup is
an inverse semigroup, it follows that .I#

1 .Z//h is a subgroup of S .
Suppose that ˛Hˇ. Then by [9, Theorem 2.20] there exist distinct ˛0; ˇ0 2

H.I/ such that .˛0/h D .ˇ0/h. Then we have that .I/h D .
/h for 
 D ˛�10 �ˇ0 2
H.I/ and 
 ¤ I. We fix an arbitrary integer i . Let �WZ n ¹iº ! Z n ¹iº be the
identity map. Hence .�/h D .� � I/h D .� � 
/h. Then � is an idempotent of
the semigroup I#

1 .Z/ and ran � ¤ ran.� � 
/. Therefore by Proposition 3.1 (iv)
the elements � and � � 
 are not H -equivalent in the semigroup I#

1 .Z/. This
implies that there exist distinct non-H -equivalent elements ˛; ˇ in I#

1 .Z/ such
that .˛/h D .ˇ/h and hence .I#

1 .Z//h is a subgroup of S .

Proposition 3.6. Let Cmg be a least group congruence on the semigroup I#
1 .Z/.

Then the quotient semigroup I#
1 .Z/=Cmg is isomorphic to the direct product

Z.C/ � Z.C/.

Proof. Let ˛ and ˇ be Cmg-equivalent elements of the semigroup I#
1 .Z/. Then

by [26, Lemma III.5.2] there exists an idempotent "0 in I#
1 .Z/ such that ˛ � "0 D

ˇ � "0. By Proposition 3.2 we can assume without loss of generality that ˛ � "0;
ˇ � "0 2 I

%
1.Z/. Then similarly as in the proof of Proposition 2.8 we can show

that elements ˛ and ˇ of the semigroup I#
1 .Z/ are Cmg-equivalent if and only if

there exist integers d and u such that

.m/˛ D .m/ˇ and .n/˛ D .n/ˇ

for all integers m 6 d and n > u.
Let ˛0 D ˛ � "0. Then the map hW I#

1 .Z/ ! Z.C/ � Z.C/ defined by the
formula

.˛/h D
�
.d˛0/˛ � d˛0 ; .u˛0/˛ � u˛0

�
;

where the integers d˛0 and u˛0 are defined for element ˛0 of the semigroup I
%
1.Z/

in Lemma 1.1, is a natural homomorphism which is generated by the least group
congruence Cmg on the semigroup I#

1 .Z/.

Theorem 3.5 and Proposition 3.6 imply the following result.

Theorem 3.7. Let S be a semigroup and hW I#
1 .Z/ ! S a non-annihilating ho-

momorphism. Then either h is a monomorphism or .I#
1 .Z//h is a homomorphic

image of the group Z.C/ � Z.C/.
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4 On topologizations of the semigroup I
%
1.Z/

Theorem 4.1. Every Baire topology � on I
%
1.Z/, such that .I%1.Z/; �/ is a Haus-

dorff semitopological semigroup, is discrete.

Proof. If no point in I
%
1.Z/ is isolated, then since .I%1.Z/; �/ is Hausdorff, it

follows that ¹˛º is nowhere dense for all ˛ 2 I
%
1.Z/. But, if this is the case, then

since I
%
1.Z/ is countable, it cannot be a Baire space. Hence I

%
1.Z/ contains an

isolated point �. If 
 2 I
%
1.Z/ is arbitrary, then by Proposition 2.1 (viii), there

exist ˛; ˇ 2 I
%
1.Z/ such that ˛ � 
 � ˇ D �. The map f W� 7! ˛ � � � ˇ is

continuous and so .¹�º/f �1 is open. By Proposition 2.5, .¹�º/f �1 is finite and
since .I%1.Z/; �/ is Hausdorff, ¹
º is open, and hence isolated.

Since every Čech complete space (and hence every locally compact space) is
Baire, Theorem 4.1 implies Corollaries 4.2 and 4.3.

Corollary 4.2. Every Hausdorff Čech complete (locally compact) topology � on
I
%
1.Z/, such that .I%1.Z/; �/ is a Hausdorff semitopological semigroup, is dis-

crete.

Corollary 4.3. Every Hausdorff Baire topology (and hence Čech complete or lo-
cally compact topology) � on I

%
1.Z/, such that .I%1.Z/; �/ is a Hausdorff topo-

logical semigroup, is discrete.

The following example shows that there exists a non-discrete Tychonoff topol-
ogy �W on the semigroup I

%
1.Z/ such that .I%1.Z/; �W / is a topological inverse

semigroup.

Example 4.4. We define a topology �W on the semigroup I
%
1.Z/ as follows. For

every ˛ 2 I
%
1.Z/ we define a family

BW .˛/ D
®
U˛.F / j F is a finite subset of dom˛

¯
;

where

U˛.F / D
®
ˇ 2 I%1.Z/ j domˇ � dom˛ and .x/ˇ D .x/˛ for all x 2 F

¯
:

It is straightforward to verify that ¹BW .˛/º˛2I
%
1.Z/

forms a basis for a topology
�W on the semigroup I

%
1.Z/.

Proposition 4.5. .I%1.Z/; �W / is a Tychonoff topological inverse semigroup.
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Proof. Let ˛ and ˇ be arbitrary elements of the semigroup I
%
1.Z/. We put 
 D

˛ � ˇ and let F D ¹n1; : : : ; niº be a finite subset of dom 
 . We denote m1 D
.n1/˛; : : : ; mi D .ni /˛ and k1 D .n1/
; : : : ; ki D .ni /
 . Then we get that
.m1/ˇ D k1; : : : ; .mi /ˇ D ki . Hence we have that

U˛.¹n1; : : : ; niº/ � Uˇ .¹m1; : : : ; miº/ � U
 .¹n1; : : : ; niº/

and �
U
 .¹n1; : : : ; niº/

��1
� U
�1.¹k1; : : : ; kiº/:

Therefore the semigroup operation and the inversion are continuous in
.I
%
1.Z/; �W /.
Let Z D Z [ ¹aº for some a … Z. Then ZZ with the operation composition is

a semigroup and the map ‰W I%1.Z/! ZZ defined by the formula

.x/.˛/‰ D

´
.x/˛; if x 2 dom˛;

a; if x … dom˛

is a monomorphism. HenceZZ is a topological semigroup with the product topol-
ogy if Z has the discrete topology. Obviously, this topology generates topology
�W on I

%
1.Z/. Therefore by [14, Theorem 2.3.11] the topological space ZZ is

Tychonoff and hence by [14, Theorem 2.1.6] so is .I%1.Z/; �W /. This completes
the proof of the proposition.

Theorem 4.6. Let S be a topological semigroup which contains I
%
1.Z/ as a dense

discrete subsemigroup. If I D S n I
%
1.Z/ ¤ ¿ then I is an ideal of S .

Proof. Suppose that I is not an ideal of S . Then at least one of the following
conditions holds:

I � I%1.Z/ ª I; I%1.Z/ � I ª I; or I � I ª I:

Since I
%
1.Z/ is a dense discrete subspace of S , [14, Theorem 3.5.8] implies that

I
%
1.Z/ is an open subspace of S . Suppose there exist ˛ 2 I

%
1.Z/ and ˇ 2 I

such that ˇ � ˛ D 
 … I . Since I
%
1.Z/ is a dense open discrete subspace of S ,

the continuity of the semigroup operation in S implies that there exists an open
neighborhood U.ˇ/ of ˇ in S such that U.ˇ/ � ¹˛º D ¹
º. Hence we have that
.U.ˇ/ \ I

%
1.Z// � ¹˛º D ¹
º and the set U.ˇ/ \ I

%
1.Z/ is infinite. But by

Proposition 2.5, the equation � �˛ D 
 has finitely many solutions in I
%
1.Z/. This

contradicts the assumption that ˇ 2 S n I
%
1.Z/. Therefore ˇ � ˛ D 
 2 I and

hence I � I%1.Z/ � I . The proof of the inclusion I
%
1.Z/ � I � I is similar.
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Suppose there exist ˛; ˇ 2 I such that ˛ � ˇ D 
 … I . Since I
%
1.Z/ is a

dense open discrete subspace of S , the continuity of the semigroup operation in
S implies that there exist open neighborhoods U.˛/ and U.ˇ/ of ˛ and ˇ in S ,
respectively, such that U.˛/ � U.ˇ/ D ¹
º. Hence we have that�

U.ˇ/ \ I%1.Z/
�
�
�
U.˛/ \ I%1.Z/

�
D ¹
º

and the sets U.ˇ/\I
%
1.Z/ and U.˛/\I

%
1.Z/ are infinite. But by Proposition 2.5,

the equations � �ˇ D 
 and ˛ �� D 
 have finitely many solutions in I
%
1.Z/. This

contradicts the assumption that ˛; ˇ 2 S n I
%
1.Z/. Therefore ˛ � ˇ D 
 2 I and

hence I � I � I .

Proposition 4.7. Let S be a Hausdorff topological semigroup which contains
I
%
1.Z/ as a dense discrete subsemigroup. Then for every 
 2 I

%
1.Z/ the set

D
 D
®
.�; &/ 2 I%1.Z/ � I%1.Z/ j � � & D 


¯
is a closed-and-open subset of S � S .

Proof. Since I
%
1.Z/ is a discrete subspace of S , we have thatD
 is an open subset

of S � S .
Suppose that there exists 
 2 I

%
1.Z/ such that D
 is a non-closed subset of

S � S . Then there exists an accumulation point .˛; ˇ/ 2 S � S of the set D
 .
The continuity of the semigroup operation in S implies that ˛ � ˇ D 
 . But
I
%
1.Z/ � I

%
1.Z/ is a discrete subspace of S � S and hence by Theorem 4.6, the

points ˛ and ˇ belong to the ideal I D S n I
%
1.Z/ and hence ˛ � ˇ 2 S n I

%
1.Z/

cannot be equal to 
 .

Theorem 4.8. If a Hausdorff topological semigroup S contains I
%
1.Z/ as a dense

discrete subsemigroup then the square S � S cannot be pseudocompact.

The proof of Theorem 4.8 is similar to that of [6, Theorem 5.1 (3)].
Recall that a topological semigroup S is called �-compact if for every x 2 S

the closure of the set ¹x; x2; x3; : : :º is a compactum in S (see [20]). We recall that
the Stone–Čech compactification of a Tychonoff space X is a compact Hausdorff
space ˇX containing X as a dense subspace so that each continuous map f WX !
Y to a compact Hausdorff space Y extends to a continuous map f WˇX ! Y (see
[14]).

Corollary 4.9. If a topological semigroup S satisfies one of the following condi-
tions below, then S does not contain the semigroup I

%
1.Z/ (and hence the semi-

group I#
1 .Z/):
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(i) S is compact;

(ii) S is �-compact;

(iii) the square S � S is countably compact;

(iv) S is a countably compact topological inverse semigroup; or

(v) the square S � S is a Tychonoff pseudocompact space.

Proof. By [22, Theorem 2] every compact topological semigroup is stable. But
by [3, Corollary 3.1] a stable semigroup cannot contain the bicyclic semigroup.
Since by Remark 1.2, for any positive integer n the semigroup I

%
1.Z/ contains the

semigroup C.n;C/ which is isomorphic to the bicyclic semigroup, we conclude
that any compact topological semigroup cannot contain the semigroup I

%
1.Z/.

Similarly by [20, Proposition 5.3] no �-compact topological semigroup can
contain the bicyclic semigroup. Also the proof of [5, Theorem 10] implies that ev-
ery topological semigroup S with countably compact square S �S cannot contain
the bicyclic semigroup and by [17, Theorem 1] any countably compact topological
inverse semigroup cannot contain the bicyclic semigroup, either. Next we apply
Remark 1.2.

By [4, Theorem 1.3] for any topological semigroup S with the pseudocompact
square S � S the semigroup operation �WS � S ! S extends to a continuous
semigroup operation ˇ�WˇS � ˇS ! ˇS , so S is a subsemigroup of the compact
topological semigroup ˇS . Therefore if S contains the bicyclic semigroup then
ˇS also contains the bicyclic semigroup which is a contradiction.

The proofs of the following three theorems are similar to the proofs of Theo-
rems 4.1, 4.6 and 4.8, respectively.

Theorem 4.10. Every Baire topology � on I#
1 .Z/, such that .I#

1 .Z/; �/ is a
Hausdorff semitopological semigroup, is discrete.

Theorem 4.11. Let S be a topological semigroup which contains I#
1 .Z/ as a

dense discrete subsemigroup. If I D S n I#
1 .Z/ ¤ ¿ then I is an ideal of S .

Theorem 4.12. If a Hausdorff topological semigroup S contains I#
1 .Z/ as a

dense discrete subsemigroup then the square S � S cannot be pseudocompact.

Remark 4.13. We observe that the topology �#
W on the semigroup I#

1 .Z/ which
is generated by the family

B#
W .˛/ D

®
U˛.F / j F is a finite subset of dom˛

¯
;
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where

U˛.F / D
®
ˇ 2 I#

1 .Z/ j domˇ � dom˛ and .x/ˇ D .x/˛ for all x 2 F
¯
;

is a non-discrete inverse semigroup topology. The proof of continuity of the semi-
group operation and inversion in .I#

1 .Z/; �
#
W / is similar to the proof of Proposi-

tion 4.5 and obviously the topology �#
W induces the topology �W on the subsemi-

group I
%
1.Z/.

The following example shows that there exists a non-discrete Tychonoff topol-
ogy �#

H on the semigroup I#
1 .Z/ such that .I#

1 .Z/; �
#
H / is a topological inverse

semigroup, every H -class in I#
1 .Z/ is an open subset in .I#

1 .Z/; �
#
H / and the

topology �#
H is finer than the topology �#

W .

Example 4.14. We define a topology �#
H on the semigroup I#

1 .Z/ as follows.
For every ˛ 2 I#

1 .Z/ we define a family

B#
H .˛/ D

®
W˛.F / j F is a finite subset of dom˛

¯
;

where

W˛.F / D
®
ˇ 2 I#

1 .Z/ j ˇH˛ and .x/ˇ D .x/˛ for all x 2 F
¯
:

It is straightforward to verify that ¹B#
H .˛/º˛2I#

1 .Z/ forms a basis for a topology
�#
H on the semigroup I#

1 .Z/.

Proposition 4.15. .I#
1 .Z/; �

#
H / is a Tychonoff topological inverse semigroup.

Proof. The proof of continuity of the semigroup operation and inversion in
.I#
1 .Z/; �

#
H / is similar to the proof of Proposition 4.5. Also the definition of

the topology �#
H implies that all H -classes are open subsets in .I#

1 .Z/; �
#
H /

and the group of units H.I/ of the semigroup I#
1 .Z/ with the induced topology

from .I#
1 .Z/; �

#
H / is a non-discrete topological group, and hence by [19, The-

orem II.8.4] the topological subspace H.I/ is Tychonoff. Hence since every H -
class in an arbitrary topological inverse semigroup S is a closed subset in S (see
[13]), Proposition 3.1, Corollary 3.4 and [9, Theorem 2.20] imply that the topo-
logical space .I#

1 .Z/; �
#
H / is homeomorphic to the topological sum of countable

many topological spacesH.I/, and hence .I#
1 .Z/; �

#
H / is a Tychonoff space.

We observe that the topology �#
H on the semigroup I#

1 .Z/ induces the
discrete topology on its subsemigroup I

%
1.Z/.

Recall [11] that a Bohr compactification of a topological semigroup S is a pair
.ˇ; B.S// such that B.S/ is a compact topological semigroup, ˇWS ! B.S/ is a
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530 O. Gutik and D. Repovš

continuous homomorphism, and if gWS ! T is a continuous homomorphism of S
into a compact semigroup T , then there exists a unique continuous homomorphism
f WB.S/! T such that the diagram

S
ˇ

//

g ��

B.S/

f}}
T

commutes. Then Theorems 2.9 and 3.7, and [2, Proposition 2] imply the following
corollary.

Corollary 4.16. The Bohr compactifications of the discrete semigroups I
%
1.Z/

and I#
1 .Z/ are topologically isomorphic to the Bohr compactification of the

discrete group Z.C/ � Z.C/.

Acknowledgments. The authors are grateful to the referee for useful comments
and suggestions.
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