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Abstract. We construct a functor AC(−,−) from the category of path
connected spaces X with a base point x to the category of simply con-
nected spaces. The following are the main results of the paper: (i) If
X is a Peano continuum then AC(X,x) is a cell-like Peano continuum;
(ii) If X is n−dimensional then AC(X,x) is (n + 1)−dimensional; and
(iii) For a path connected space X, π1(X,x) is trivial if and only if
π2(AC(X,x)) is trivial. As a corollary, AC(S1, x) is a 2-dimensional
nonaspherical cell-like Peano continuum.
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1. Introduction

Peano continua are those continua (i.e. connected metric compacta) which are
also locally connected. This classical topics of topology has received renewed
attention in recent years, in particular the constructions of some surprising
examples which provide answers to some very interesting problems and con-
jectures.

In our investigations of Peano continua we constructed in [6] a new
functor from the category of all path connected spaces X with a base point
x and continuous mappings to the category of all simply connected spaces,
which we named the Snake cone and denoted by SC(−,−). When X is a
Peano continuum, SC(X, x) is also a Peano continuum. We proved that in
the case when X = S1, the space SC(S1, x) is a noncontractible simply
connected cell-like 2-dimensional Peano continuum.
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In a subsequent paper [7] we showed that the space SC(S1, x) is even
nonaspherical, i.e. π2(SC(S1, x)) �= 0. Moreover, we showed that for every
path connected space X , π1(X, x) is trivial if and only if π2(SC(X, x)) is
trivial (cf. [7] and [8]).

In the present paper we construct yet another new useful functor, called
the Alternating cone, and we denote it by AC(−,−). We show that while
AC(X, x) shares all the properties of the space SC(X, x) listed above, their
verification is much easier. We also show that there exists a Peano contin-
uum (X, x) such that the spaces AC(X, x) and SC(X, x) are not homotopy
equivalent. As an example how much easier the verifications are for the new
functor, we consider singular homology H∗(AC(X, x)) (cf. Theorem 3.4).

2. Preliminaries

We start by fixing some terminology and notations which will be used in the
sequel. All undefined terms can be found in [13] or [14].

For any two points A and B of the plane R
2, we shall denote the linear

segment connecting these points by [A,B]. Next, by the open (resp. half-
open) interval we shall mean the linear segment without its end points (resp.
without one of its end points), and we shall denote it by (A,B) (resp.[A,B)
or (A,B]), as usual. The unit segment of the real line R

1, with the natural
topology, will be denoted by I. The point of the coordinate plane R2 with
coordinates a and b will be denoted by (a; b).

Consider the points A = (0; 0), B = (0; 1), An = (1/n; 0), Bn = (1/n; 1)
and let L = [A,B], L2n−1 = [An, Bn], L2n = [Bn, An+1] be segments in the
plane R2, for n ∈ N = {1, 2, 3, . . .}. The piecewise linear Topologist sine curve
T is a subspace of the plane R

2 defined as the union of Ln and L. For any
topological space X the cone C(X) over X is defined as the quotient space
C(X) = (X × I)/(X × {1}).

Suppose that qi : Zi → I, i = 1, 2, are mappings of topological spaces.
Then the mapping f : Z1 → Z2 is said to be flat with respect to the mappings
q1 and q2 if for every two points a, b ∈ Z1 with q1(a) = q1(b), the equality
q2(f(a)) = q2(f(b)) holds. Homotopy H : Z1× I→ Z2 is said to be flat if for
each t ∈ I the mapping H(−, t) : Z1 → Z2 is a flat mapping with respect to
the mappings q1 and q2.

We recall the notion of the free σ-product of groups and a lemma from
[4] (cf. the proof of [7, Theorem 3.1]). We only use it in the case when the
index set is countable and we introduce a restricted version in the sequel. Let
(Xn, xn) be pointed spaces for n ∈ N such that Xm ∩ Xn = ∅, for m �= n.

The underlying set of the pointed space (
∨̃

n∈N(Xn, xn), x
∗) is the union of

all Xn’s obtained by identifying all xn’s to a point x∗ and the topology is
defined by specifying the neighborhood base as follows (cf. [1]):

(1) If x ∈ Xn \ {xn}, then the neighborhood base of x in
∨̃

n∈N(Xn, xn) is
the one of Xn; and
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(2) The point x∗ has a neighborhood base, each element of which is of the
form:

⋃
n≥m(Xn, xn) ∪

⋃
n<m Un where m ∈ N and each Un is an open

neighborhood of xn in Xn for n < m.

Lemma 2.1. [4, Theorem A.1] Let Xn be locally simply-connected and first
countable at xn for each n. Then

π1(
∨̃

n∈N(Xn, xn), x
∗) ∼=××n∈Nπ1(Xn, xn).

Let G be a group. A commutator is an element [g1, g2] = g1g2g
−1
1 g−1

2

where g1, g2 ∈ G. The normal subgroup G′ of G which is generated by all
commutators is called the commutator subgroup of G.

Recall that the commutator length cl(g) of g ∈ G′ is defined as the
minimal number of the commutators of G whose product is equal to g (cf.
[5]). We note that cl(e) = 0 for the identity element e of the group G. If
ϕ : G → H is a homomorphism of a group G to a group H , then for every
g ∈ G′,

cl(ϕ(g)) ≤ cl(g). (2.1)

For every path connected space X, the fundamental group π1(X, x) is inde-
pendent of the choice of the base point x and hence we can simply write
π1(X). Finally, recall the isomorphism:

H1(X) ∼= π1(X)/π′1(X). (2.2)

3. Constructions and main results

The Snake cone functor SC(−,−) is defined as follows. For every compact
spaceX with the base point x, the space SC(X, x) is the quotient space of the
topological sum (T ×X)

⊔
I
2 via the identification of the points (t, x) ∈ T ×X

with t ∈ T \L ⊂ I
2 and the identification of each set {t} ×X with the point

t, for every t ∈ L (cf. [6]).

Figure 1. SC(S1)

Let us now define the Alternating cone functor AC(−,−). Let (X, x) be
a pointed space and let (Xn, xn) be its copies. Connect xn and xn+1 by an
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arc for each n ∈ N and add a new point so that a neighborhood of the point
contains almost all Xn’s and almost all attached arcs. Let Y be this space.

Let AC(X, x) be the quotient space of Y × I in which the sets {0}×Xn

are identified with (0, xn) for all odd n and the sets {1} ×Xn are identified
with (1, xn) for all even n.

Since xn and the attached arcs converge to the new point in Y , AC(X, x)
can be illustrated as in Figure 2. The identifited points will be denoted by
A2n = (1/2n; 0) and B2n−1 = (1/(2n− 1); 1). Let p : AC(X, x) → I

2 be the
natural projection and define p(u) = (p1(u); p2(u)). We let Cn = (1/n; 1/2),
for n ∈ N and C = (0; 1/2).

Figure 2. AC(S1)

Proposition 3.1. Let X be a path connected space and x, y∈X. Then SC(X, x)
and SC(X, y) are homotopy equivalent. Similarly, AC(X, x) and AC(X, y)
are also homotopy equivalent.

Proof. We shall only prove this for SC(X, x) and SC(X, y), since the proof
for AC(X, x) and AC(X, y) is similar. Let X be a path connected space
with x ∈ X , and X∗ the space defined in Theorem 3.4. Also, let Y ∗ be the
space obtained by replacing x with y. By a deformation on I

2, SC(X, x) is
homotopy equivalent to SC(X∗, 0). Hence it suffices to establish a homotopy
equivalence between SC(X∗, 0) and SC(Y ∗, 0).

Let f : I → X be a path such that f(0) = x and f(1) = y. Define
ϕ : X∗ → Y ∗ and ψ : Y ∗ → X∗ by:

ϕ(u) =

⎧⎪⎨
⎪⎩
u for u ∈ X

2s for s ∈ [0, 1/2]

f(2− 2s) for s ∈ [1/2, 1]

ψ(u) =

⎧⎪⎨
⎪⎩
u for u ∈ X

2s for s ∈ [0, 1/2]

f(2s− 1) for s ∈ [1/2, 1].

Then it is easy to see that ϕ and ψ induce a homotopy equivalence betweenX∗

and Y ∗ which fixes 0. This homotopy equivalence then induces a homotopy
equivalence between SC(X∗, 0) and SC(Y ∗, 0). �
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We are mainly interested in the homotopy types of SC(X, x) and AC(X, x)
for the class of path connected spaces X . Since by Proposition 3.1 the choice
of the base point x does not affect the homotopy types of SC(X, x) and
AC(X, x), we can simply write SC(X) or AC(X) when the choice of the
base point does not matter.

Theorem 3.2. If X is a continuum then AC(X) is a cell-like space. If dim X =
n then dim AC(X) = n+1. If X is a Peano continuum, then AC(X) is also
a Peano continuum. For any continuum X, the space AC(X) is simply con-
nected.

Theorem 3.3. If X is a noncontractible compact space, then AC(X) is also
a noncontractible compact space.

Theorem 3.4. Let X be a path connected space with x ∈ X and X∗ the
quotient space of the disjoint sum of the unit interval I and X, by identifying
1 of I and x. Let (Xi, xi) be copies of (X∗, 0).

It then follows that for any natural number n, we have the isomorphism:

Hn+1(AC(X)) ∼= Hn(C(
∨̃

i∈N(X2i−1, x2i−1)) ∨ C(
∨̃

i∈N(X2i, x2i))),

where the attaching points of the two cones are the identification points x2i−1

and x2i.

Theorem 3.5. Let X be a path connected space. Then π1(X) is trivial if and
only if π2(AC(X)) is trivial.

It is easy to see that if {a, b} is a two-point space with the discrete
topology then the space AC({a, b}) is path connected, whereas the space
SC({a, b}) is not. The following theorem shows their difference from another
perspective:

Theorem 3.6. There exists a Peano continuum X such that AC(X) is not
homotopy equivalent to SC(X).

4. Proofs of Theorems 3.2 and 3.3

In this section we shall prove Theorems 3.2 and 3.3. The argument is similar to
the one which was used for proving analogous statements concerning SC(X).

Proof of Theorem 3.2. Since X is a compactum, the space AC(X) is the
inverse limit of an inverse sequence of contractible compact metrizable spaces.
Therefore AC(X) is a compact metrizable space of trivial shape, i.e. cell-like.

If dim X = n and X is compact and metrizable then the dimension
of its one-point compactification Y is equal to n and thus dim (Y × I) =
n + 1. Therefore dim AC(X) = n + 1. If X is a Peano continuum then
AC(X) is compact, metrizable and locally path connected, hence also a Peano
continuum.
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Let us prove thatAC(X) is a simply connected space. Let U=p−1
2 ([0, 1))

and V = p−1
2 ((0, 1]) (cf. Figure 1). The sets U and V are homotopy equivalent

to p−1
2 ({0}) and p−1

2 ({1}), respectively. Their intersection U ∩V is homotopy
equivalent to p−1

2 ({1/2}). Obviously, the mapping

π1(p
−1
2 ({1/2}))→ π1(p

−1
2 ({0})) ∗ π1(p

−1
2 ({1}))

is surjective and the intersection U ∩ V is path connected. Therefore by the
van Kampen theorem, the union U ∪ V = AC(X) is simply connected. �

For a noncontractible space X , the noncontractibility of AC(X) can be
proved similarly as for SC(X) (cf. [6, Theorem 1.2]). Hence we only indicate
the difference and we state the necessary lemmas.

Let My = p−1
2 ({y}) and ACn(X) = p−1([A2n, B2n]∪ [A2n+1, B2n+1]) be

the subspaces of AC(X). The following lemma can be proved analogously as
[6, Lemma 4.2].

Lemma 4.1. Let n ∈ N and let H : ACn(X)× I→ AC(X) be a mapping such
that for every y ∈ I and t ∈ I, the closure of the set p2(H(My ∩ACn(X), t))
does not contain both points 0 and 1, and such that both mappings H(−, 0)
and H(−, 1) are flat. Then there exists a flat homotopy from H(−, 0) to
H(−, 1).

For s ∈ (0, 1) and t ∈ I, we define a property P (s, t) of the flat homotopy
H as follows:

H(Ms ∩ ACn(X), t) ⊆ p−1
2 ((0, 1)) and the restriction of H(−, t)

to Ms ∩ ACn(X) is homotopic to the identity mapping on Ms ∩
ACn(X) in p−1

2 ((0, 1)).

We remark that by the flatness of H , if H(Ms ∩ ACn(X), t) ⊆ p−1
2 ((0, 1)),

then there is a neighborhood U of (s; t) such that H(Ms′ ∩ ACn(X), t′) ⊆
p−1
2 ((0, 1)) for any (s′; t′) ∈ U . The following lemma can be proved similarly

as [6, Lemma 4.3].

Lemma 4.2. Let X be a noncontractible space and H : ACn(X)×I→ AC(X)
a flat homotopy. If H(M0 ∩ ACn(X), t0) ⊆ p−1

2 ((0, 1)), then there exists a
neighborhood U of (0; t0) such that H does not satisfy P (s, t) for any (s; t) ∈
U with s > 0. An analogous statement holds for H(M1 ∩ ACn(X), t0) ⊆
p−1
2 ((0, 1)).

By Lemmas 4.1 and 4.2, we can use the proof of [6, Lemma 4.4] to verify
also the next lemma.

Lemma 4.3. Let X be a noncontractible space. If H : ACn(X)× I→ AC(X)
is a flat homotopy such that H(u, 0) = u for every u ∈ ACn(X), then H(−, 1)
is not a constant mapping.

We can now regard the proof of [6, Theorem 1.2] also as a proof of
Theorem 3.3. We shall only retrace its line of argument.

Proof of Theorem 3.3. Suppose that the space AC(X) is contractible. Then
there exists a homotopy H : AC(X) × T → AC(X) connecting the identity
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mapping with the constant one. By compactness of the time interval I, for
every a = (0; y) ∈ {0} × I, there exists ε0 > 0 such that the diameters of
p2 ◦H(Oε0(a), t) are less than 1 for all t ∈ I. Hence, by compactness of [A,B],
there exists ε1 > 0 such that the diameters p2◦H(Oε1(a), t) are less than 1 for
all a = (0; y) ∈ {0} × I and all t ∈ I. Let n be a number such that 1/n < ε1.
By Lemma 4.1 we may then assume that H |ACn(X)×I is a flat contraction.
However, this contradicts Lemma 4.3. �

5. Proofs of Theorems 3.4 and 3.5

In this section we shall prove Theorems 3.4 and 3.5. Here we shall see a very
different feature of AC(X) in comparison with SC(X).

Let U = p−1
2 ([0, 1)) and V = p−1

2 ((0, 1]). The spaces U, V and U ∩ V
are homotopy equivalent to p−1

2 ({0}), p−1
2 ({1}) and p−1

2 ({1/2}), respectively.
Let iU and iV be the inclusion maps from U ∩ V to U and V , respectively.
Consider the following part of the Mayer-Vietoris exact sequence for the
singular homology:

Hn+1(U)⊕Hn+1(U) −→ Hn+1(AC(X)) −→ Hn(U ∩ V )
(iU∗,iV ∗)−→

Hn(U)⊕Hn(V ) −→ Hn(AC(X)).

Since the inclusion maps from U to AC(X) and from V to AC(X) are inessen-
tial, we have the following exact sequence:

0 −→ Hn+1(AC(X)) −→ Hn(U ∩ V )
(iU∗,iV ∗)−→ Hn(U)⊕Hn(V ) −→ 0.

We recall the following fact:

Lemma 5.1. [9, Theorem 1.3] Let CX be the cone over a space X and CX ∨
CY the one-point union with two points of the base spaces X and Y being
identified to a point. Then, the following holds for n ≥ 1 :

Hn(X ∨ Y ) ∼= Hn(X)⊕Hn(Y )⊕Hn(CX ∨ CY ).

Proof of Theorem 3.4. Let rX : X ∨ Y → X and rY : X ∨ Y → Y be
the retractions from Lemma 5.1. Then Hn(CX ∨ CY ) is the kernel of the
homomorphism ((rX)∗, (rY )∗) : Hn(X ∨ Y )→ Hn(X)⊕Hn(Y ).

V ∼= p−1
2 ({1}) = p−1

2 ({1})
↑ iV ↑ rB

U ∩ V ∼= p−1
2 ({1/2}) ∼= (p−1

2 ({0}), A) ∨ (p−1
2 ({1}), B)

↓ iU ↓ rA
U ∼= p−1

2 ({0}) = p−1
2 ({0})

Since the diagram above is homotopy commutative, Hn+1(AC(X)) is isomor-
phic to Hn(C(p−1

2 ({0})) ∨ C(p−1
2 ({1})).

For each n, let Xn be a copy of the one-point union of X and the unit
interval I, where the attaching point is 0 ∈ I. Let xn be a copy of 1 ∈ I.
We regard Xn as [C,Cn]∪p−1({Cn}). Then p−1

2 ({0}) is homotopy equivalent
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to
∨̃

n∈N(X2n−1, x2n−1), p
−1
2 ({1}) is homotopy equivalent to

∨̃
n∈N(X2n, x2n)

and p−1
2 ({1/2}) is homotopy equivalent to

∨̃
n∈N(Xn, xn). This verifies the

assertion. �
Proof of Theorem 3.5. By the result preceding the proof of Theorem 3.4, we
have the exact sequence:

0 −→ H2(AC(X)) −→ H1(U ∩ V )
(iU∗,iV ∗)−→ H1(U)⊕H1(V ) −→ 0.

Suppose that π1(X) is trivial. Since π1(U ∩ V ) is isomorphic to
××n∈Nπ1(Xn, xn), π1(U ∩ V ) is also trivial. Hence H1(U ∩ V ) is trivial, which
implies that H2(AC(X)) is trivial, by the above exact sequence.

On the contrary, suppose that π1(X) is nontrivial. Choose a non-trivial
element a of π1(X) and let an ∈ π1(Xn) be copies of a. Then there exists an el-
ement a∗ of the group π1(U∩V ) such that its image under the induced homo-
morphism from retraction of the space U ∩V to the [C,C2n]∪ p−1([C2n, C1])
is

[a1, a2][a3, a4] · · · [a2n−1, a2n].

By [10, Theorem 1], the commutator length of this element is n. Since the
number n is arbitrary, a∗ does not belong to the commutator subgroup of
π1(U ∩V ). Therefore the homology class [a∗] ∈ H1(U ∩V ) is nontrivial (2.2).
However, its images iU∗([a∗]) and iV ∗([a∗]) inH1(U) andH1(V ), respectively,
are obviously trivial. By the exactness of the Mayer-Vietoris sequence, the
group H2(AC(X)) is nontrivial. Since by Theorem 3.2, π1(AC(X)) is triv-
ial, it follows by the Hurewicz Theorem that π2(AC(X)) is isomorphic to
H2(AC(X)) and hence is also nontrivial. �
Proof of Theorem 3.6. Let H be the well-known Hawaiian earring, which
is obviously a Peano continuum. Let us show that SC(H) is not homotopy
equivalent to AC(H). Consider the embedding ϕ : H → SC(H), defined by
ϕ(x) = (A1, x) ∈ SC(H) in Figure 1. In the sequel we shall identify H with
its image ϕ(H).

We show that the mapping ϕ is not homotopy equivalent to the constant
one. To show this by contradiction, suppose that this is not the case and that
there exists a homotopy H : X × I → SC(H) such that H(x, 0) = ϕ(x) and
H(−, 1) is a constant mapping to some point ∗.

Since SC(H) is a path connected space, we may assume without loss
of generality, that ∗ ∈ [A,B] ⊂ T . Let a = inf{t : H(x∗, t) ∈ [A,B]}. The
image H(x∗ × [0, a]) is a Peano continuum such that H(x∗, 0) = (A1, x

∗) ∈
T ⊂ SC(X), H(x∗, 1) ∈ [A,B] ⊂ T ⊂ SC(X). Since [A,B] is a path
connected component of the space T , the set p◦H(x∗× [0, a]) is not a subset
of T and there exists b ∈ [0, a] for which p ◦H(x∗, b) /∈ T and consequently
H(x∗, b) ∈ I

2 \ T .
Since b < a, we have p ◦H(x∗, [0, b]) ∩ [A,B] = ∅ and so H(x∗, [0, b]) ∩

[A,B] = ∅. There exists a neighborhood D of H(x∗, b) which is a disk and is
disjoint from T . We have a neighborhood W of x∗ for which H(W × [0, b]) ⊂
(SC(X) \ [A,B]) and H(W × b) ⊂ D. Since the disk D is contractible and
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the space H is a retract of SC(X) \ [A,B], we get a homotopy of W to H

connecting the embedding with a constant mapping. However, the embedding
of W to H is essential, which is a contradiction. Now we conclude that ϕ is
an essential mapping.

Next we show that every mapping ψ : H→ AC(H) is inessential. First,
observe that the embeddings of U and V to AC(H) are inessential. For in-
stance, for U , we have a deformation retraction of U to p−1

y (A) which can
be contracted in F (H) to a point. We have ψ(x∗) ∈ U or ψ(x∗) ∈ V and we
only deal with the case ψ(x∗) ∈ U .

There exists a neighborhood O of x∗ such that ψ(O) ⊂ U . All but
finitely many circles of H are contained in O. Since AC(X) is simply con-
nected by Theorem 3.2, the restrictions of ψ to the finitely many circles are
inessential mappings. Hence, as a total, ψ is an inessential map.

Suppose now that the spaces SC(X) and AC(X) are homotopy equiv-
alent. Then there exist mappings f : SC(X) → AC(X) and g : AC(X) →
SC(X) such that the composition gf is homotopic to the identity map-
ping. Thus ϕ � gfϕ. However, gfϕ is an inessential mapping, because fϕ is
inessential and ϕ was shown to be an essential mapping. Contradiction. �

In view of Theorems 3.2, 3.3, and 3.4, it is natural to ask the following
question (cf. [7]):

Problem 5.2. Does there exist a finite-dimensional noncontractible Peano
continuum all homotopy groups of which are trivial?
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[11] U. H. Karimov and D. Repovš, On suspensions of contractible compacta of
trivial shape, Proc. Amer. Math. Soc. 127:2 (1999), 627–632.

[12] R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Princeton Univ.
Press, Princeton, N.J., 1971.

[13] E. H. Spanier, Algebraic Topology, Springer-Verlag, Berlin, 1966.
[14] G. W. Whitehead, Elements of Homotopy Theory, Springer-Verlag, Berlin,

1978.

Katsuya Eda
School of Science and Engineering
Waseda University
169-8555 Tokyo
Japan
e-mail: eda@logic.info.waseda.ac.jp

Umed H. Karimov
Institute of Mathematics
Academy of Sciences of Tajikistan
Ul. Ainy 299A

734063 Dushanbe
Tajikistan
e-mail: umedkarimov@gmail.com
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