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ploščad 16 SI-1000 Ljubljana, Slovenia

a r t i c l e i n f o

Article history:
Received 5 October 2015
Accepted 19 April 2016
Communicated by Enzo Mitidieri

MSC:
35A15
35J60
46E35

Keywords:
Fractional Schrödinger equations
Critical Sobolev exponent
Ambrosetti–Rabinowitz condition
Concentration compactness principle

a b s t r a c t

This paper is concerned with the following fractional Schrödinger equations involving
critical exponents:

(−∆)αu+ V (x)u = k(x)f(u) + λ|u|2
∗
α−2u in RN ,

where (−∆)α is the fractional Laplacian operator with α ∈ (0, 1), N ≥ 2, λ is
a positive real parameter and 2∗α = 2N/(N − 2α) is the critical Sobolev exponent,
V (x) and k(x) are positive and bounded functions satisfying some extra hypotheses.
Based on the principle of concentration compactness in the fractional Sobolev
space and the minimax arguments, we obtain the existence of a nontrivial radially
symmetric weak solution for the above-mentioned equations without assuming the
Ambrosetti–Rabinowitz condition on the subcritical nonlinearity.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction and main result

In this paper, we study the solutions of the following Schrödinger equations involving a critical
nonlinearity:

(−∆)αu+ V (x)u = k(x)f(u) + λ|u|2
∗
α−2u in RN , (1.1)

driven by the fractional Laplacian operator (−∆)α of order α ∈ (0, 1), where N ≥ 2, λ is a positive real
parameter and 2∗α = 2N/(N − 2α) is the critical Sobolev exponent.
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The fractional Laplacian operator (−∆)α, which (up to normalization constants), may be defined as

(−∆)αu(x) := P.V.


RN

u(x)− u(y)
|x− y|N+2α dy, x ∈ RN ,

where P.V. stands for the principal value. It may be viewed as the infinitesimal generators of a Lévy stable
diffusion processes (see [1]). This operator arises in the description of various phenomena in the applied
sciences, such as phase transitions, materials science, conservation laws, minimal surfaces, water waves,
optimization, plasma physics and so on, see [13] and references therein for more detailed introduction.
Here we would like to point out some interesting models involving the fractional Laplacian, such as, the
fractional Schrödinger equation (see [14,15,22–24]), the fractional Kirchhoff equation (see [17,32,33,46,47]),
the fractional porous medium equation (see [11,45]), the fractional Yamabe problem (see [34]) and so on,
have attracted recently considerable attention. As a matter of fact, the literature on fractional operators
and their applications to partially differential equations is quite large, here we would like to mention a few,
see for instance [3,9,12,26,27,35,38].

In what follows, let us sketch the related advance involving the fractional Schrödinger equations with
critical growth in recent years. In [41], Shang and Zhang studied the existence and multiplicity of solutions
for the critical fractional Schrödinger equation:

ε2α(−∆)αu+ V (x)u = λf(u) + |u|2
∗
α−2u in RN . (1.2)

Based on variational methods, they showed that problem (1.2) has a nonnegative ground state solution for
all sufficiently large λ and small ε. In this paper, the following monotone condition was imposed on the
continuous subcritical nonlinearity f :

f(t)/t is strictly increasing in (0,+∞). (1.3)

Observe that (1.3) implies 2F (t) < f(t)t, where F (t) :=
 t

0 f(ξ) dξ. Moreover, Shen and Gao in [43]
obtained the existence of nontrivial solutions for problem (1.2) under various assumptions on f(t) and
potential function V (x), in which the authors assumed the well-known Ambrosetti–Rabinowitz condition
((AR) condition for short) on f :

there exists µ > 2 such that 0 < µF (t) ≤ f(t)t for any t > 0. (1.4)

See also recent papers [42,36] on the fractional Schrödinger equations (1.2). In [44], Teng and He were
concerned with the following fractional Schrödinger equations involving a critical nonlinearity:

(−∆)αu+ u = P (x)|u|p−2u+Q(x)|u|2
∗
α−2u in RN (1.5)

where 2 < p < 2∗α, potential functions P (x) and Q(x) satisfy certain hypotheses. Using the s-harmonic
extension technique of Caffarelli and Silvestre [10], the concentration-compactness principle of Lions [29]
and methods of Brézis and Nirenberg [8], the author obtained the existence of ground state solutions. On
fractional Kirchhoff problems involving critical nonlinearity, see for example [2,31] for some recent results.
Last but not least, fractional elliptic problems with critical growth, in a bounded domain, have been studied
by some authors in the last years, see [4,5,18,28,39,40] and references therein.

On the other hand, Feng in [16] investigated the following fractional Schrödinger equations:

(−∆)αu+ V (x)u = λ|u|p−2u in RN , (1.6)

where 2 < p < 2∗α, V (x) is a positive continuous function. By using the fractional version of concentration
compactness principle of Lions [29], the author obtained the existence of ground state solutions to problem
(1.6) for some λ > 0. Zhang et al. in [48] considered the following fractional Schrödinger equations with a
critical nonlinearity:

(−∆)αu+ u = λf(u) + |u|2
∗
α−2u in RN . (1.7)
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Based on another fractional version of concentration compactness principle (see [30, Theorem 1.5]) and
radially decreasing rearrangements, they obtained the existence of a ground state solution for (1.7) which is
nonnegative and radially symmetric for any λ ∈ [λ∗,∞), where λ∗ > 0.

Inspired by the above works, we are interested in non autonomous cases (1.1), that is, V (x) is not only
a constant. To this end, we assume the following conditions on the potential V :

(V1) V ∈ C1(RN ,R) and ∇V (x) · x ≤ 0 for any x ∈ RN ;
(V2) V is radially symmetric, i.e. V (x) = V (|x|) for any x ∈ RN and there exist positive constants V1 and

V2 such that V1 ≤ V (x) ≤ V2 for any x ∈ RN .

Moreover, the following assumptions are imposed on the coefficient k:

(K1) k is radially symmetric and there exist positive constants k1 and k2 such that k1 ≤ k(x) ≤ k2 for any
x ∈ RN ;

(K2) k ∈ C1(RN ,R) and there exists a constant k0 such that 0 ≤ ∇k(x) · x ≤ k0 for any x ∈ RN .

Remark 1.1. Since ∇V (x) ·x = V ′(|x|)|x|, it follows from (V1) that V ′(|x|) ≤ 0. Thus we can choose V to be
a positive constant. Another example for V is given by V (x) = 2− arctan |x|. From (K2), k′(|x|) ≥ 0. Hence
we can choose k(x) = 2 + arctan |x| as a simple example. The conditions (V1) and (K2) were motivated by
[20,37].

Meanwhile, the nonlinearity f will satisfy:

(H1) f ∈ C1(R,R). For any t ≤ 0, f(t) = 0;
(H2) limt→0+

f(t)
t = 0 and limt→+∞

f(t)
t2
∗
α−1 = 0;

(H3) For any t > 0, 0 < 2F (t) ≤ f(t)t;
(H4) There exists T > 0 such that F (T ) > V2

2k1
T 2.

Remark 1.2. In order to seek nonnegative solutions of (1.1), we assume that f(t) = 0 for any t ≤ 0 in (H1).
Moreover, from (H2) we know that f is subcritical. Here we do not assume classical condition (1.3) or (1.4),
while the weaker condition (H3) on f is employed to replace (AR) condition. A typical example for f is
given by

f(t) = t log

1 + t


t2 − 1

2 t−
3
2at+ a


for any t ≥ 0 and a certain constant a > 1/3 which is sufficiently close to 1/3. It is easy to see that the
function f does not fulfill the monotone condition (1.3) and the (AR) condition (1.4).

Now we give the definition of weak solutions for problem (1.1):

Definition 1.1. We say that u is a weak solution of (1.1) if for any φ ∈ Hα(RN ),
RN

((−∆)α2 u · (−∆)α2 φ+ V (x)uφ) dx =


RN
(k(x)f(u) + λ|u|2

∗
α−2u)φdx,

where Hα(RN ) is the fractional Sobolev space, see Section 2 for more details.

The energy functional on Hα(RN ) is defined as follows:

I(u) = 1
2


RN

(|(−∆)α2 u|2 + V (x)u2) dx−


RN
k(x)F (u) dx− λ

2∗α


RN
|u|2

∗
α dx.

It is easy to check that I ∈ C1(Hα(RN ), R) and the critical point for I is the weak solution of problem (1.1).
Let O(N) be the group of orthogonal linear transformations in RN . It is immediate that I is O(N)-invariant.
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Then, by the principle of symmetric criticality of Krawcewicz and Marzantowicz [21], we know that u0 is a
critical point of I if and only if u0 is a critical point ofI = I


Hαr (RN ),

where

Hαr (RN ) =

u ∈ Hα(RN ) : u(x) = u(|x|)


,

is the fractional radially symmetric Sobolev space. Therefore, it suffices to prove the existence of critical
points for I on Hαr (RN ).

Now we are in a position to state our main result as follows:

Theorem 1.1. Assume that hypotheses (H1)–(H4), (V1)–(V2) and (K1)–(K2) are fulfilled. Then there exists
λ∗ > 0 such that for any λ ∈ (0, λ∗), problem (1.1) has a nontrivial weak solution u0 ∈ Hα(RN ) which is
nonnegative and radially symmetric.

Remark 1.3. (i) In the proof of Theorem 1.1, we follow an approximation procedure to obtain a bounded
(PS) sequence {un} for I, instead of starting directly from an arbitrary (PS) sequence. To show the
boundedness of (PS) sequences {un} for I, we need condition (K2) on k. It allows us to make use of a
Pohozaev type identity to derive the boundedness of {un}. A key point which allows to use the identity
is that {un} is a sequence of exact critical points. In fact, the requirement f ∈ C1(R,R) will only be
used in the proof of Pohozaev identity.

(ii) To the best of our knowledge, there are only few papers that study the existence and symmetry of
solutions for problem (1.1) by using concentration compactness principle in the fractional Sobolev space
which is different from the version used in [16].

This paper is organized as follows. In Section 2, we will give some necessary definitions and properties of
fractional Sobolev spaces. In Section 3, by using the principle of concentration compactness and minimax
arguments, we give the proof of Theorem 1.1.

2. The variational setting

For the convenience of the reader, in this part we recall some definitions and basic properties of fractional
Sobolev spacesHα(RN ). For a deeper treatment on these spaces and their applications to fractional Laplacian
problems of elliptic type, we refer to [13,25] and references therein.

For any α ∈ (0, 1), the fractional Sobolev space Hα(RN ) is defined by

Hα(RN ) =

u ∈ L2(RN ) : [u]Hα(RN ) <∞


,

where [u]Hα(RN ) denotes the so-called Gagliardo semi-norm, that is

[u]Hα(RN ) =


R2N

|u(x)− u(y)|2

|x− y|N+2α dxdy

1/2

and Hα(RN ) is endowed with the norm

∥u∥Hα(RN ) = [u]Hα(RN ) + ∥u∥L2(RN ).

As it is well known, Hα(RN ) turns out to be a Hilbert space with scalar product

⟨u, v⟩Hα(RN ) =


R2N

(u(x)− u(y))(v(x)− v(y))
|x− y|N+2α dxdy +


RN

u(x)v(x) dx,

for any u, v ∈ Hα(RN ). The space Ḣα(RN ) is defined as the completion of C∞0 (RN ) under the norm
[u]Hα(RN ).
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By Proposition 3.6 in [13], we have [u]Hα(RN ) = ∥(−∆)α2 u∥L2(RN ) for any u ∈ Hα(RN ), i.e.
R2N

|u(x)− u(y)|2

|x− y|N+2α dxdy =


RN
|(−∆)α2 u(x)|2 dx. (2.1)

Thus, 
R2N

(u(x)− u(y))(v(x)− v(y))
|x− y|N+2α dxdy =


RN

(−∆)α2 u(x) · (−∆)α2 v(x) dx. (2.2)

Theorem 2.1 ([15, Lemma 2.1]). The embedding Hα(RN ) ↩→ Lp(RN ) is continuous for any p ∈ [2, 2∗α] and
the embedding Hα(RN ) ↩→↩→ Lploc(RN ) is compact for any p ∈ [2, 2∗α).

3. Proof of Theorem 1.1

Throughout this section, we assume that conditions (H1)–(H4), (V1)–(V2) and (K1)–(K2) are satisfied.
In this part, we will use minimax arguments and we denote that C and Ci are positive constants, for any
i = 1, 2 . . ..

A crucial step to obtain the existence of a critical point for I is to show the boundedness of (PS)
sequence. But it seems difficult under our assumptions. To overcome this difficulty we use an indirect
approach developed in [19]. For any η ∈ [1/2, 1], we consider the following family of functionals defined on
Hαr (RN ):

Iη(u) = 1
2


RN

(|(−∆)α2 u|2 + V (x)u2) dx− η


RN
k(x)F (u) dx− ηλ

2∗α


RN
|u|2

∗
α dx.

It is easy to check that Iη ∈ C1(Hαr (RN ), R) and the critical point for Iη is the weak solution of the following
equation:

(−∆)αu+ V (x)u = ηk(x)f(u) + ηλ|u|2
∗
α−2u in RN . (3.1)

Firstly, we will give the following two lemmas to show that Iη has a Mountain Pass geometry.

Lemma 3.1. There exist v0 ∈ Hαr (RN ) and η ∈ [1/2, 1) such that Iη(v0) < 0 for any η ∈ [η, 1], where v0 and
η are independent of λ.

Proof. Let R > 0, we define

w(x) =


T for |x| ≤ R,
T (R+ 1− |x|) for R < |x| < R+ 1,
0 for |x| ≥ R+ 1,

then w ∈ Hαr (RN ). Hence, from (H4) we have
RN


k1F (w)− 1

2V2w
2

dx =


B(0,R)


k1F (w)− 1

2V2w
2

dx+


B(0,R+1)\B(0,R)


k1F (w)− 1

2V2w
2

dx

≥

k1F (T )− 1

2V2T
2
 B(0, R)

− B(0, R+ 1) \B(0, R)
 · max
t∈[0,T ]

k1F (t)− 1
2V2t

2
≥ C1R

N − C2R
N−1,

where | · | denotes the Lebesgue measure and C1, C2 are positive constants. So we could choose R > 0 large
enough such that 

RN


k1F (w)− 1

2V2w
2

dx > 0.
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Define

η = max


1
2 ,


RN V2w

2 dx
RN k1F (w) dx


,

then we have that η ≥ 1/2. Thus, for any η ∈ [η, 1] and θ > 0, from (K1) it follows that

Iη


w
x
θ


≤ 1

2


RN

(−∆)α2 w
x
θ

2 + V (x)
w x

θ

2 dx− η


RN
k(x)F


w
x
θ


dx

≤ 1
2θ
N−2α


RN
|(−∆)α2 w|2 dx+ 1

2θ
NV2


RN

w2 dx− θNη


RN
k1F (w) dx

= 1
2θ
N−2α


RN
|(−∆)α2 w|2 dx− 1

2θ
N max


RN

V2w
2 dx,

1
2


RN

k1F (w) dx

.

Then there exists θ > 0 such that for any θ ≥ θ, Iη(w(x/θ)) < 0. We take v0(x) = w(x/θ). Therefore, the
proof is complete. �

Lemma 3.2. For any η ∈ [η, 1], define

cη = inf
γ∈Γη

max
t∈[0,1]

Iη(γ(t)),

where Γη = {γ ∈ C([0, 1], Hαr (RN )) : γ(0) = 0, γ(1) = v0}, η and v0 are from Lemma 3.1. Then
cη > max{Iη(0), Iη(v0)} and there exists c0 > 0 such that cη ≤ c0 for any η ∈ [η, 1], where c0 is independent
of λ.

Proof. According to (H1) and (H2), for any ε > 0, there exists a constant C(ε) > 0 such that for any t ∈ R,

f(t) ≤ ε|t|+ C(ε)|t|2
∗
α−1. (3.2)

By (3.2), for any ε ∈ (0, 1), we get

F (t) ≤ εt2 + C(ε)|t|2
∗
α . (3.3)

Taking ε = V1/(4k2), for any u ∈ Hαr (RN ) and η ∈ [η, 1], we obtain

Iη(u) ≥ 1
2


RN

(|(−∆)α2 u|2 + V1u
2) dx−


RN

k2F (u) dx− λ

2∗α


RN
|u|2

∗
α dx

≥ 1
2


RN
|(−∆)α2 u|2 dx+ (V1/2− εk2)


RN

u2 dx− C(ε)k2


RN
|u|2

∗
α dx− λ

2∗α


RN
|u|2

∗
α dx

≥ 1
2


RN
|(−∆)α2 u|2 dx+ V1

4


RN

u2 dx− C


RN
|u|2

∗
α dx− λ

2∗α


RN
|u|2

∗
α dx

≥ min {1/2, V1/4} ∥u∥2Hα(RN ) − C∥u∥
2∗α
Hα(RN ).

Thanks to 2∗α > 2, there exist 0 < ρ < ∥v0∥Hα(RN ) and σ > 0 such that Iη(u) ≥ σ for any u ∈ Hαr (RN ) with
∥u∥Hα(RN ) = ρ. For any γ ∈ Γη, we have γ(0) = 0 and γ(1) = v0. Then, there exists tη ∈ (0, 1) such that
∥γ(tη)∥Hα(RN ) = ρ, which implies

cη ≥ inf
γ∈Γη

Iη(γ(tη)) ≥ σ > max{Iη(0), Iη(v0)}.

Take γ0(t) = tv0, then γ0 ∈ Γη. For any t ∈ [0, 1], we obtain

Iη(γ0(t)) = Iη(tv0) ≤ 1
2


RN

(|(−∆)α2 v0|2 + V (x)v2
0) dx , c0,

which implies that cη ≤ maxt∈[0,1] Iη(γ0(t)) ≤ c0 for any η ∈ [η, 1]. Now, we complete the proof. �
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Theorem 3.1 ([19, Theorem 1.1]). Let (X, ∥ · ∥X) be a Banach space and I ⊂ R+ an interval. Consider a
family {Jη}η∈I of C1 functionals on X with the form

Jη(u) = A(u)− ηB(u), ∀η ∈ I,

where B(u) ≥ 0,∀u ∈ X, and such that either A(u)→ +∞ or B(u)→ +∞ as ∥u∥X →∞. If there are two
points v1, v2 ∈ X such that

cη = inf
γ∈Γη

max
t∈[0,1]

Jη(γ(t)) > max{Jv1 , Jv2}, η ∈ I,

where

Γη = {γ ∈ C([0, 1], X) : γ(0) = v1, γ(1) = v2},

then, for almost every η ∈ I, there exists a sequence {vn} ⊂ X such that

(i) {vn} is bounded;
(ii) Jη(vn)→ cη;
(iii) J ′η(vn)→ 0 in the dual X ′ of X.

Remark 3.1. In fact, the map η → cη is nonincreasing and continuous from the left (see [19]).

By using Lemmas 3.1, 3.2 and Theorem 3.1, we obtain that for any η ∈ [η, 1], Iη possesses a bounded
(PS) sequence at the level cη.

Next we will verify that each bounded (PS) sequence for the functional Iη contains a convergent
subsequence. The main difficulties here are that the embedding Hαr (RN ) ↩→ L2∗α(RN ) is not compact and we
do not have a similar radial lemma (see [6]) in Hαr (RN ). To get the compactness of bounded (PS) sequence in
Hαr (RN ), we assume that λ in (1.1) is small. Based on the following principle of concentration compactness
in Hαr (RN ) and Lemma 2.4 in [12], we obtain Lemma 3.5.

Theorem 3.2 ([30, Theorem 1.5]). Let Ω ⊆ RN an open subset and let {un} be a sequence in Ḣα(Ω) weakly
converging to u as n→∞ and such that

|(−△)α2 un|2 → µ and |un|2
∗
α → ν weakly- ∗ in M(RN ).

Then, either un → u in L
2∗α
loc(RN ) or there exists a (at most countable) set of distinct points {xj}j∈J ⊂ Ω

and positive numbers {νj}j∈J such that we have

ν = |u|2
∗
α +


j∈J

νjδxj .

If, in addition, Ω is bounded, then there exist a positive measure µ ∈ M(RN ) with suppµ ⊂ Ω and positive
numbers {µj}j∈J such that

µ = |(−△)α2 u|2 + µ+

j∈J

µjδxj .

Remark 3.2. In the case Ω = RN , the above principle of concentration compactness does not provide any
information about the possible loss of mass at infinity. The following result expresses this fact in quantitative
terms, and the proof.
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Lemma 3.3. Let {un} ⊂ Ḣα(RN ) such that un → u weakly in Ḣα(RN ), |(−△)α2 un|2 → µ and |un|2
∗
α → ν

weakly-∗ in M(RN ), as n→∞ and define

µ∞ = lim
R→∞

lim sup
n→∞


{x∈RN :|x|>R}

|(−∆)α2 un|2 dx,

ν∞ = lim
R→∞

lim sup
n→∞


{x∈RN :|x|>R}

|un|2
∗
α dx.

The quantities µ∞ and ν∞ are well defined and satisfy

lim sup
n→∞


RN
|(−∆)α2 un|2 dx =


RN

dµ+ µ∞,

lim sup
n→∞


RN
|un|2

∗
α dx =


RN

dν + ν∞. (3.4)

Proof. The proof is similar to that of Lemma 3.5 in [48]. Thus we just give a sketch of the proof for the
reader’s convenience. Take φ ∈ C∞(RN ) such that 0 ≤ φ ≤ 1; φ ≡ 1 in RN \ B(0, 2), φ ≡ 0 in B(0, 1). For
any R > 0, define φR(x) = φ(x/R). Then we have

{x∈RN :|x|>2R}
|(−∆)α2 un|2 dx ≤


RN
|(−∆)α2 un|2φR dx ≤


{x∈RN :|x|>R}

|(−∆)α2 un|2 dx,

thus µ∞ = limR→∞ lim supn→∞


RN |(−∆)α2 un|2φR dx. Note that
RN
|(−∆)α2 un|2 dx =


RN
|(−∆)α2 un|2φR dx+


RN
|(−∆)α2 un|2(1− φR) dx.

It is easy to verify that 
RN
|(−∆)α2 un|2(1− φR) dx→


RN

(1− φR) dµ,

as n→∞. Hence we have

µ(RN ) = lim
R→∞

lim
n→∞


RN
|(−∆)α2 un|2(1− φR) dx.

Then

lim sup
n→∞


RN
|(−∆)α2 un|2 dx = lim

R→∞


lim sup
n→∞


RN
|(−∆)α2 un|2φR dx+


RN

(1− φR) dµ


= µ∞ + µ(RN ).

Similarly, we obtain that lim supn→∞


RN |un|
2∗α dx = ν(RN ) + ν∞. The lemma is thus proved. �

In the following, we derive some results involving νi for any i ∈ J and ν∞.

Lemma 3.4. Let {un} ⊂ Ḣα(RN ) such that un → u weakly in Ḣα(RN ), |(−△)α/2un|2 → µ and |un|2
∗
α → ν

weakly-∗ in M(RN ), as n → ∞. Then, νi ≤ (S−1
α µ({xi}))2∗α/2 for any i ∈ J and ν∞ ≤ (S−1

α µ∞)2∗α/2,
where xi, νi are from Theorem 3.2 and µ∞, ν∞ are from Lemma 3.3, Sα is the best Sobolev constant of the
embedding Ḣα(RN ) ↩→ L2∗α(RN ) (see [13]), i.e.

Sα = inf
u∈Ḣα(RN )


RN |(−∆)α2 u|2 dx
∥u∥2
L2∗α (RN )

. (3.5)
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Proof. (1) Take ϕ ∈ C∞0 (RN ) such that 0 ≤ ϕ ≤ 1; ϕ ≡ 1 in B(0, 1), ϕ ≡ 0 in RN \ B(0, 2). For any ε > 0,
define ϕε(x) = ϕ(x−xiε ), where i ∈ J . It follows from (2.1) and (3.5) that

RN
|unϕε|2

∗
α dx ≤


S−1
α


R2N

|un(x)ϕε(x)− un(y)ϕε(y)|2

|x− y|N+2α dxdy

2∗α/2

.

We have 
RN
|unϕε|2

∗
α dx→


RN

ϕ
2∗α
ε dν, as n→∞,

RN
ϕ

2∗α
ε dν → ν({xi}) = νi, as ε→ 0.

Note that 
R2N

|un(x)ϕε(x)− un(y)ϕε(y)|2

|x− y|N+2α dxdy

=


R2N

|un(x)ϕε(x)− un(x)ϕε(y) + un(x)ϕε(y)− un(y)ϕε(y)|2

|x− y|N+2α dxdy

=


R2N

u2
n(x)(ϕε(x)− ϕε(y))2

|x− y|N+2α dxdy +


R2N

ϕ2
ε(y)(un(x)− un(y))2

|x− y|N+2α dxdy

+


R2N

2un(x)ϕε(y)(un(x)− un(y))(ϕε(x)− ϕε(y))
|x− y|N+2α dxdy,

we get 
R2N

ϕ2
ε(y)(un(x)− un(y))2

|x− y|N+2α dxdy →


RN
ϕ2
ε dµ, as n→∞,

RN
ϕ2
ε dµ→ µ({xi}), as ε→ 0.

Since {un} is bounded in Ḣα(RN ), by the Hölder inequality we obtain
R2N

un(x)ϕε(y)(un(x)− un(y))(ϕε(x)− ϕε(y))
|x− y|N+2α dxdy


≤


R2N

ϕ2
ε(y)(un(x)− un(y))2

|x− y|N+2α dxdy

 1
2


R2N

u2
n(x)(ϕε(x)− ϕε(y))2

|x− y|N+2α dxdy

1/2

≤ C


R2N

u2
n(x)(ϕε(x)− ϕε(y))2

|x− y|N+2α dxdy

1/2

.

In the following, we claim that

lim
ε→0

lim
n→∞


R2N

u2
n(x)(ϕε(x)− ϕε(y))2

|x− y|N+2α dxdy = 0.

Note that

RN × RN = ((RN \B(xi, 2ε)) ∪B(xi, 2ε))× ((RN \B(xi, 2ε)) ∪B(xi, 2ε))
= ((RN \B(xi, 2ε))× (RN \B(xi, 2ε))) ∪ (B(xi, 2ε)× RN ) ∪ ((RN \B(xi, 2ε))×B(xi, 2ε)).

(i) If (x, y) ∈ (RN \B(xi, 2ε))× (RN \B(xi, 2ε)), then ϕε(x) = ϕε(y) = 0.
(ii) (x, y) ∈ B(xi, 2ε)× RN . If |x− y| ≤ ε, |y − xi| ≤ |x− y|+ |x− xi| ≤ 3ε, which implies

B(xi,2ε)
dx


{y∈RN :|x−y|≤ε}

u2
n(x)(ϕε(x)− ϕε(y))2

|x− y|N+2α dy

=

B(xi,2ε)

dx


{y∈RN :|x−y|≤ε}

u2
n(x)|∇ϕ(ξ)|2

x−y
ε

2
|x− y|N+2α dy
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≤ Cε−2

B(xi,2ε)

dx


{y∈RN :|x−y|≤ε}

u2
n(x)

|x− y|N+2α−2 dy

= Cε−2α

B(xi,2ε)

u2
n(x)dx,

where ξ = (y − xi)/ε+ τ(x− xi)/ε and τ ∈ (0, 1).
If |x− y| > ε, then we have
B(xi,2ε)

dx


{y∈RN :|x−y|>ε}

u2
n(x)(ϕε(x)− ϕε(y))2

|x− y|N+2α dy ≤ C


B(xi,2ε)

dx


{y∈RN :|x−y|>ε}

u2
n(x)

|x− y|N+2α dy

= Cε−2α

B(xi,2ε)

u2
n(x)dx.

(iii) (x, y) ∈ (RN \B(xi, 2ε))×B(xi, 2ε). If |x− y| ≤ ε, |x− xi| ≤ |x− y|+ |y − xi| ≤ 3ε. Then
RN\B(xi,2ε)

dx


{y∈B(xi,2ε):|x−y|≤ε}

u2
n(x)(ϕε(x)− ϕε(y))2

|x− y|N+2α dy

≤ Cε−2

B(xi,3ε)

dx


{y∈B(xi,2ε):|x−y|≤ε}

u2
n(x)

|x− y|N+2α−2 dy

≤ Cε−2

B(xi,3ε)

dx


{z∈RN :|z|≤ε}

u2
n(x)

|z|N+2α−2 dz

= Cε−2α

B(xi,3ε)

u2
n(x)dx.

Notice that there exists K > 4 such that (RN \B(xi, 2ε))×B(xi, 2ε) ⊂ (B(xi,Kε)×B(xi, 2ε))∪ ((RN \
B(xi,Kε))×B(xi, 2ε)).

If |x− y| > ε, we obtain
B(xi,Kε)

dx


{y∈B(xi,2ε):|x−y|>ε}

u2
n(x)(ϕε(x)− ϕε(y))2

|x− y|N+2α dy

≤ C

B(xi,Kε)

dx


{y∈B(xi,2ε):|x−y|>ε}

u2
n(x)

|x− y|N+2α dy

≤ C

B(xi,Kε)

dx


{z∈RN :|z|>ε}

u2
n(x)
|z|N+2α dz

≤ Cε−2α

B(xi,Kε)

u2
n(x)dx.

If (x, y) ∈ (RN \B(xi,Kε))×B(xi, 2ε), we get

|x− y| ≥ |x− xi| − |y − xi| =
|x− xi|

2 + |x− xi|2 − |y − xi|

≥ |x− xi|2 + K

2 ε− 2ε > |x− xi|2 ,

which implies
RN\B(xi,Kε)

dx


{y∈B(xi,2ε):|x−y|>ε}

u2
n(x)(ϕε(x)− ϕε(y))2

|x− y|N+2α dy

≤ C


RN\B(xi,Kε)
dx


{y∈B(xi,2ε):|x−y|>ε}

u2
n(x)

|x− xi|N+2α dy
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≤ CεN


RN\B(xi,Kε)

u2
n(x)

|x− xi|N+2α dx

≤ CεN


RN\B(xi,Kε)
|un(x)|2

∗
α dx

2/2∗α 
RN\B(xi,Kε)

|x− xi|
−(N+2α) 2∗α

2∗α−2 dx

(2∗α−2)/2∗α

= CK−N


RN\B(xi,Kε)

|un(x)|2
∗
α dx

2/2∗α

.

In views of (i), (ii) and (iii), we have
R2N

u2
n(x)(ϕε(x)− ϕε(y))2

|x− y|N+2α dxdy

=

B(xi,2ε)×RN

u2
n(x)(ϕε(x)− ϕε(y))2

|x− y|N+2α dxdy +


(RN\B(xi,2ε))×B(xi,2ε)

u2
n(x)(ϕε(x)− ϕε(y))2

|x− y|N+2α dxdy

≤ Cε−2α

B(xi,Kε)

u2
n(x) dx+ CK−N


RN\B(xi,Kε)

|un(x)|2
∗
α dx

2/2∗α

≤ Cε−2α

B(xi,Kε)

u2
n(x) dx+ CK−N . (3.6)

Note that un → u weakly in Hα(RN ), by Theorem 2.1 we obtain un → u in L2
loc(RN ), which implies

Cε−2α

B(xi,Kε)

u2
n(x) dx+ CK−N → Cε−2α


B(xi,Kε)

u2(x) dx+ CK−N ,

as n→∞. Then,

Cε−2α

B(xi,Kε)

u2(x) dx+ CK−N ≤ Cε−2α


B(xi,Kε)

|u(x)|2
∗
α dx

2/2∗α 
B(xi,Kε)

dx

1−2/2∗α

+ CK−N

= CK2α


B(xi,Kε)

|u(x)|2
∗
α dx

2/2∗α

+ CK−N → CK−N

as ε→ 0. Furthermore, we have

lim sup
ε→0

lim sup
n→∞


R2N

u2
n(x)(ϕε(x)− ϕε(y))2

|x− y|N+2α dxdy

= lim
K→∞

lim sup
ε→0

lim sup
n→∞


R2N

u2
n(x)(ϕε(x)− ϕε(y))2

|x− y|N+2α dxdy = 0. (3.7)

Thus, for any i ∈ J , we obtain

νi ≤ (S−1
α µ({xi}))2∗α/2.

(2) It follows from (2.1) and (3.5) that
RN
|unχR|2

∗
α dx ≤


S−1
α


R2N

|un(x)χR(x)− un(y)χR(y)|2

|x− y|N+2α dxdy

2∗α/2

,

where χR is from Lemma 3.3. We have

lim sup
R→∞

lim sup
n→∞


RN
|unχR|2

∗
α dx = ν∞.
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Note that 
R2N

|un(x)χR(x)− un(y)χR(y)|2

|x− y|N+2α dxdy

=


R2N

u2
n(x)(χR(x)− χR(y))2

|x− y|N+2α dxdy +


R2N

χ2
R(y)(un(x)− un(y))2

|x− y|N+2α dxdy

+


R2N

2un(x)χR(y)(un(x)− un(y))(χR(x)− χR(y))
|x− y|N+2α dxdy.

We obtain

lim sup
R→∞

lim sup
n→∞

 
R2N

χ2
R(y)(un(x)− un(y))2

|x− y|N+2α dxdy = µ∞

and it follows from the Hölder inequality that
R2N

un(x)χR(y)(un(x)− un(y))(χR(x)− χR(y))
|x− y|N+2α dxdy

 ≤ C 
R2N

u2
n(x)(χR(x)− χR(y))2

|x− y|N+2α dxdy

1/2

.

Note that

lim sup
R→∞

lim sup
n→∞


R2N

u2
n(x)(χR(x)− χR(y))2

|x− y|N+2α dxdy

= lim sup
R→∞

lim sup
n→∞


R2N

u2
n(x)((1− χR(x))− (1− χR(y)))2

|x− y|N+2α dxdy,

then, similar to the proof of (3.7), we obtain

lim sup
R→∞

lim sup
n→∞


R2N

u2
n(x)((1− χR(x))− (1− χR(y)))2

|x− y|N+2α dxdy = 0.

Then,

ν∞ ≤ (S−1
α µ∞)2∗α/2.

Therefore, we complete the proof. �

Lemma 3.5. There exists λ∗ > 0 such that for any λ ∈ (0, λ∗) and η ∈ [η, 1], each bounded (PS) sequence
for functional Iη contains a convergent subsequence.

Proof. Let {un} ⊂ Hαr (RN ) be a bounded (PS) sequence, i.e. there exists C3 > 0 such that

|Iη(un)| ≤ C3

and

I ′η(un)→ 0 in Hαr (RN ), as n→∞.

Passing to a subsequence, still denoted by {un}, we may assume that un → u0 weakly in Hαr (RN ). By the
compact embedding

Hαr (RN ) ↩→ Lp(RN )

for p ∈ (2, 2∗α), we assume that

un → u0 in Lp(RN ) and un(x)→ u0(x) a.e.in RN ,

as n → ∞. Moreover, by Prokhorov’s Theorem (see Theorem 8.6.2 in [7]) there exist µ, ν ∈ M(RN ) such
that

|(−△)α2 un|2 → µ and |un|2
∗
α → ν weakly- ∗ inM(RN ),

as n → ∞. It follows from Theorem 3.2 that un → u0 in L
2∗α
loc(RN ) or ν = |u0|2

∗
α +


j∈J νjδxj , as n → ∞,

where J is a countable set, {νj} ⊂ [0,∞), {xj} ⊂ RN .
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For any φ ∈ Hαr (RN ), we obtain

⟨I ′η(un), φ⟩ − ⟨I ′η(u0), φ⟩ =


RN
(−∆)α2 (un − u0)(−∆)α2 φdx+


RN

V (x)(un − u0)φdx

− η


RN
k(x)(f(un)− f(u0))φdx− ηλ


RN

(|un|2
∗
α−2un − |u0|2

∗
α−2u0)φdx.

As un → u0 weakly in Hαr (RN ), we have
RN

(−∆)α2 (un − u0) · (−∆)α2 φdx+


RN
V (x)(un − u0)φdx→ 0.

Note that 
|un|2

∗
α−2un − |u0|2

∗
α−2u0


n

is bounded in L
2∗α

2∗α−1 (RN )

and

|un(x)|2
∗
α−2un(x)− |u0(x)|2

∗
α−2u0(x)→ 0 a.e. in RN ,

then

|un|2
∗
α−2un − |u0|2

∗
α−2u0 → 0 weakly in L

2∗α
2∗α−1 (RN )

which implies 
RN

(|un|2
∗
α−2un − |u0|2

∗
α−2u0)φdx→ 0.

In the following, we will verify that


RN k(x)(f(un)− f(u0))φdx→ 0, as n→∞.

Let ψ ∈ C∞0 (−2, 2) such that ψ ≡ 1 on (−1, 1) and define f1(t) = ψ(t)f(t), f2(t) = (1− ψ(t))f(t). Hence
we obtain

|f1(t)| ≤ C4|t| and |f2(t)| ≤ C5|t|2
∗
α−1.

Since {k(x)f1(un)} is bounded in L2(RN ) and k(x)f1(un(x)) → k(x)f1(u0(x)) a.e. in RN , we get that
k(x)f1(un)→ k(x)f1(u0) weakly in L2(RN ). Thus

RN
k(x)f1(un)φdx→


RN

k(x)f1(u0)φdx.

Similarly, 
RN

k(x)f2(un)φdx→


RN
k(x)f2(u0)φdx.

Note that f(t) = f1(t) + f2(t), we deduce
RN

k(x)f(un)φdx→


RN
k(x)f(u0)φdx.

As ⟨I ′η(un), φ⟩ → 0, it follows that ⟨I ′η(u0), φ⟩ = 0, i.e. I ′η(u0) = 0. Thus,
RN
|(−∆)α2 u0|2 dx+


RN

V (x)u2
0 dx = η


RN

k(x)f(u0)u0 dx+ ηλ


RN
|u0|2

∗
α dx. (3.8)

By Lemma 2.4 in [12], we get 
RN

k(x)f(un)un dx→


RN
k(x)f(u0)u0 dx, (3.9)
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as n→∞. It follows from the Fatou Lemma that
RN

V (x)u2
0 dx ≤ lim inf

n→∞


RN

V (x)u2
n dx. (3.10)

Next we will verify that un → u0 in L2∗α(RN ). To this end, we divide the proof into two steps.

Step 1: For any i ∈ J, µ({xi}) ≤ λνi and µ∞ ≤ λν∞.

(1) Taking radially symmetric function ϕε as in Lemma 3.4, we get
R2N

|un(x)ϕε(x)− un(y)ϕε(y)|2

|x− y|N+2α dxdy

≤ 2


R2N

|un(x)− un(y)|2ϕ2
ε(y)

|x− y|N+2α dxdy + 2


R2N

u2
n(x)|ϕε(x)− ϕε(y)|2

|x− y|N+2α dxdy

≤ 2


R2N

|un(x)− un(y)|2

|x− y|N+2α dxdy + 2


R2N

u2
n(x)|ϕε(x)− ϕε(y)|2

|x− y|N+2α dxdy. (3.11)

Similar to the proof of (3.6), we have
R2N

u2
n(x)|ϕε(x)− ϕε(y)|2

|x− y|N+2α dxdy ≤ Cε−2α

B(xi,Kε)

u2
n(x) dx+ CK−N , (3.12)

where K > 4. As {un} is bounded in Hαr (RN ), it follows from (3.11) and (3.12) that {unϕε} is bounded in
Hαr (RN ). Then

⟨I ′η(un), unϕε⟩ → 0,

as n→∞, which implies
RN

(−∆)α2 un · (−∆)α2 (unϕε) dx =


RN


ηk(x)f(un)un + ηλ|un|2

∗
α − V (x)u2

n


ϕε dx+ o(1). (3.13)

For any τ > 0, by (H2) there exist p ∈ (2, 2∗α) and C6 > 0 such that

tf(t) ≤ V1

2k2
t2 + τ |t|2

∗
α + C6|t|p,

which implies 
RN


ηk(x)f(un)un + ηλ|un|2

∗
α − V (x)u2

n


ϕε dx

≤


RN


V1

2 u2
n + τk2|un|2

∗
α + C6k2|un|p + λ|un|2

∗
α − V1u

2
n


ϕε dx

≤


RN


τk2|un|2

∗
α + C6k2|un|p + λ|un|2

∗
α


ϕε dx.

Note that 
RN
|un|pϕε dx =


B(xi,2ε)

|un|pϕε dx→

B(xi,2ε)

|u0|pϕε dx,

as n→∞ and 
B(xi,2ε)

|u0|pϕε dx→ 0,
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as ε→ 0, then

lim sup
ε→0

lim sup
n→∞


RN


ηk(x)f(un)un + ηλ|un|2

∗
α − V (x)u2

n


ϕε dx ≤ (τk2 + λ) lim sup

ε→0
lim sup
n→∞


RN
|un|2

∗
αϕε dx

= (τk2 + λ) lim sup
ε→0


RN

ϕε dν

= (τk2 + λ)νi.

Letting τ → 0, we get

lim sup
ε→0

lim sup
n→∞


RN


ηk(x)f(un)un + ηλ|un|2

∗
α − V (x)u2

n


ϕε dx ≤ λνi. (3.14)

By (2.2), we have
RN

(−∆)α2 un · (−∆)α2 (unϕε) dx =


R2N

(un(x)− un(y))(un(x)ϕε(x)− un(y)ϕε(y))
|x− y|N+2α dxdy

=


R2N

(un(x)− un(y))2ϕε(y)
|x− y|N+2α dxdy

+


R2N

(un(x)− un(y))(ϕε(x)− ϕε(y))un(x)
|x− y|N+2α dxdy.

It is easy to verify that 
R2N

(un(x)− un(y))2ϕε(y)
|x− y|N+2α dxdy →


RN

ϕε dµ,

as n→∞ and 
RN

ϕε dµ→ µ({xi}),

as ε→ 0. Note that the Hölder inequality implies
R2N

(un(x)− un(y))(ϕε(x)− ϕε(y))un(x)
|x− y|N+2α dxdy

 ≤ 
R2N

|un(x)− un(y)| · |ϕε(x)− ϕε(y)| · |un(x)|
|x− y|N+2α dxdy

≤ C


R2N

u2
n(x)|ϕε(x)− ϕε(y)|2

|x− y|N+2α dxdy

1/2

.

Similar to the proof of (3.7), we have

lim
ε→0

lim
n→∞


R2N

u2
n(x)(ϕε(x)− ϕε(y))2

|x− y|N+2α dxdy = 0.

Then, combining (3.13) with (3.14), we obtain that for any i ∈ J ,

µ({xi}) ≤ λνi.

(2) Taking radially symmetric function χR as in Lemma 3.3, we could verify that {unχR} is bounded in
Hαr (RN ), hence

⟨I ′η(un), unχR⟩ → 0,

as n→∞, which implies
RN

(−∆)α2 un · (−∆)α2 (unχR) dx =


RN


ηk(x)f(un)un + ηλ|un|2

∗
α − V (x)u2

n


χR dx+ o(1). (3.15)
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Similar to the proof of (3.14), we get

lim sup
R→∞

lim sup
n→∞


RN


ηk(x)f1(un)un + ηλ|un|2

∗
α − k(x)f2(un)un


χR dx ≤ λν∞. (3.16)

Notice that
RN

(−∆)α2 un · (−∆)α2 (unχR) dx =


R2N

(un(x)− un(y))2χR(y)
|x− y|N+2α dxdy

+


R2N

(un(x)− un(y))(χR(x)− χR(y))un(x)
|x− y|N+2α dxdy.

It is easy to verify that

lim sup
R→∞

lim sup
n→∞


R2N

(un(x)− un(y))2χR(y)
|x− y|N+2α dxdy = µ∞

and
R2N

(un(x)− un(y))(χR(x)− χR(y))un(x)
|x− y|N+2α dxdy

 ≤ C 
R2N

u2
n(x)|χR(x)− χR(y)|2

|x− y|N+2α dxdy

1/2

.

Note that

lim sup
R→∞

lim sup
n→∞


R2N

u2
n(x)(χR(x)− χR(y))2

|x− y|N+2α dxdy

= lim sup
R→∞

lim sup
n→∞


R2N

u2
n(x)((1− χR(x))− (1− χR(y)))2

|x− y|N+2α dxdy,

then, similar to the proof of (3.7), we obtain

lim sup
R→∞

lim sup
n→∞


R2N

u2
n(x)((1− χR(x))− (1− χR(y)))2

|x− y|N+2α dxdy = 0.

Combining this with (3.15) and (3.16), we have

µ∞ ≤ λν∞.

Step 2: There exists λ∗ > 0 such that for any 0 < λ < λ∗, νi = 0 for any i ∈ J and ν∞ = 0. Suppose that
there exists i0 ∈ J such that νi0 > 0 or ν∞ > 0, using Lemma 3.4 and Step 1 we obtain

νi0 ≤ (S−1
α µ({xi0}))2∗α/2 ≤ (S−1

α λνi0)2∗α/2

or

ν∞ ≤ (S−1
α µ∞)2∗α/2 ≤ (S−1

α λν∞)2∗α/2,

which implies

νi0 ≥ (Sαλ−1)2∗α/(2∗α−2) (3.17)

or

ν∞ ≥ (Sαλ−1)2∗α/(2∗α−2). (3.18)

By (H3), we have

2Iη(un)− ⟨I ′η(un), un⟩ = η


RN

k(x)(f(un)un − 2F (un)) dx+ ηλ (1− 2/2∗α)


RN
|un|2

∗
α dx

≥ ηλ
2α
N


RN
|un|2

∗
α dx ≥ λ α

N


RN
|un|2

∗
αϕε dx. (3.19)
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Letting n→∞, we obtain that 2C3 ≥ λ αN


RN ϕε dν. Since


RN ϕε dν → νi0 , as ε→ 0, it follows that

2C3 ≥ λ
α

N
νi0 .

Similarly, we get

2C3 ≥ λ
α

N
ν∞.

It follows from (3.17) or (3.18) that

2C3 ≥ λ
α

N
(Sαλ−1)2∗α/(2∗α−2) = α

N
SN/(2α)
α λ−(N−2α)/(2α)

which implies λ ≥ ( α
2NC3

)2α/(N−2α)S
2∗α/2
α , λ∗.

So the assumption 0 < λ < λ∗ gives a contradiction. Then, for any i ∈ J, νi = 0 and ν∞ = 0. Using (3.4)
we obtain

lim sup
n→∞


RN
|un|2

∗
α dx =


RN
|u0|2

∗
α dx.

As |un − u0|2
∗
α ≤ 22∗α(|un|2

∗
α + |u0|2

∗
α), it follows from the Fatou Lemma that

RN
22∗α+1|u0|2

∗
α dx =


RN

lim inf
n→∞

(22∗α |un|2
∗
α + 22∗α |u0|2

∗
α − |un − u0|2

∗
α) dx

≤ lim inf
n→∞


RN

(22∗α |un|2
∗
α + 22∗α |u0|2

∗
α − |un − u0|2

∗
α) dx

= 22∗α+1


RN
|u0|2

∗
α dx− lim sup

n→∞


RN
|un − u0|2

∗
α dx,

which implies lim supn→∞


RN |un − u0|2
∗
α dx = 0. Then

un → u0 in L2∗α(RN ), as n→∞.

Note that I ′η(un)→ 0, it follows from (3.8)–(3.10) that

lim sup
n→∞


RN
|(−∆)α2 un|2 dx = lim sup

n→∞


η


RN

k(x)f(un)un dx+ ηλ


RN
|un|2

∗
α dx−


RN

V (x)u2
n dx


≤ η


RN

k(x)f(u0)u0 dx+ ηλ


RN
|u0|2

∗
α dx−


RN

V (x)u2
0 dx

≤ lim inf
n→∞


RN
|(−∆)α2 un|2 dx,

which implies

lim
n→∞


RN
|(−∆)α2 un|2 dx =


RN
|(−∆)α2 u0|2 dx. (3.20)

Thus

lim sup
n→∞


RN

V (x)u2
n dx = lim sup

n→∞


η


RN

k(x)f(un)un dx+ ηλ


RN
|un|2

∗
α dx−


RN
|(−∆)α2 un|2 dx


= η


RN

k(x)f(u0)u0 dx+ ηλ


RN
|u0|2

∗
α dx−


RN
|(−∆)α2 u0|2 dx

=


RN
V (x)u2

0 dx.
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As un → u0 weakly in Hαr (RN ), it follows from (3.20) that

lim
n→∞


RN
|(−∆)α2 (un − u0)|2 dx+


RN

V (x)(un − u0)2 dx = 0,

which implies un → u0 in Hαr (RN ). This completes the proof. �

Finally, we will show that the sequence {un} of critical points for Iηn is bounded and it is a (PS) sequence
for I. Then, from Lemma 3.5 we obtain a nontrivial critical point for I. To show the boundedness of {un},
we will use the following Pohozaev type identity for (3.1):

Let u ∈ Hα(RN ) be a weak solution of (3.1), then

N − 2α
2


RN
|(−∆)α2 u|2 dx−N


RN


ηnk(x)F (u) + ηnλ

2∗α
|u|2

∗
α − 1

2V (x)u2

dx

=


RN
ηnF (u)∇k · x dx− 1

2


RN

u2∇V · x dx. (3.21)

In [12], using the α-harmonic extension, the authors prove the Pohozaev identity with subcritical nonlinearity.
In this paper, although the problem (3.1) involves critical nonlinearity |u|2∗α−2u, the potential functions V (x)
and k(x), similar to the proof of Pohozaev identity in [12], we could also obtain the Pohozaev identity (3.21),
so we do not provide the proof here.

Proof of Theorem 1.1. (1) By Theorem 3.1, for almost every η ∈ [η, 1], there exists a bounded sequence
{uη,n} ⊂ Hαr (RN ) such that Iη(uη,n) → cη and I ′η(uη,n) → 0 in Hαr (RN ), as n → ∞. By Lemma 3.2,
0 < cη ≤ c0 for any η ∈ [η, 1]. We assume that |Iη(uη,n)| ≤ c0 + 1 for any n ∈ N.

Let λ∗ = ( α
2N(c0+1) )2α/(N−2α)S

2∗α/2
α (see Step 2 in Lemma 3.5). If λ ∈ (0, λ∗), by Lemma 3.5, passing to a

subsequence if possible, there exists uη ∈ Hαr (RN ) \ {0} such that uη,n → uη in Hαr (RN ), as n→∞. Then,
Iη(uη) = cη and I ′η(uη) = 0.

Let {ηn} ⊂ [η, 1] with ηn ↑ 1 such that there exists un ∈ Hαr (RN ) \ {0} satisfying Iηn(un) = cηn ≤ c0,
I ′ηn(un) = 0. Then un is a weak solution of the following equation

(−∆)αu+ V (x)u = ηnk(x)f1(u) + ηnλ|u|2
∗
α−2u.

By Pohozaev identity for the above equation, we get
N − 2α

2


RN
|(−∆)α2 un|2 dx−N


RN


ηnk(x)F1(un) + ηnλ

2∗α
|un|2

∗
α − 1

2V (x)u2
n


dx

=


RN
ηnF (un)∇k · x dx−

1
2


RN

u2
n∇V · x dx.

Note that F (t) ≥ 0 for any t ∈ R, it follows from (V1) and (K2) that
RN
|(−∆)α2 un|2 dx = NIηn(un)−


RN

ηnF (un)∇k · x dx+ 1
2


RN

u2
n∇V · x dx

≤ NIηn(un) ≤ Nc0. (3.22)

Using (3.2), for any ε > 0 we obtain
RN

V (x)u2
n dx = ηn


RN


k(x)f(un)un + λ|un|2

∗
α


dx−


RN
|(−∆)α2 un|2 dx

≤


RN


k(x)f(un)un + λ|un|2

∗
α


dx

≤


RN
εk2u

2
n dx+ (k2C(ε) + λ)


RN
|un|2

∗
α dx.
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Taking ε = V1/(2k2), by (3.5) and (3.22) we get
RN

u2
n dx ≤ C


RN
|un|2

∗
α dx ≤ C


RN
|(−∆)α2 un|2 dx

2∗α/2
≤ C.

Then {un} is bounded in Hαr (RN ). Therefore, {


RN k(x)F (un) dx+ λ
2∗α


RN |un|

2∗α dx} is bounded. It follows
from Remark 3.1 that as n→∞I(un) = I1(un) = Iηn(un) + (ηn − 1)


RN

k(x)F (un) dx+ (ηn − 1) λ2∗α


RN
|un|2

∗
α dx→ c1.

For any φ ∈ Hαr (RN ), combining (3.2), the Hölder inequality with Theorem 2.1 we obtain
RN

(k(x)f(un) + λ|un|2
∗
α−2un)φdx

 ≤ 
RN

(k2|unφ|+ C|un|2
∗
α−1|φ|) dx

≤ k2∥un∥L2(RN )∥φ∥L2(RN ) + C∥un∥
(2∗α−1)/2∗α
L2∗α (RN )

∥φ∥L2∗α (RN )

≤ C∥φ∥Hα(RN ).

Since

⟨I ′(un), φ⟩ = ⟨I ′1(un), φ⟩ = ⟨I ′ηn(un), φ⟩+ (ηn − 1)


RN
k(x)f(un)φdx+ (ηn − 1)λ


RN
|un|2

∗
α−2unφdx,

we get as n→∞

∥I ′(un)∥ = sup{
⟨I ′(un), φ⟩ : ∥φ∥Hα(RN ) = 1} → 0.

For any 0 < λ < λ∗, passing to a subsequence, still denoted by {un}, we assume that un → u0 in Hαr (RN ).
Then I(u0) = I1(u0) = c1 and I ′(u0) = I ′1(u0) = 0. It follows that u0 is a nontrivial weak solution.

(2) u0 is nonnegative. In fact, it suffices to consider the following functionals on Hαr (RN ):

I+(u) = 1
2


RN

(|(−∆)α2 u|2 + V (x)u2) dx−


RN
k(x)F (u) dx− λ

2∗α


RN
|u+|2

∗
α dx

and

I+
η (u) = 1

2


RN

(|(−∆)α2 u|2 + V (x)u2) dx− η


RN
k(x)F (u) dx− η λ2∗α


RN
|u+|2

∗
α dx,

where u+ = max{u, 0}.

Similar to the argument of (1), there exists a nontrivial weak solution u0 of (1.1). It is easy to verify that
u0 is nonnegative. This concludes the proof of Theorem 1.1. �
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[6] H. Berestycki, P.L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. Anal. 82
(1983) 313–345.

[7] V.I. Bogachev, Measure Theory, Vol. II, Springer-Verlag, Berlin, 2007, xiv+575.
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