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1. INTRODUCTION

Let f: £y U Ly C B3 be a two-component oriented link in the standard Euclidean space. We
denote. by Ik(f) the linking number. of the components I; = f(L1), l2 = f(L2). We call the link
£ a semiboundary link if Ik(f) = 0. The Sato-Levine invariant, an integer invariant 3(f) of the
isotopy class of a semiboundary link f, was defined in [1]. A higher-order generalization of the
construction is found in [2!. We recall the definition.

Let S;, 1 =1, 2, be two Seifert surfaces bounded by the components [; of the link. We take the
surfaces to satisfy the condition S, Nly = S, NIy = @. Let I' = §; N S; be the intersection curve
(possibly disconnected) of the surfaces. The curve I' is embedded in R® and we have the canonical

framing Z, i.e., a vector field £l (), z € T, transversal to the curve at each point z. This frame = is

defined by the formula £(z) = #(z) + #%s(z), where %;(z) is the normal vector to the surface S;,
z € 51N S;. Let I be a curve obtained from I' by a small shift ' — I' along the framing =.
The selflinking number 1k(I';Z) € Z is defined by Ik([;Z) = Ik(T;T’). This number does not
dﬂgend; on S and. is denoted by B(f). Hence, the Sato-Levine invariant 8 is defined. A formula
for computing. B{f} was obtained in (3] (see also [4]). This formula shows that the invariant 3 is
defined as a Vassiliev invariant of order 3. This means that the invariant 8 should be defined by
means of the cogycle on the cooriented stratum of codimension < 3. '

Let f.., f. be a pair of links. We assume that the links coincide outside the ball D3 of a small
radius. In this ball we have two pairs of the branches of each link f_, f,. These branches are
formed by segments with endpoints on 3D3. The segments are on the same component of the links.
Let f(t), t € [to — &;tp + ¢, be a homotopy with support inside D?® such that f_ = f(tp — €) and
JF+ = f(to.+ €). The homotopy has a single transversal selfintersection point. We use the notation
“47. “_" ag shown in Fig. 1.

Let z be a singular point of the homotopy f(t). We define a sign O(z) = %1 according to the
following rule. Let [;(t,) be the component of the curve f(to) with a selfintersection point. We define
an, order of the branches A; and A; of the curve [;(2p) in the neighborhood of the singular point.
Let us consider the ordered bases X (o — ¢) and X (fy + £) in R? formed by the vectors x(t), x2(t)
tangent to.the branches );, and the vector x3(t) = (2:(t); z2(t)) with endpoints at z;(t) € I;(¢),
i.= 1, 2. The origins of the vectors project to the intersection point z of the components. We define
the value O(z) as the sign of orientation of the basis X (o ~ £) in the plane. We note that for the
link f. in Fig. 1 the basis X(to — ¢€) is right and we have O(z) = +1.
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For the semiboundary links f_ and f,, the values of 3 are related by the formula

B(f+) - B(f-) = O(=) Ik(z), (1)

where lk(z) is the linking number of a closed loop A with vertex at the point z, formed by one of
the two branches of the curve [;, with the last component ;;, {(mod2). For obvious reasons, the
alternative choice of the loop A gives the same right-hand side in relation (1), because the other
choice of A changes the sign of the integer lk(z).

We define the invariant 8 by relation (1) putting S(f.) = 0, where f. is a two-component
link formed by the two standard circles embedded in two disjoint balls. Let f(t) be a homotopy
- such that f(0) = f., f(1) = g, and components f(t)(L,) and f(t)(L») are not intersected for an
arbitrary t. We denote by T = {t,...,t;} the set of critical values of the homotopy f, i.e., the
values corresponding to the selfintersection of the component.

For every t; € T the links f(t; —€) and f(¢;+¢€) are joined by the deformation depicted in Fig. 1.
Therefore, the invariant 3(g) is well defined by relation (1) and the boundary condition f(0) = f.,
B(f.) = 0. G.T. Jin has proved that 3(g) does not depend on the choice of the homotopy f(t).

We generalize this approach. Let f be an arbitrary two-component link. We define the integer
number B(f). If f is a semiboundary link, the integer 8(f) is the Sato-Levine invariant. To define
B(f) for an arbitrary f, for every k € Z we choose a link f. such that lk(f.) = k according to the
following rule. Let f. be the link formed by the two parallel loops on the standard torus of degree
(1, k) embedded in B3 (see Fig. 2).

We note that f.(0) is joined by an isotopy with the link f. defined above. We generalize rela-
tion (1) for an arbitrary link and define the generalized Sato-Levine invariant such that 8(f.) = 0.
The generalization is considered in [4] where the invariant 8(f) is defined only mod 4 under the
assumption that lk(f) = 0mod 2. The question about the coincidence of the two invariants is open.

The application of the invariant 8 in Dynamo theory was constructed in [5]. We note that the

notation B and W of the same Sato—Levine invariant in Dynamo theory and topology is distin-
guished.
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2. MAIN RESULT

Let R(k) be a space of mappings f : Ly U L, — B3, satisfying the following conditions:
(1) LNl = g,

(2) k(f) = k.

We denote R = U R(k). Let us define P(k) C R(k) as a subspace of links, generally speaking,
with singularities. We denote UpR(k) by R. The considered spaces are equipped by C*-topology.

We generalize relation (1). Let two flat links f,, f- € P(k) be joined by the homotopy f(t),
f(to —€) = f-, f(to +2) = f4, with the support in the neighborhood D3 of the point z (see
Fig. 1). The link f(to) is singular, f(to) € R(k)\ P(k). Let 8 : P(k) — Z be the function under
the following condition. The values 3(f+) and B(f-) are related by the formulas

B(f+) = BUf-) = O(2)[(Ik(z) - k/2)* - k/4%] = O(2)[IK*(z) - lk(z)k] (2)

and

B(f.) =0. (3)

In relation (2) the integer lk(z) is defined correspondingly to relation (1). Evidently, the right-
hand side of the relation is independent of the choice of A. The following theorem holds.

Theorem 1. For an arbitrary k there ezists one and only one function B : P(k) — Z which
satisfies conditions (2) and (3).

The explicit construction of the generalized Sato-Levine invariant is the following. For an
arbitrary two-component link f € P(k) we take the generic homotopy p(t) in the space R(k)
satisfying the condition p(0) = f.(k), p(1) = £, p(t)(L1) N p(t)(L2) = @.

We denote by T(p) = {t1,...,%:} the set of the critical values of the homotopy p such that
p(t;) € R(k)\ P(k), t; € T(p). For every critical value t;, we define

AB(t;) = B(p(t; +€)) — Blp(t; — €)).
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Then we define

AB(p) = 3 AB(L;),  ti € X(p)-
J
For an arbitrary f € P(k) we calculate the invariant by the formula

B(f) = AB(p)-

3. PROOFS

Let us formulate Lemma 1 and Corollary 1 which are evident.

Lemma 1. The space R(k) is connected, i.e., mo( R(k)) = 0. (Note that R(k) is equipped with
a marked point f.(k).)
Corollary 1. Two arbitrary invariants 31, 3, : P(k) — Z which satisfy relations (2) and (3)
coincide.
Lemma 2. For arbitrary two homotopies g, hy € m1(R(k)), (g¢] = [he], the following relation
holds:
AB(g) = AB(R).

Lemma 3. For a certain (and therefore for any) system of generators {p,} of the group
71 (R(k)) the following reletion holds:
AB(ps) = 0.

We start by constructing the system of generators p,(t). We consider an auxiliary homotopy
g(t) : I — R(k) which transfers the diagram in Fig. 3 into itself. The homotopy is shown in
Fig. 4 by a sequence of projections of the links. We have g(0) = g(1) and, generally speaking,
g(0) # f.. Let {s/5} € [0:1},s=0,1,...,5, be the values of the parameter t. The sequence of the
corresponding diagrams is given. We shall first describe the diagram ¢(0) given in Fig. 3.

Let [; be the curve with projection [{, let m{ and mj be two selfintersection points on the
projection. (We denote below a corresponding projections by primes.) The point m] is of positive
type (see Fig. 1) and the point mj is of negative type. Let n; and n; be a pair of points on [; in
the small neighborhood of the upper inverse image m, of the point mj, and the point n, is chosen
to be the nearest to m;. Let N be an arc with the ends (n;;n,). We denote by n3 the midpoint
of the arc. Let U O N be a small e-neighborhood of this arc. The curve !; intersects U at two
pairs of points, U Nl; = {z1;y1} U {z2; y2}- The points in each pair {z;;y:}, i = 1,2, are near the
point n;.

Let us describe the component I, of the link g in the neighborhood U. Let S C U be a circle of
small radius close to the point nz. We take this circle parallel to the plane of projection. We denote
by {y!},i=1,...,s, s copies of the “tendrils” with the initial points ¢} € S. The “tendrils” are
drawn out along N to the point n,. We draw out the handles linked with the arc (z,;y,) of the
curve [; with the coefficient +1 or —1 along ¥;. Each handle is the boundary of a thin plate P; with
the central axis y;. Each plate P; intersects the arc (z;¥;) at an interior point. This means that the
corresponding handle v} links with the arc (z;;y;). By analogy with the preceding construction,
let {732} be ¢ copies of handles corresponding to the “tendrils” along N toward the point n,. The
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Fig. 3

initial points {c}} and {c7} of the two sets of “tendrils” can be mixed on the circle S. We define the
component l5 as the circle S with the set of handles described above. We take the handles under
the condition y(l4) = +1 and without selfintersection points on the projection. The link go € P(k)
is constructed. The linking number k = lk(l;; ;) is given by the sum of the linking numbers of the
handles with the component {,.

We construct a homotopy g, g(t) € R(k). We define g(0) = g(1) = go. The homotopy g(t) is the
identity in the neighborhood of two points d; and d; (see Fig. 3). For 0 < ¢t < 3/5 the homotopy
of the curve [y is induced by the flat regular homotopy of the neighborhood U. Therefore it is
sufficient to describe the deformation of the arc N. For any t the component /; is deformed along
the axis of the projection in a small neighborhood of the point mj.

For 0 < t < 1/5, the homotopy g(t) transports the point n;(0) on the arc N to the point n;(1/5),
and the trajectory of the projection of the point n}(t) contains the point mj. For 1/5 < t < 2/5
the order of the branches of the projection l{ is reversed in the neighborhood of mj and the
curve [; selfintersects. The curve I, is not deformed for these values of the parameter. Then for
2/5 < t < 3/5 the point ny(t) is deformed along {; and the outer (upper) branch of its projection
intersects with mj. Note that the projection N’(3/5) of the arc has a selfintersection point. For
3/5 < t < 4/5, the curve [» is deformed in line with the following rule. The point m] divides the
component !'(3/5) into two closed curves. The left curve is embedded in the plane. We denote this
curve by A’. Each “tendril” v}(3/5) of the curve l2(3/5) is deformed to the “tendril” v}(4,5), and
the branch A passes through the “tendril” as being much smaller than the plate bounded by the
handle. After the deformation, the curve [5(4/5) is, as for ¢ = 0, in the small neighborhood of the
arc N. But the projection of the central axe N’(4/5) has the selfintersection point. At last, for
4/5 < t < 1 the link is deformed to the original link go. The curve [; is deformed with the changing
of the order of branches of the projection at the point mj. The description of the homotopy of
the curve [; for 4/5 < t < 1 is omitted. Note that the curves /5(4/5) and I3(1) are joined by the
homotopy in the exterior =3\ !;(0)U{m,; ;] and [m;; 7] is the segment connecting the preimages
of the point m;. The homotopy g(t) is constructed.

We define the homotopy p(t) by means of g(t). The homotopy p(t) gives an element in 7 (R(k)).
We consider an arbitrary homotopy h(t). The homotopy joins go with f. in the space R(k). We
define p(t) = h(t;3) o g(t2) o h™1(t;) after a redenotation of the parameters. The homotopy p(t)
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is defined up to conjugation. Moreover, for simplicity we consider the homotopy p up to the
composition with a flat selfisotopy of the link f,. The homotopy p is constructed up to the choice

of the handles {v}}, {77}. 71, 72, up to the homotopy h(t), and, at last, up to the isotopy combined
with the homotopy A(t3) > g(tz2) o A7t (t1).

Lemma 4. The set of homotopies {p,} determines a system of generators in the group
m1(R(k)).

Proof. Let pt; and pt; be the marked points on the components of links (see Fig. 2). We
consider the set of generic singularities of the flat homotopy f(t) € R(k), t € I = [0;1). Let for

t = 1/2 the link f has a generic singularity. The list of possible singularities, the singularity of the
projection of a link being taken into account, is given below.

(1) The selfintersection point on a component of the link; f(1/2) € R(k) \ P(k).
(2) The generic degeneration of the projection diagram of the link f(1/2). That is, the singular

(self-tangent or triple) point on the link projection.
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(3) The intersection point of the projection f'(1/2) with projections ptj, pty of the marked
points.

We begin with a sketch of the proof. For an arbitrary f we construct the homotopy h(t;) €
R(k), t; € [0;1], joining f and the link f.; h(0) = f, h(1) = f.. We call this homotopy a
canonical homotopy. We assume that the links f and f are joined by the homotopy g(¢;) € R(k),
t, € [1/3;2/3]. For t; = 1/2 the homotopy has a singularity of type 1-3 and the homotopy is
an isotopy for t; # 1/2. Let h(t;), h(t3) be two canonical homotopies constructed from f and f,
respectively. For simplicity, we assume that t; € [0;1/3] and t3 € [2/3;1]. Let us consider the
homotopy p(t) = h(t3) o g(tz) o h~1(t1), t € [0;1]. Note that p(0) = p(1) = f.. We prove that the
homotopy p can be deformed (rel 3) to a generator described above.

We start to define the canonical homotopy h. We define h as the composition h(t) = hs(ts) o
ha(t2) o hy(ty), t: € [( - 1)/3;1/3], i = 1, 2, 3. Describe the homotopy h;(t;). We deform the curve
1,(t) so that the projection !{(t) of the curve l1(t) is not deformed. We change the order of the

branches of the curve in the neighborhood of the selfintersection point of the projection. Consider
a motion along the curve [; with respect to the given orientation. We start from the point pt,.

Let m; be the selfintersection point of I]. Let A;(7) and A2(¢) be the two branches of the curve [,

projected in the small neighborhood of m;. We choose the order of branches with respect to the
order of the motion. The homotopy h; deforms the branches of the curve parallel to the axis of the
projection with respect to its order. More precisely, let us assume that the branch A,(z) is upper
and the branch A;(?) is lower with respect to the projection. Then the homotopy h, is the identity
in the neighborhood of the branches. Conversely, if the branch A,(%) is lower and the branch Ay(z)
is upper, then the homotopy h; changes the order of the branches. The homotopy h; is defined.
Note that the first branch A,(%) of the curve I{(1/3) is over the second branch A, (%) with respect to
the axis of the projection. Therefore the obtained curve l; is joined by an isotopy with the standard
embedded circle.

We define the homotopy h2(t2) as an isotopy of the curves [;(1/3) and the standard embedded
circle. Then we continue the homotopy to the component I, by an arbitrary flat homotopy satisfying
the condition {y Nl = 2. -

Define h3(ts) as an arbitrary homotopy identical on l; and joining the curve 15(2/3) with the
second component of the standard link f. in the complement R®\ {;(2/3). The homotopy h3, as
well as the homotopies h(t), p(t), are well defined.

We consider the homotopy p(t) with respect to the type of the singular point of the homotopy g.
For obvious reasons p can be deformed to the identical homotopy by a deformation except if g(1/2)
intersects pt}.

Let us consider the homotopy p with respect to the type of the singularity of g.

Note that the homotopy p(t) is defined by

p(t) = e(ts) o h(ts) o g(ta) o A~ (t2) 0 €71 (2,).

Here g(t3) is the homotopy with the singular point, h, h are the two canonical homotopies joining
the corresponding link to the standard component of f.. The homotopies e, & are identical on the
component /; and deform [, to the standard component. We assume that the parameters of the
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homotopies belong to the corresponding segments, ¢; € [i — 1/5;i/5]). Moreover, we denote
6(t) = h(ta) o g(ts) o A (t2), te€[2/5;4/5).

Below, the homotopy of homotopies is called a deformation. Let us consider a deformation
& — &' which is the identity on {2/5}; {3/5}. The deformation is also the identity on the component
l,. We start with the description of the homotopy &’. Let us consider the homotopy 4(t) in the
neighborhood of t = 1/2. By construction, this homotopy is identical on the component l,. For
1/2>t>1/2-1/6,1/2-1/6 >t > 1/2, the component [, is deformed by the vertical homotopy.
The vertical homotopy orders the selfintersection points of the projection. Otherwise, the links
4(1/2 + 1/6), 8(1/2 — 1/6) are joined by the homotopy identical on !, and vertical on ;. This
homotopy has one selfintersection point with projection pt;. We denote this homotopy by é’.
Obviously, § and ¢’ are joined by the deformation § — §'.
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‘We construct a deformation & — " with support in the segment [1/2 — €;1/2 + €]. Let us
consider-an isotopy of the singular component [;(1/2) to the component in Fig. 3. Such a homotopy
identical in the neighborhood of the singular point m; exists, because the two loops A; and A» on
the component [;(1/2) divided by the point m; are unlinked and unknotted. The restriction of the
deformation is arbitrary on 5. The homotopies 8’ and §” have the same properties and §”(l,(1/2))
is nice. The deformation &' — 4" is induced by an isotopy of the component /;(1/2). The homotopy
§” determines the homotopy p” for ¢t € [0; 1].

Let us construct a deformation p” — p'”, identical on the homotopy of the component I;. At
the first step, we construct a homotopy satisfying the condition: for t € [1/2 - ¢;1/2 + ¢] the
component {5 belongs to the small neighborhood of the point m;. The component is depicted in
Fig. 4 for t = 1/5. Moreover, for t ~ 1/2 the homotopy of [, is also depicted in Fig. 4. In particular,
the links p™(1/2 — ¢) and p”’(1/2 + €) coincide with the link in this figure for ¢ = 1/5. For each
t # 1/2, the complement to the small neighborhood of the unlinked component [;(t) is homotopy
equivalent to a circle S!. Therefore, we can deform the homotopy p’” on l»2(t), t # 1/2, and for
t € [2/5;3/5] we obtain the homotopy p’’. This homotopy coincides with the generator in the
lemma. For t € [0;2/5]L 3/5; 1], the homotopy approximates the isotopy of f. to itself. We note
that the approximation can be taken flat. Lemma 4 is proved.

Proof of Lemma 2. Let g(t),h(t) € m(R(k)) be the flat homotopies joined by the
deformation F(¢,7), t x T = K% =[0;1] x [0; 1], F(¢t,7 = 0) = g(¢t), F(t,7 = 1) = h(t). Let A,(F)
be a set of selfintersection points of the immersed 3-manifold K2 x L; U K2 x L. — =3 x K2
For dimension reasons the set A,(F) is an embedded curve in R®, and the boundary (A, (F))
coincides with the sets T(g) and T(k) of the critical values of the homotopies g and h. Note that
if t; € T(g), t; € T(h) are joined by a segment from A,(F), then AB(t;) = AB(t;). If t; and ¢;
are joined by a segment and belong to Y(g) or T(h) simultaneously, then AB(t;) = —AB(t;). Note
that the deformation F(t < r) may have critical points of Whitney umbrella type. These critical
points belong to d(A2(F)). In the small neighborhood of this singularity the value of 8 does not
change. Therefore AB(g) = AB(hR). Lemma 3 is proved.

Proof of Lemma 3. Evidently for an arbitrary isotopy g we have AB(g) = 0. Let us
prove that for a generator p the relation AfB(p) = 0 holds. Let us consider the double generator
¢ = 2p. This homotopy is obtained by the composition of the two copies of p. We prove that

AB(g) = 0. (4)

We clarify the construction. Let us deform the homotopy p — p’. The homotopy ' is more simple
and we prove that AG(u') = 0. Then by Lemma 2 we have the obvious relation A3(u) = 2A8(p).

We define the homotopy g’ by means of the set of the following diagrams 1-8 in Fig. 5.

The homotopy g’ coincides with u everywhere exept the fragments 1-8 in Fig. 5. Note that
the deformation ' is identical on the component [; and is arbitrary on the component {,. The
homotopy inside the fragments is shown in Fig. 6.

The fragment @, is given in Fig. 6 by Diagram 1; the fragment ®, is given by Diagram 6. On
Diagram 1, the point n3 marks the circle S. The circle is joined with the points n, and n3 by
handles {y}} and {y?}. For the homotopy 1 —+ 2 each handle v} intersects each handle v7. Then,
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for the homotopy 2 — 3 the circle S with the base points of the handles is deformed along the right
loop outside the fragment by a flat isotopy. For the isotopy 3 — 4 the component [, is simplified
and two small loops appear which generate the intersection points on the projection of the curve /5.
The isotopy 5 — 6 is outside of Fig. 6. For the isotopy each loop is deformed to a neighborhood of
the point on the component [, and then is annihilated in corresponding pairs. To compute A3(y’)
we use the following lemma.

Lemma 5. Let g(t) be the homotopy depicted in Fig. 7. Then AB(g) = —2¢1€2, where €, and
€2 are the linking numbers of the handles on the component l, with the component [;.

Proof. The following relation is evident: AB(g) = —[A+ &, + €2 — 1k /2]> — [A -1k /2}* +
A +e1—1k/2% + [A 42 — 1k /2] = —2¢;,65. We denote by X the linking number of a branch of
the component [, (with a vertex a) with the last component. The lemma is proved.

We finish the proof of Theorem 1. Let us consider Fig. 5. We denote A3 = ApB;, + ABs
with respect to the number of the selfintersection points of the component. For the homotopies
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Fig. 7

1 — 2,5 — 6 we have A3 (1) = 2[v; — k/2)® — k?/2, where v, and v» be two values of lk(z) for
corresponding loops of A with the vertex z, v; + v, = k. For the homotopies 4 — 5, 7 — 8, we
have AB,(2) = 0. Therefore AB; = 2vy1v, with respect to relation v, + v = lk. By Lemma 4
we have Afs = —21 vy because the product v 15 coincides with the sum of the products ¢,¢» for
every singularity of the intersection of the handles on the component l,. Indeed, the homotopy
1 — 2 in Fig. 6 is composed of a number of the homotopies. Each composition is inverse to the
homotopy from Fig. 7. Each handle v} from n3 to n; intersects v; times with the handle v} from

n3 to ny. Note that the intersection points are counted with respect to the algebraic sign £,(j).
The algebraic number &, () of the handles coincides with v;. The relation (4) and Theorem 1 are
proved. '
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