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chain of an H-closed topological pospace is an H-closed topological pospace.

Keywords H-closed topological partially ordered space · Chain · Maximal chain ·
Topological semilattice · Regularly ordered pospace · MCC-chain · Scattered space

Mathematics Subject Classifications (2000) Primary 06B30 · 54F05;
Secondary 06F30 · 22A26 · 54G12 · 54H12

O. Gutik
Department of Mechanics and Mathematics,
Ivan Franko Lviv National University,
Universytetska 1, Lviv, 79000, Ukraine
e-mail: o_gutik@franko.lviv.ua, ovgutik@yahoo.com

D. Pagon
Institute of Mathematics, Physics and Mechanics,
Jadranska 19, Ljubljana, 1000, Slovenia
e-mail: dusan.pagon@uni-mb.si

D. Repovš (B)
Faculty of Mathematics and Physics, University of Ljubljana,
Jadranska 19, Ljubljana 1000, Slovenia
e-mail: dusan.repovs@guest.arnes.si



70 Order (2010) 27:69–81

1 Introduction

In this paper all topological spaces will be assumed to be Hausdorff. We shall follow
the terminology of [3, 4, 7–10, 14, 17]. If A is a subset of a topological space X, then
we denote the closure of the set A in X by clX(A). By a partial order on a set X we
mean a reflexive, transitive and anti-symmetric binary relation � on X. If the partial
order � on a set X satisfies the following linearity law

if x, y ∈ X, then x � y or y � x,

then it is said to be a linear order. We write x < y if x � y and x �= y, x � y if y � x,
and x � y if the relation x � y is false. Obviously, if � is a partial order or a linear
order on a set X then so is �. A set endowed with a partial order (resp. linear order)
is called a partially ordered (resp. linearly ordered) set. If � is a partial order on X
and A is a subset of X then we denote

↓A = {y ∈ X | y � x for some x ∈ A} and

↑A = {y ∈ X | x � y for some x ∈ A}.

For any elements a, b of a partially ordered set X such that a � b we denote ↑a =
↑{a}, ↓a = ↓{a}, [a, b ] = ↑a ∩ ↓b and [a, b) = [a, b ] \ {b}. A subset A of a partially
ordered set X is called increasing (resp. decreasing) if A = ↑A (resp. A = ↓A).

A partial order � on a topological space X is said to be lower (resp. upper)
semicontinuous provided that whenever x � y (resp. y � x) in X, then there exists
an open set U � x such that if a ∈ U then a � y (resp. y � a). A partial order is
called semicontinuous if it is both upper and lower semicontinuous. Next, it is said
to be continuous or closed provided that whenever x � y in X, there exist open sets
U � x and V � y such that if a ∈ U and b ∈ V then a � b . Clearly, the statement
that the partial order � on X is semicontinuous is equivalent to the assertion that ↑a
and ↓a are closed subsets of X for each a ∈ X. A topological space equipped with
a continuous partial order is called a topological partially ordered space or shortly
topological pospace. A partial order � on a topological space X is continuous if
and only if the graph of � is a closed subset in X × X [17, Lemma 1]. Also, a
semicontinuous linear order on a topological space is continuous [17, Lemma 3].

A chain of a partially ordered set X is a subset of X which is linearly ordered with
respect to the partial order. A maximal chain is a chain which is properly contained
in no other chain. The Axiom of Choice implies the existence of maximal chains in
any partially ordered set. Every maximal chain in a topological pospace is a closed
set [17, Lemma 4].

An element y of a partially ordered set X is called minimal (resp. maximal) in
X whenever x � y (resp. y � x) in X implies y � x (resp. x � y). Let X and Y
be partially ordered sets. A map f : X → Y is called monotone (or partial order
preserving) if x � y implies f (x) � f (y) for every x, y ∈ X.

A Hausdorff topological space X is called H-closed if X is a closed subspace
of every Hausdorff space in which it is contained [1, 2]. A Hausdorff pospace X
is called H-closed if X is a closed subspace of every Hausdorff pospace in which
it is contained. It is obvious that the notion of H-closedness is a generalization of
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compactness. For any element x of a compact topological pospace X there exists a
minimal element y ∈ X and a maximal element z ∈ X such that y � x � z (cf. [10]).
Every maximal chain in a compact topological pospace is a compact subset and
hence it contains minimal and maximal elements. Also, for any point x of a compact
topological pospace X there exists a base at x which consists of open order-convex
subsets [14]. (A non-empty set A of a partially ordered set is called order-convex if
A is an intersection of increasing and decreasing subsets.) We are interested in the
following question: Under which conditions does an H-closed topological pospace
have properties similar to those of a compact topological pospace?

In this paper we study chains in an arbitrary H-closed topological partially ordered
space. We give sufficient conditions for a maximal chain L in an H-closed topological
partially ordered space (H-closed topological semilattice) under which L contains a
maximal (minimal) element. Also, we give sufficient conditions for a linearly ordered
topological partially ordered space to be H-closed. We prove that a linearly ordered
H-closed topological semilattice is an H-closed topological pospace and show that
in general, this is not true. We construct an example of an H-closed topological
pospace with a non-H-closed maximal chain and give sufficient conditions under
which a maximal chain of an H-closed topological pospace is an H-closed topological
pospace.

2 On Maximal and Minimal Elements of Maximal Chains in H-Closed Topological
Pospaces

A subset A of a partially ordered set X is called down-directed (resp. up-directed) if
and only if ↑A = X (resp. ↓A = X). A topological pospace X is called upper point
separated (resp. lower point separated) if for every x ∈ X such that ↑x �= X (resp.
↓x �= X) there exist an open non-empty decreasing (resp. increasing) subset V in X
and a neighbourhood U(x) of x such that a � b (resp. b � a) for each a ∈ U(x) and
b ∈ V.

Theorem 2.1 If an upper (lower) point separated H-closed topological pospace X
contains a down-directed (up-directed) chain, then X has a minimum (maximum)
element.

Proof Suppose to the contrary, that X does not contain a minimum element. Let
x �∈ X. We put X∗ = X ∪ {x} and extend the partial order � from X onto X∗ as
follows:

x � y for all y ∈ X∗.

Let τ be the topology on X and D the set of all non-empty decreasing open subsets of
X. The Hausdorff topology τ ∗ on X∗ is generated by the base τ ∪ {{x} ∪ U | U ∈ D

}
.

Since X does not contain a minimum element the definition of the family τ implies
that x is not an isolated point in X∗. Also, since X is an upper point separated
topological pospace, � is a closed partial order on X∗. Therefore X is a dense
subspace of X∗, a contradiction. This implies the assertion of the theorem. ��
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Theorem 2.1 implies the following:

Corollary 2.2 Every down-directed (up-directed) chain of an upper (lower) point
separated H-closed topological pospace X contains a minimum (maximum) element.

Proposition 2.3 Every locally compact topological pospace is upper (lower) point
separated.

Proof Let X be a locally compact topological pospace and x ∈ X a point such that
↑x �= X. Fix any y ∈ X \ ↑x. Local compactness of X implies that there exists an
open neighbourhood U(y) of y such that U(y) ⊆ clX(U(y)) ⊆ X \ ↑x and the set
clX(U(y)) is compact. Proposition VI-1.6(ii) of [10] implies that ↑ clX(U(y)) is a
closed subset of X. Hence V = X \ ↑ clX(U(y)) is an open decreasing subset of X
and a � b for each a ∈ U(y) and b ∈ V. This completes the proof of the proposition.

��

Theorem 2.1 and Proposition 2.3 imply the following:

Corollary 2.4 If a locally compact H-closed topological pospace X contains a down-
directed (up-directed) chain, then X has a minimum (maximum) element.

Also, Corollary 2.2 and Proposition 2.3 imply the following:

Corollary 2.5 Every down-directed (up-directed) chain of a locally compact H-closed
topological pospace X contains a minimum (maximum) element.

A subset F of topological pospace X is said to be upper (resp. lower) separated
if and only if for each a ∈ X \ ↑F (resp. a ∈ X \ ↓F) there exist disjoint open
neighbourhoods U of a and V of F such that U is decreasing (resp. increasing) and V
is increasing (resp. decreasing) in X. We shall say that a subset A of a topological
pospace X has the DS-property (resp. U S-property) if for any x ∈ X such that
A \ ↑x �= ∅ (resp. A \ ↓x �= ∅) there exist a neighbourhood U(x) of x and an open
decreasing (resp. increasing) set V such that V ∩ U(x) = ∅ and V ∩ A �= ∅.

Theorem 2.6 Every upper (lower) separated maximal chain with the DS-property
(resp. U S-property) of an H-closed topological pospace contains a minimum (resp.
maximum) element.

Proof Suppose to the contrary, that there exists an H-closed topological pospace X
with the DS-property and a maximal upper separated chain L in X such that L does
not contain a minimum element.

Let x /∈ X. We extend the partial order � from X onto X∗ = X ∪ {x} as follows:

x � x and x � y if y ∈ ↑L.

Let UL be the set of all open increasing subsets in X which contain the chain
L. We denote the set of all open decreasing subsets which intersect L by DL. If τ

is the topology on X then we define the Hausdorff topology τ ∗ as the one which
is generated by the pseudobase τ ∪ {{x} ∪ U | U ∈ DL ∪ UL

}
. Since L is an upper
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separated maximal chain with the DS-property, we conclude that the partial order
� is continuous on X∗. Therefore X is a dense subspace of X∗, a contradiction. This
implies the assertion of the theorem. ��

Proposition 2.7 Every subset of a locally compact topological pospace has the DS-
and the U S-properties.

Proof Let X be a locally compact topological pospace. Let A ⊂ X and x ∈ X be
such that A \ ↑x �= ∅. Fix any y ∈ A \ ↑x. Since x � y there exist neighbourhoods
U(x) and U(y) of x and y, respectively, such that a � b for all a ∈ U(x) and b ∈
U(y). Local compactness of X implies that there exists an open neighbourhood
V(x) of x such that V(x) ⊆ clX(V(x)) ⊆ U(x) and the set clX(V(x)) is compact.
Proposition VI-1.6(ii) of [10] implies that ↑ clX(V(x)) is a closed subset of X. Hence
V = X \ ↑ clX(V(x)) is an open decreasing subset of X such that V ∩ A �= ∅. This
completes the proof of the proposition. ��

Theorem 2.6 and Proposition 2.7 imply the following:

Corollary 2.8 Every upper (lower) separated maximal chain of an H-closed locally
compact topological pospace contains a minimum (maximum) element.

Similarly to [13, 15] we shall say that a topological pospace X is a Ci-space (resp.
Cd-space) if whenever a subset F of X is closed, the set ↑F (resp. ↓F) is closed in
X. A maximal chain L of a topological pospace X is called an MCCi-chain (resp. an
MCCd-chain) in X if ↑L (resp. ↓L) is a closed subset in X. Obviously, if a topological
pospace X is a Ci-space (resp. Cd-space) then any maximal chain in X is an MCCi-
chain (resp. MCCd-chain) in X. A topological pospace X is said to be upper (resp.
lower) regularly ordered if and only if for each closed increasing (resp. decreasing)
subset F in X and each element a /∈ F, there exist disjoint open neighbourhoods U
of a and V of F such that U is decreasing (resp. increasing) and V is increasing (resp.
decreasing) in X [5, 11]. A topological pospace X is regularly ordered if it is upper
and lower regularly ordered.

Theorem 2.6 implies Corollaries 2.9 and 2.10:

Corollary 2.9 Every maximal MCCi-chain with the U S-property of an H-closed
upper regularly ordered topological pospace X contains the least element which is
a minimal element of X. Consequently, if in an H-closed upper regularly ordered Ci-
space X every maximal chain has the U S-property, then X contains a collection M of
minimal elements such that ↑M = X.

Corollary 2.10 Every maximal MCCd-chain with the DS-property of an H-closed
lower regularly ordered topological pospace X contains the greatest element which
is a maximal element of X. Consequently, if in an H-closed lower regularly ordered
Cd-space X every maximal chain has the DS-property, then X contains a collection M
of maximal elements such that ↓M = X.
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3 On H-Closed Topological Semilattices

A topological space S which is algebraically a semigroup with a continuous semi-
group operation is called a topological semigroup. A semilattice is a semigroup
with a commutative idempotent semigroup operation. A topological semilattice is a
topological semigroup which is algebraically a semilattice. If E is a semilattice, then
the semilattice operation on E determines the partial order � on E:

e � f if and only if ef = f e = e.

This order is called natural. A semilattice E is called linearly ordered if the semilattice
operation admits a linear natural order on E. The natural order on a Hausdorff
topological semilattice E admits the structure of topological pospace on E (cf. [10,
Proposition VI-1.14]). Obviously, if S is a topological semilattice then ↑e and ↓e are
closed subsets in S for every e ∈ S.

A topological semilattice S is called H-closed if it is a closed subset in any
topological semilattice which contains S as a subsemilattice. Properties of H-closed
topological semilattices were established in [6, 12, 16].

Theorem 3.1 Every upper point separated H-closed topological semilattice contains
the smallest idempotent.

Proof Suppose to the contrary, that there exists an upper point separated H-closed
topological semilattice E which does not contain the smallest idempotent. Let x �∈ E.
We put E∗ = E ∪ {x} and extend semilattice operation from E onto E∗ as follows:

xx = xe = ex = x for all e ∈ E.

Let τ be the topology on E and D the set of all non-empty decreasing open subsets
of E. The Hausdorff topology τ ∗ on E∗ is generated by the base τ ∪ {{x} ∪ U | U ∈
D

}
. The continuity of the semilattice operation at x follows from the definition of

the topology τ ∗. Since E is upper point separated we conclude that (E∗, τ ∗) is a
Hausdorff topological space. Therefore E is a dense subspace of E∗, a contradiction.
This implies the assertion of the theorem. ��

Theorem 3.2 Let S be a topological semilattice which is an H-closed topological
pospace. Then every maximal chain of S has a maximum element. Consequently, every
topological semilattice S which is an H-closed topological pospace has a collection M
of maximal elements such that ↓M = S.

Proof Let L be a maximal chain of S. Fix any x ∈ L. If x is a maximum element of
L, the proof is complete. If x is not a maximum element of L, then there exists y ∈ L
such that x < y. Let U(x) and U(y) be open neighbourhoods of x and y, respectively,
such that a � b for all b ∈ U(x) and a ∈ U(y). The continuity of the semilattice
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operation and Hausdorffness of S imply that there exist open neighbourhoods V(x)

and V(y) of x and y, respectively, such that

V(x) · V(y) = V(y) · V(x) ⊆ U(x), V(x) ⊆ U(x), V(y) ⊆ U(y) and

V(x) ∩ V(y) = ∅.

Therefore ↑V(y) ∩ V(x) = ∅. By Proposition VI-1.13 of [10], ↑V(y) is an open
subset of S and hence the chain L has the U S-property. Therefore by Theorem 2.6,
the chain L contains a maximum element. ��

We observe that every Hausdorff topological semilattice which is an H-closed
topological pospace is obviously an H-closed topological semilattice. However,
there exists an H-closed Hausdorff topological semilattice which is not an H-closed
topological pospace (cf. Example 3.6). Simple verifications establish the following:

Proposition 3.3 Every linearly ordered topological pospace admits a structure of a
topological semilattice.

Since the closure of a chain in a topological pospace is again a chain, Proposi-
tion 3.3 implies the following:

Proposition 3.4 A linearly ordered topological semilattice is H-closed if and only if it
is H-closed as a topological pospace.

A linearly ordered set E is called complete if every non-empty subset of S has an
inf and a sup. Propositions 3.3 and 3.4, and Theorem 2 of [12] imply the following:

Corollary 3.5 A linearly ordered topological pospace X is H-closed if and only if the
following conditions hold:

(i) X is a complete set with respect to the partial order on X;
(ii) x = sup A for A = ↓A \ {x} implies x ∈ clX A, whenever A �= ∅; and

(iii) x = inf B for B = ↑B \ {x} implies x ∈ clX B, whenever B �= ∅.

A semilattice S is called algebraically closed (or absolutely maximal) if S is a closed
subsemilattice in any topological semilattice which contains S as a subsemilattice [16].
Stepp [16] proved that a semilattice S is algebraically closed if and only if every
chain in S is finite. Therefore an algebraically closed semilattice S is an H-closed
topological semilattice with any Hausdorff topology τ such that (S, τ ) is a topological
semilattice.

A partially ordered set A is called a tree if ↓a is a chain for any a ∈ A. Example 3.6
shows that there exists an algebraically closed (and hence H-closed) topological
semilattice X which is a tree but X is not an H-closed topological pospace.

Example 3.6 Let X be a discrete infinite space of cardinality τ and let A (τ ) be the
one-point Alexandroff compactification of X. We put {α} = A (τ ) \ X and fix β ∈ X.
On A (τ ) we define a partial order � as follows:

x � x, β � x and x � α for all x ∈ A (τ ).
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The partial order � induces a semilattice operation ‘∗’ on A (τ ):

(1) x ∗ x = x, β ∗ x = x ∗ β = β and α ∗ x = x ∗ α = x for all x ∈ A (τ ); and
(2) x ∗ y = y ∗ x = β for all distinct x, y ∈ X.

Since X is a discrete subspace of A (τ ), X with the semilattice operation induced
from A (τ ) is a topological semilattice. By [16, Theorem 9], X is an algebraically
closed semilattice, and hence it is an H-closed topological semilattice. Simple
verifications show that for every a, b ∈ A (τ ) such that a � b there exist an open
increasing neighbourhood V(a) of a and an open decreasing neighbourhood V(b)

of b such that V(a) ∩ V(b) = ∅. Therefore A (τ ) is a compact (and hence normally
orderable) topological pospace. However, X is a dense subspace of A (τ ) and hence
X is not an H-closed topological pospace.

4 Linearly Ordered H-Closed Topological Pospaces

Let C be a maximal chain of a topological pospace X. Then C = ⋂
x∈C(↓x ∪ ↑x), and

hence C is a closed subspace of X. Therefore we get the following:

Lemma 4.1 Let K be a linearly ordered subspace of a topological pospace X. Then
clX(K) is a linearly ordered subspace of X.

Since the conditions (i)–(iii) of Corollary 3.5 are preserved by continuous
monotone maps, we have the following:

Theorem 4.2 Any continuous monotone image of a linearly ordered H-closed topo-
logical pospace into a topological pospace is an H-closed topological pospace.

Also, Proposition 4.3 follows from Corollary 3.5.

Proposition 4.3 Let (X, τX) be a non-empty H-closed sub-pospace of a linearly
ordered topological pospace (T, τT). Then the set ↑x ∩ X (↓x ∩ X) contains a minimal
(maximal) element for any x ∈ T.

Let L be a subset of a linearly ordered set X. A subset A of X is called an L-chain
in X if A ⊆ L and A is order convex ( i. e., ↑x ∩ ↓y ⊆ L for any x, y ∈ A, x � y).

Theorem 4.4 Let X be a linearly ordered topological pospace and L a subspace of X
such that L is an H-closed topological pospace and any maximal X\L-chain in X is
an H-closed topological pospace. Then X is an H-closed topological pospace.

Proof Suppose to the contrary, that the topological pospace X is not H-closed. Then
by Lemma 4.1, there exists a linearly ordered topological pospace Y which contains
X as a non-closed subspace. Without loss of generality we may assume that X is a
dense subspace of a linearly ordered topological pospace Y.

Let x ∈ Y \ X. The assumptions of the theorem imply that the set X \ L is a
disjoint union of maximal X\L-chains Lα , α ∈ A , which are H-closed topological
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pospaces. Therefore any open neighbourhood of the point x intersects infinitely
many sets Lα , α ∈ A .

Since any maximal X\L-chain in X is an H-closed topological pospace, one of the
following conditions holds:

↑x ∩ L �= ∅ or ↓x ∩ L �= ∅.

We consider the case when the sets ↑x ∩ L and ↓x ∩ L are nonempty. The proofs in
the other cases are similar.

By Proposition 4.3, the set ↑x ∩ L contains a minimal element xm and the set ↓x ∩
L contains a maximal element xM. Then the sets ↑xm and ↓xM are closed in Y and,
obviously, L ⊂ ↓xM ∪ ↑xm. Let U(x) be an open neighbourhood of the point x in Y.
We put

V(x) = U(x) \ (↓xM ∪ ↑xm) .

Then V(x) is an open neighbourhood of the point x in Y which intersects at most
one maximal S\L-chain Lα , a contradiction. Therefore X is an H-closed topological
pospace. ��

Corollary 4.5 Let X be a linearly ordered topological pospace and L a subspace of X
such that L is a compact topological pospace and any maximal X\L-chain in X is a
compact topological pospace. Then X is an H-closed topological pospace.

Example 4.6 Let N be the set of all positive integers. Let {xn} be an increasing
sequence in N. Put N∗ = {0} ∪ { 1

n | n ∈ N} and let � be the usual order on N∗. We
put Un(0) = {0} ∪ { 1

xk
| k � n}, n ∈ N. A topology τ on N∗ is defined as follows:

a) any point x ∈ N∗ \ {0} is isolated in N∗; and
b) B(0) = {Un(0) | n ∈ N} is the base of the topology τ at the point 0 ∈ N∗.

It is easy to see that (N∗,�, τ ) is a countable linearly ordered σ -compact locally
compact metrizable topological pospace and if xk+1 > xk + 1 for every k ∈ N, then
(N∗,�, τ ) is a non-compact topological pospace.

By Corollary 4.5, (N∗,�, τ ) is an H-closed topological pospace. Also, (N∗,�, τ )

is a normally ordered (or monotone normal) topological pospace, i.e. for any closed
subset A = ↓A and B = ↑B in X such that A ∩ B = ∅, there exist open subsets
U = ↓U and V = ↑V in X such that A ⊆ U , B ⊆ V, and U ∩ V = ∅ [14]. Therefore
for any disjoint closed subsets A = ↓A and B = ↑B in X, there exists a continuous
monotone function f : X → [0, 1] such that f (A) = 0 and f (B) = 1 (cf. [14]).

Example 4.6 implies negative answers to the following questions:

(i) Is every closed subspace of an H-closed topological pospace H-closed?
(ii) Has every locally compact topological pospace a subbasis of open decreasing

and open increasing subsets?

Example 4.7 shows that there exists a countably compact topological pospace,
whose space is H-closed. This example also shows that there exists a countably
compact totally disconnected scattered topological pospace which is not embeddable
into any locally compact topological pospace.
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Example 4.7 Let the set X = [0, ω1) be equipped with the order topology (cf. [9,
Example 3.10.16]), and let Y = {0} ∪ { 1

n | n = 1, 2, 3, . . .} have the natural topology.
We consider S = X × Y equipped with the product topology τp and the partial
order �:

(x1, y1) � (x2, y2) if and only if x2 �X x1 and y2 �Y y1,

where �X and �Y are the usual linear orders on X and Y, respectively. We extend
the partial order � onto S∗ = S ∪ {α}, where α /∈ S, as follows: α � α and α � x for
all x ∈ S, and define a topology τ on S∗ as follows. The bases of topologies τ and τp

at the point x ∈ S coincide and the family B(α) = {Uβ(α) | β ∈ ω1} is the base of the
topology τ at the point α ∈ S∗, where

Uβ(α) = {α} ∪ ([β, ω1) × {1/n | n = 1, 2, 3, . . .}).
Since clS∗(Uβ(α)) � Uγ (α) for any β, γ ∈ ω1, Propositions 1.5.2 and 1.5.5 of [9]
imply that (S∗,�, τ ) is a Hausdorff non-regular topological pospace. Therefore by
Theorem 2.1.6 [9], the topological space (S∗,�, τ ) does not embed into any regular
topological space, and hence by Theorem 3.3.1 [9] neither into any locally compact
space. Proposition 3.12.5 of [9] implies that (S∗, τ ) is an H-closed topological space.
By Corollary 3.10.14 of [9] and Theorem 3.10.8 of [9], the topological space (S∗, τ )

is countably compact. Since every point of (S∗, τ ) has a singleton component, the
topological space (S∗, τ ) is totally disconnected.

Let A be a closed subset of (S∗,�, τ ) such that A �= {α}. Then there exists x ∈
[0, ω1) such that Ã = A ∩ ([0, x] × Y) �= ∅. Since [0, x] × Y is a compactum, Ã is a
compact topological pospace and hence Ã contains a maximal element of Ã. Let xm

be a maximal element of Ã. The definition of the topology τ on S∗ implies that ↑xm

is an open subset in (S∗, τ ). Then ↑xm ∩ Ã = xm and hence xm is an isolated point of
the space Ã with the induced topology from (S∗, τ ). Therefore every closed subset of
(S∗, τ ) contains an isolated point and hence (S∗, τ ) is a scattered topological space.

Remark 4.8 The topological pospace (N∗,�, τ ) from Example 4.6 admits the struc-
ture of a topological semilattice:

ab = min{a, b}, for a, b ∈ N∗.

Also, the topological pospace (S∗,�, τ ) from Example 4.7 admits the continuous
semilattice operation

(x1, y1) · (x2, y2) = (max{x1, x2}, max{y1, y2}) and (x1, y1) · α = α · (x1, y1) = α,

for x1, x2 ∈ X and y1, y2 ∈ Y.

The following example shows that there exists a countable H-closed scattered
totally disconnected topological pospace which has a non-H-closed maximal chain.

Example 4.9 Let N be the set of all positive integers with the discrete topology,
and consider Y = {0} ∪ {

1
n | n = 1, 2, 3, . . .

}
equipped with the natural topology. We

define T = N × Y with the product topology τT and the partial order �:

(x1, y1) � (x2, y2) if and only if x2 � x1 and y2 � y1,
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where � is the usual linear order induced from R on N and Y, respectively. We
extend the partial order � to T∗ = T ∪ {α}, where α /∈ T, as follows: α � α and α � x
for all x ∈ T. We define a topology τ ∗ on T∗ as follows: the bases of topologies τ ∗
and τT at the point x ∈ T coincide and the family B(α) = {

Uk(α) | k ∈ {1, 2, 3, . . .}}
is the base of the topology τ ∗ at the point α ∈ T∗, where

Uk(α) = {α} ∪
(

{k, k + 1, k + 2, . . . } ×
{

1

n
| n = 1, 2, 3, . . .

})
.

It is obvious that (T∗,�, τ ∗) is a Hausdorff non-regular topological pospace. Propo-
sition 3.12.5 of [9] implies that (T∗, τ ∗) is an H-closed topological space. Since every
point of (T∗, τ ∗) has a singleton component, the topological space (T∗, τ ∗) is totally
disconnected. The proof that (T∗, τ ∗) is a scattered topological pospace is similar to
the proof of the scatteredness of the topological pospace (S∗,�, τ ) in Example 4.7.

We observe that the set L = (N × {0}) ∪ {α} with the induced partial order from
the topological pospace (T∗,�, τ ∗) is a maximal chain in T∗. The topology τ ∗
induces the discrete topology on L. Corollary 3.5 implies that L is not an H-closed
topological pospace.

Theorem 4.10 gives sufficient conditions for a maximal chain of an H-closed
topological pospace to be H-closed. We shall say that a chain L of a partially ordered
set P has the ↓· max-property (resp. ↑· min-property) in P if for every a ∈ P such
that ↓a ∩ L �= ∅ (resp. ↑a ∩ L �= ∅) the chain ↓a ∩ L (↑a ∩ L) has a maximal (resp.
minimal) element. If the chain of a partially ordered set P has the ↓· max- and the
↑· min-properties, then we shall say that L has the �· m-property.

Similarly to [13, 15] we shall say that a topological pospace X is a CCi-space (resp.
CCd-space) if whenever a chain F of X is closed, ↑F (resp. ↓F) is a closed subset
in X.

Theorem 4.10 Let X be an H-closed topological pospace. If X satisf ies the following
properties:

(i) X is regularly ordered;
(ii) X is a CCi-space; and

(iii) X is a CCd-space,

then every maximal chain in X with the �· m-property is an H-closed topological
pospace.

Proof Suppose to the contrary, that there is a non-H-closed maximal chain L with
the �· m-property in X. Then by Corollary 3.5, at least one of the following conditions
holds:

(I) the set L is not a complete semilattice with the induced partial order from X;
(II) there exists a non-empty subset A in L with x = inf A such that A = ↑A \ {x}

and x /∈ clL(A);
(III) there exists a non-empty subset B in L with y = sup B such that B = ↓B \ {y}

and y /∈ clL(B).

Suppose that condition (I) holds. Since a topological space X with the order dual
to � is a topological pospace, we can assume without loss generality that there exists
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a subset S of L which does not have a sup in L. Then the set ↓S ∩ L does not have
a sup in L either. Hence the set I = L \ ↓S does not have an inf in L. We observe
that the maximality of L implies that there exist no lower bound b of I and no upper
bound a of S such that a � b . Also, we observe that properties (ii)–(iii) of X and
Corollaries 2.9 and 2.10 imply that I �= ∅. Otherwise, if I = ∅ then by Corollary 2.10
the chain S has a sup in X, which contradicts the maximality of the chain L. We
observe that the dual argument shows that S �= ∅, when there exists a subset I in L
which does not have an inf in L. Therefore we can assume without loss of generality
that S = ↓S ∩ L, I = ↑I ∩ L and L is the disjoint union of S and I.

Since the set S does not have a sup in L we conclude that
⋂

x∈S ↑x is a closed subset
of X and

⋂
x∈S ↑x ∩ S = ∅. Hence S is an open subset in L. A dual argument shows

that I is an open subset in L. Therefore S and I are clopen subsets of L.
Let x /∈ X. We extend the partial order � from X onto X∗ = X ∪ {x} by setting

a � b in X∗ if and only if one of the following conditions holds:

1) a, b ∈ X and a � b in X;
2) a = x and b ∈ ↑X I;
3) a ∈ ↓X S and b = x.

Let US be the set of all increasing open subsets of X which intersect S and let DI

be the set of all decreasing open subsets of X which intersect I. Let τ be the topology
of X and let τ ∗ be the topology generated by the pseudobase

τ ∪ {{x} ∪ U | U ∈ US
} ∪ {{x} ∪ U | U ∈ DI

}
.

Since the chain L has the �· m-property and conditions (i)–(iii) hold we conclude that
X∗ is a topological pospace which contains X as a dense subspace, a contradiction.

Suppose that the statement (II) holds, i. e. that there exists an open neighbour-
hood O(x) of x = inf A such that O(x) ∩ A = ∅. We can assume without loss of
generality that ↑A = L ∩ A. By Corollary 2.9, the chain L has a minimum element
and hence B = L \ A �= ∅ and x ∈ B. Since

⋂
y∈B ↓y is a closed subset in X we

conclude that A is an open subset of L. Since for any y ∈ B \ {x} we have that X \ ↑x
is an open neighbourhood of y and there exists an open neighbourhood O(x) of x
such that O(x) ∩ A = ∅, we obtain that A is a closed subset of L. The maximality of
L implies that A is a closed subset of X.

Let p /∈ X. We extend the partial order � from X onto X† = X ∪ {p} by setting
a � b in X† if and only if one of the following conditions holds:

1) a, b ∈ X and a � b in X;
2) a = p and b ∈ ↑X A;
3) a ∈ ↓X B and b = p.

Let UA be the set of all increasing open subsets of X which contain A and let
DA be the set of all decreasing open subsets of X which intersect A. Let τ be the
topology of X and let τ † be the topology generated by the pseudobase

τ ∪ {{p} ∪ U | U ∈ UA
} ∪ {{p} ∪ U | U ∈ DA

}
.

Since the chain L has the �· m-property and conditions (i)–(iii) hold we conclude
that X† is a topological pospace. Therefore we get that (X†, τ †,�) is a topological
pospace and X is a dense subspace of (X†, τ †,�). This contradicts the assumption
that X is an H-closed pospace.
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In case (III) we get a similar contradiction as in (II). These contradictions imply
the assertion of the theorem. ��

Remark 4.11 We observe that the topological pospace (T∗,�, τ ∗) from Example 4.9
is not regularly ordered and is not a CCi-space. Also, the topological pospace (T∗,�
, τ ∗) admits the continuous semilattice operation

(x1, y1) · (x2, y2) = (max{x1, x2}, max{y1, y2}) and (x1, y1) · α = α · (x1, y1) = α,

for x1, x2 ∈ X and y1, y2 ∈ Y. Therefore a maximal chain of an H-closed topological
semilattice is not necessarily an H-closed topological semilattice.
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