
Nonlinear Analysis 186 (2019) 74–98

Contents lists available at ScienceDirect

Nonlinear Analysis

www.elsevier.com/locate/na

Existence and multiplicity of solutions for fractional
Schrödinger–Kirchhoff equations with Trudinger–Moser
nonlinearity

Mingqi Xiang a, Binlin Zhang b,∗, Dušan Repovš c

a College of Science, Civil Aviation University of China, Tianjin, 300300, PR China
b Department of Mathematics, Heilongjiang Institute of Technology, Harbin, 150050, PR China
c Faculty of Education and Faculty of Mathematics and Physics, University of
Ljubljana, Ljubljana, 1000, Slovenia

a r t i c l e i n f o

Article history:
Received 16 August 2018
Accepted 11 November 2018
Communicated by Enzo Mitidieri

MSC:
35R11
35A15
47G20

Keywords:
Fractional Schrödinger–Kirchhoff
equations
Trudinger–Moser inequality
Existence of solutions

a b s t r a c t

We study the existence and multiplicity of solutions for a class of fractional
Schrödinger–Kirchhoff type equations with the Trudinger–Moser nonlinearity. More
precisely, we consider⎧⎨⎩M

(
∥u∥N/s

) [
(−∆)s

N/s
u + V (x)|u|

N
s

−1u

]
= f(x, u) + λh(x)|u|p−2u in RN ,

∥u∥ =
(∫∫

R2N

|u(x)−u(y)|N/s

|x−y|2N dxdy +
∫
RN V (x)|u|N/sdx

)s/N

,

where M : [0, ∞] → [0, ∞) is a continuous function, s ∈ (0, 1), N ≥ 2, λ > 0 is
a parameter, 1 < p < ∞, (−∆)s

N/s
is the fractional N/s-Laplacian, V : RN →

(0, ∞) is a continuous function, f : RN × R → R is a continuous function, and
h : RN → [0, ∞) is a measurable function. First, using the mountain pass theorem, a
nonnegative solution is obtained when f satisfies exponential growth conditions and
λ is large enough, and we prove that the solution converges to zero in W

s,N/s
V (RN )

as λ → ∞. Then, using the Ekeland variational principle, a nonnegative nontrivial
solution is obtained when λ is small enough, and we show that the solution converges
to zero in W

s,N/s
V (RN ) as λ → 0. Furthermore, using the genus theory, infinitely

many solutions are obtained when M is a special function and λ is small enough.
We note that our paper covers a novel feature of Kirchhoff problems, that is, the
Kirchhoff function M(0) = 0.
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1. Introduction and main results

Given s ∈ (0, 1) and N ≥ 2, we study the following fractional Schrödinger–Kirchhoff type equation:

M
(

∥u∥N/s
) [

(−∆)s
N/su + V (x)|u|N/s−1

u
]

= f(x, u) + λh(x)|u|p−2
u in RN , (1.1)

where

∥u∥ =
(

[u]N/s
s,N/s +

∫
RN

V (x)|u|N/s
dx

)s/N

, [u]s,N/s =
(∫∫

R2N

|u(x) − u(y)|N/s

|x − y|2N
dxdy

)s/N

, (1.2)

M : [0, ∞) → [0, ∞) is a continuous function, V : RN → R+ is a scalar potential, 1 < p < ∞, h : RN → [0, ∞)
is a weight function, f : RN × R → R is a continuous function, and (−∆)s

N/s is the associated fractional
N/s-Laplace operator which, up to a normalization constant, is defined as

(−∆)s
N/sφ(x) = 2 lim

ε→0+

∫
RN \Bε(x)

|φ(x) − φ(y)|N/s−2(φ(x) − φ(y))
|x − y|2N

dy, x ∈ RN ,

on functions φ ∈ C∞
0 (RN ). Hereafter, Bε(x) denotes the ball of RN centered at x ∈ RN and with radius

ε > 0.
Equations of the type (1.1) are important in many fields of science, notably in continuum mechanics,

phase transition phenomena, population dynamics, minimal surfaces, and anomalous diffusion, since they
are a typical outcome of stochastic stabilization of Lévy processes, see [3,11,26] and the references therein.
Moreover, such equations and the associated fractional operators allow us to develop a generalization of
quantum mechanics and also to describe the motion of a chain or an array of particles which are connected
by elastic springs, as well as unusual diffusion processes in turbulent fluid motions and material transports
in fractured media, for more details see [11,12] and the references therein. Indeed, the nonlocal fractional
operators have been extensively studied by several authors in many different cases: bounded and unbounded
domains, different behavior of the nonlinearity, etc.. In particular, many works focus on the subcritical and
critical growth of the nonlinearity which allows us to treat the problem variationally by using general critical
point theory.

This paper was motivated by some works which have appeared in recent years. On the one hand, the
following nonlinear Schrödinger equation

(−∆)su + V (x)u = f(x, u) in RN , (1.3)

was elaborated on by Laskin [26] in the framework of quantum mechanics. Equations of type (1.3) have been
extensively studied, see e.g. [14,31,32,40]. To the best of our knowledge, most of the works on fractional
Laplacian problems involve the nonlinear terms satisfying polynomial growth, there are only few papers
dealing with nonlinear term with exponential growth.

In recent years, some authors have paid considerable attention to the limiting case of the fractional Sobolev
embedding, commonly known as the Trudinger–Moser case. In fact, when N = 2, then W 1,2(Ω) ↪→ Lr(Ω)
for 1 ≤ r < ∞, but we cannot take r = ∞ for such an embedding. To fill this gap, for bounded domains Ω ,
Trudinger [44] proved that there exists τ > 0 such that W 1,2

0 (Ω) is embedded into the Orlicz space Lϕτ (Ω),
determined by the Young function ϕτ = exp(τt2) − 1. Afterwards, Moser in [33] found the best exponent τ

and in particular, he obtained a result which is now referred to as the Trudinger–Moser inequality. For more
details about Trudinger–Moser inequality, we also refer to [36]. Next, let us recall some useful results about
the fractional Trudinger–Moser inequality. Let ωN−1 be the surface area of the unit sphere in RN and let
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Ω ⊂ RN be a bounded domain. Define W
s,N/s
0 (Ω) as the completion of C∞

0 (Ω) with respect to the norm
[·]s,N/s. In [29], Martinazzi proved that there exist positive constants

αN,s = N

ωN−1

(
Γ ((N − s)/2)
Γ (s/2)2sπN/2

)− N
N−s

and CN,s depending only on N and s such that

sup
u∈W

s,N/s
0 (Ω)

[u]s,N/s≤1

∫
Ω

exp(α|u|
N

N−s )dx ≤ CN,s|Ω |, (1.4)

for all α ∈ [0, αN,s] and there exists α∗
N,s ≥ αN,s such that the supremum in (1.4) is ∞ for α > α∗

N,s.
However, it remains unknown whether αN,s = α∗

N,s. Kozono et al. in [24] proved that for all α > 0 and
u ∈ W s,N/s(RN ), ∫

RN
Φα(u)dx < ∞,

where
Φα(t) = exp

(
α|t|

N
N−s

)
−

∑
0≤j<N/s−1

j∈N

αj

j! |t|
jN

N−s . (1.5)

Moreover, there exist positive constants αN,s and CN,s depending only on N and s such that∫
RN

Φα(u)dx ≤ CN,s, ∀α ∈ (0, αN,s), (1.6)

for all u ∈ W s,N/s(RN ) with [u]s,N/s ≤ 1.
In the setting of the fractional Laplacian, Iannizzotto and Squassina in [23] investigated existence of

solutions for the following Dirichlet problem{
(−∆)1/2u = f(u) in (0, 1),
u = 0 in R \ (0, 1),

(1.7)

where (−∆)1/2 is the fractional Laplacian and f(u) behaves like exp(α|u|2) as u → ∞. Using the mountain
pass theorem, they proved the existence of solutions for problem (1.7). Subsequently, Giacomoni, Mishra and
Sreenadh in [20] studied the multiplicity of solutions for problems like (1.7) by using the Nehari manifold
method. For more recent results on problem (1.7) in the higher dimensional case, we refer the interested
reader to [37] and the references therein. For the general fractional p-Laplacian in unbounded domains,
Souza in [43] considered the following nonhomogeneous fractional p-Laplacian equation

(−∆)s
pu + V (x)|u|p−2

u = f(x, u) + λh in RN , (1.8)

where (−∆)s
p is the fractional p-Laplacian and the nonlinear term f satisfies exponential growth. He obtained

a nontrivial weak solution of Eq. (1.8) by using fixed point theory. Li and Yang in [28] studied the following
equation

(−∆)ζ
pu + V (x)|u|p−2

u = λA(x)|u|q−2
u + f(u) in RN ,

where p ≥ 2, 0 < ζ < 1, 1 < q < p, λ > 0 is a real parameter, A is a positive function in L
p

p−q (RN ), (−∆)ζ
p

is the fractional p-Laplacian, and f has exponential growth.
On the other hand, Li and Yang in [27] studied the following Schrödinger–Kirchhoff type equation(∫

RN
(|∇u|N + V (x)|u|N )dx

)k

(−∆N u + V (x)|u|N−2
u) = λA(x)|u|p−2

u + f(u) in RN , (1.9)
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where ∆N u = div(|∇u|N−2∇u) is the N -Laplacian, k > 0, V : RN → (0, ∞) is continuous, λ > 0 is a real
parameter, A is a positive function in L

p
p−q (RN ) and f satisfies exponential growth. By using the mountain

pass theorem and Ekeland’s variational principle, they obtained two nontrivial solutions of (1.9) for the
parameter λ small enough. Actually, the Kirchhoff-type problems, which arise in various models of physical
and biological systems, have received a lot of attention in recent years. More precisely, Kirchhoff established
a model governed by the equation

ρ
∂2u

∂t2 −

(
ρ

h
+ E

2L

∫ L

0

⏐⏐⏐⏐∂u

∂x

⏐⏐⏐⏐2 dx

)
∂2u

∂x2 = 0, (1.10)

for all x ∈ (0, L), t ≥ 0, where u = u(x, t) is the lateral displacement at the coordinate x and the time t, E

is the Young modulus, ρ is the mass density, h is the cross-section area, L is the length, and ρ0 is the initial
axial tension. Eq. (1.10) extends the classical D’Alembert wave equation by considering the effects of the
changes in the length of the strings during the vibrations. Recently, Fiscella and Valdinoci have proposed
in [19] a stationary Kirchhoff model driven by the fractional Laplacian by taking into account the nonlocal
aspect of the tension, see [19, Appendix A] for more details. It is worth mentioning that when s → 1− and
M ≡ 1, problem (1.1) becomes

−∆N u + V (x)|u|N−2
u = f(x, u) + λh(x)|u|p−2

u,

which was studied by many authors using variational methods, see for example [2,21,25,35].
Inspired by the above works, we study in the present paper the existence, multiplicity and asymptotic

behavior of solutions of (1.1) and we overcome the lack of compactness due to the presence of exponential
growth terms as well as the degenerate nature of the Kirchhoff coefficient. To the best of our knowledge,
there are no results for (1.1) of such generality.

Throughout the paper, without explicit mention, we assume validity of conditions (V1), (V2) and (M)
below:

(V1) V : RN → R+ is a continuous function and there exists V0 > 0 such that inf
RN

V (x) ≥ V0.

(V2) There exists h > 0 such that

lim
|y|→∞

meas {x ∈ Bh(y) : V (x) ≤ c} = 0

for all c > 0.

(M) M : R+
0 → R+

0 is a continuous function satisfying the following properties:
(M1) For any τ > 0 there exists κ = κ(τ) > 0 such that M(t) ≥ κ for all t ≥ τ .
(M2) There exists θ ≥ 1 such that tM(t) ≤ θM (t) for all t ∈ R+

0 , where M (t) =
∫ t

0 M(τ)dτ .

Note that condition (V2), which is weaker than the coercivity assumption V (x) → ∞ as |x| → ∞, was
first proposed by Bartsch and Wang in [8] to overcome the lack of compactness. The condition (M1) that
means M(t) > 0 for all t > 0, was originally used to get the multiplicity of solutions for a class of higher
order p(x)-Kirchhoff equations, see [15] for more details.

A typical example of M is given by M(t) = a + bθ tθ−1 for t ≥ 0, where a, b ≥ 0 and a + b > 0. When
M is of this type, problem (1.1) is said to be degenerate if a = 0, while it is called non-degenerate if a > 0.
Recently, fractional Kirchhoff problems have received more and more attention. Some new existence results
of solutions for fractional non-degenerate Kirchhoff problems are given, for example, in [38–40,45]. For some
recent results concerning the degenerate case of Kirchhoff-type problems, we refer to [5,13,30,41,46,47] and
the references therein. We stress that the degenerate case is quite interesting and is treated in well-known
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papers on Kirchhoff theory, see for example [17]. In the vast literature on degenerate Kirchhoff problems,
the transverse oscillations of a stretched string, with nonlocal flexural rigidity, depends continuously on the
Sobolev deflection norm of u via M(∥u∥2). From a physical point of view, the fact that M(0) = 0 means
that the base tension of the string is zero, which is a very realistic model. Clearly, assumptions (M1)–(M2)
cover the degenerate case.

The natural solution space for (1.1) is W
s,N/s
V (RN ), that is, the completion of C∞

0 (RN ) with respect to
the norm ∥ · ∥ introduced in (1.2). By [40], we know that (W s,N/s

V (RN ), ∥ · ∥) is a reflexive Banach space.
Furthermore, for all N/s ≤ q < ∞, the following embeddings

W
s,N/s
V (RN ) ↪→ W s,N/s(RN ) ↪→ Lq(RN )

are continuous, see [18]. Define

λ1 = inf

⎧⎨⎩ ∥u∥N/s

∥u∥θN/s

LθN/s(RN )

: u ∈ W
s,N/s
V (RN ) \ {0}

⎫⎬⎭ .

Clearly, λ1 > 0.
Throughout the paper we assume that the nonlinear term f : RN × R+ → R is a continuous function,

with f(x, t) ≡ 0 for t ≤ 0 and x ∈ RN . In the following, we also require the following assumptions (f1)–(f3):

(f1) There exist b1, b2 > 0 and 0 < α0 < αN,s, such that

|f(x, t)| ≤ b1tθN/s−1 + b2Φα0(t) for all (x, t) ∈ RN × R+.

where Φα(t) is given in (1.5).
(f2) There exists µ > θN/s such that

0 < µF (x, t) ≤ f(x, t)t, F (x, t) =
∫ t

0
f(x, τ)dτ,

whenever x ∈ RN and t ∈ R+.
(f3) The following holds:

lim sup
t→0+

F (x, t)
tθN/s

<
sM (1)

N
λ1, uniformly in x ∈ RN .

Note that (f3) is compatible with the condition (M2). A typical example of f , satisfying (f1)–(f2), is given
by f(x, t) = Φα0(t) + C0tθN/s−1, where C0 is a positive constant.

We say that u ∈ W
s,N/s
V (RN ) is a (weak) solution of problem (1.1), if

M(∥u∥N/s)
(

⟨u, φ⟩s,N/s +
∫
RN

V |u|N/s−2
uφdx

)
=
∫
RN

(f(x, u) + λh(x)|u|p−2
u)φdx,

⟨u, φ⟩s,N/s =
∫∫

R2N

[
|u(x) − u(y)|N/s−2(u(x) − u(y))

]
·
[
φ(x) − φ(y)

]
|x − y|2N

dxdy,

for all φ ∈ W
s,N/s
V (RN ).

First of all, for the case Nθ/s < p < ∞, by using the mountain pass theorem we can obtain the first
existence result as follows.

Theorem 1.1. Assume that V satisfies (V1)–(V2), f satisfies (f1)–(f3) and M fulfills (M1)–(M2). If
0 ≤ h ∈ L∞(RN ) and Nθ/s < p < ∞, then there exists λ∗ > 0 such that for all λ > λ∗, problem (1.1)
admits a nontrivial nonnegative mountain pass solution uλ in W

s,N/s
V (RN ). Moreover, limλ→∞ ∥uλ∥ = 0.
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Then, for the case 1 < p < N/s, by utilizing the Ekeland variational principle we can get the second
existence result as follows.

Theorem 1.2. Assume that V satisfies (V1)–(V2), f satisfies (f1)–(f3) and M fulfills (M1)–(M2). If
1 < p < N/s and 0 ≤ h ∈ L

N
N−sp (RN ), then there exists λ∗ > 0 such that for all 0 < λ < λ∗, problem (1.1)

admits a nontrivial nonnegative least energy solution in W
s,N/s
V (RN ). Moreover, limλ→0 ∥uλ∥ = 0.

Finally, to study the existence of infinitely many solutions for problem (1.1) in the case 1 < p < N/s,
inspired by the method adopted in [30], we appeal to the genus theory. However, we encounter some technical
difficulties under the general assumptions (M1)–(M2). Therefore, we consider the classical Kirchhoff function,
that is, M(t) = a + bθtθ−1 for all t ≥ 0, where a ≥ 0, b ≥ 0, a + b > 0 and θ > 1. As a consequence, we are
able to prove a further result compared to Theorem 1.2.

Theorem 1.3. Assume that V satisfies (V1)–(V2), f satisfies (f1)–(f3), and M(t) = a + bθtθ−1 for all
t ≥ 0, where a ≥ 0, b ≥ 0, a + b > 0 and θ > 1. If 1 < p < N/s and 0 ≤ h ∈ L

N
N−sp (RN ), then there exists

λ∗∗ ∈ (0, λ∗] such that for all 0 < λ < λ∗∗, problem (1.1) has infinitely many solutions in W
s,N/s
V (RN ).

Here we point out that it remains open to establish whether λ∗ = λ∗∗ from Theorems 1.2 and 1.3.
Moreover, it would be interesting to investigate whether there is solutions to problem (1.1) as λ ∈ [λ∗, λ∗]
from Theorems 1.1 and 1.2.

Let us simply describe the approaches to prove Theorems 1.1–1.3. To show the existence of at least one
nonnegative solution of problem (1.1), we shall use the mountain pass theorem. However, since the nonlinear
term in problem (1.1) satisfies exponential growth, it is difficult to get the global Palais–Smale condition. To
overcome the lack of compactness due to the presence of an exponential nonlinearity, we employ some tricks
borrowed from [5], where a critical Kirchhoff problem involving the fractional Laplacian has been studied.
We first show that the energy functional associated with problem (1.1) satisfies the Palais–Smale condition
at suitable levels cλ. In this process, the key point is to study the asymptotical behavior of cλ as λ → ∞,
see Lemma 3.3 for more details. For the case 1 < p < N/s and λ small enough, we prove that (1.1) has at
least one nontrivial solution with negative energy by using Ekeland’s variational principle. In order to get
the multiplicity of solutions for problem (1.1) for λ small enough, we follow some ideas from [6] and use the
genus theory.

To the best of our knowledge, Theorems 1.1–1.3 are the first results for the Schrödinger–Kirchhoff
equations involving Trudinger–Moser nonlinearities in the fractional setting.

The paper is organized as follows. In Section 2, we present the functional setting and prove preliminary
results. In Section 3, we obtain the existence of nontrivial nonnegative solutions for problem (1.1) for λ large
enough, by using the mountain pass theorem. In Section 4, we prove the existence of nonnegative solutions
for problem (1.1) for λ small enough, by using the Ekeland variational principle. In Section 5, we investigate
the existence of infinitely many solutions for problem (1.1) by applying the genus theory. In Section 6, we
extend Theorems 1.1–1.3 to get wider applications, by replacing the fractional N/s-Laplacian operator with
a general nonlocal integro-differential operator.

2. Preliminary results

In this section, we first provide the functional setting for problem (1.1). Let 1 < p < ∞ and let Lp(RN , V )
denote the Lebesgue space of real-valued functions, with V (x)|u|p ∈ L1(RN ), equipped with the norm

∥u∥p,V =
(∫

RN
V (x)|u|pdx

)1/p

for all u ∈ Lp(RN , V ).
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Set
W s,p(RN ) = {u ∈ Lp(RN ) : [u]s,p < ∞},

where the Gagliardo seminorm [u]s,p is defined by

[u]s,p =
(∫∫

R2N

|u(x) − u(y)|p

|x − y|N+sp
dxdy

)1/p

.

Equipped with the following norm

∥u∥s,p =
(

∥u∥p

Lp(RN ) + [u]ps,p

)1/p

,

W s,p(RN ) is a Banach space. The fractional critical exponent is defined by

p∗
s =

{
Np

N−sp if sp < N ;
∞ if sp ≥ N.

Moreover, the fractional Sobolev embedding states that W s,p(RN ) ↪→ Lp∗
s (RN ) is continuous if sp < N ,

and W s,p(RN )↪→ Lq(RN ) is continuous for all p ≤ q < ∞ if sp = N . For a more detailed account of the
properties of W s,p(RN ), we refer to [18].

By (V1) and [18, Theorem 6.9], the embedding W
s,N/s
V (RN ) ↪→ Lν(RN ) is continuous for any ν ∈ [N/s, ∞),

namely there exists a positive constant Cν such that

∥u∥Lν (RN ) ≤ Cν∥u∥ for all u ∈ W
s,N/s
V (RN ).

To prove the existence of weak solutions of (1.1), we shall use the following embedding theorem.

Theorem 2.1 (Compact Embedding, II – Theorem 2.1 of [40]). Assume that conditions (V1) and (V2) hold.
Then for any ν ≥ N/s the embedding W

s,N/s
V (RN ) ↪→↪→ Lν(RN ) is compact.

Proof. The proof is similar to the proof of Theorem 2.1 in [40]. Indeed, one can choose ϱ > N/s such that
ν ∈ [N/s, ϱ]. Here ϱ plays the same role as p∗

s in [40, Theorem 2.1]. Then, using the fact that the embedding
W

s,N/s
V (RN ) ↪→ Lϱ(RN ) is continuous and the same discussion as Theorem 2.1 in [40], one can obtain the

desired conclusion. □

The following radial lemma can be found in [9, Radial Lemma A.IV].

Lemma 2.1. Let N ≥ 2. If u ∈ Lp(RN ) with 1 ≤ p < ∞, is a radial non-increasing function
(i.e. 0 ≤ u(x) ≤ u(y) if |x| ≥ |y|), then

|u(x)| ≤ |x|−N/p

(
N

ωN−1

)1/p

∥u∥Lp(RN ), x ̸= 0,

where ωN−1 is the (N − 1)-dimensional measure of the (N − 1)-sphere.

Clearly, by Lemma 2.1, we have

|u(x)|N/s ≤
N∥u∥N/s

N/s,V

V0ωN−1|x|N
, x ̸= 0, (2.1)

for all radial non-increasing function u ∈ W
s,N/s
V (RN ).



M. Xiang, B. Zhang and D. Repovš / Nonlinear Analysis 186 (2019) 74–98 81

In the sequel, we will prove some technical lemmas which will be used later on.

Lemma 2.2. Let α < αN,s. If u ∈ W
s,N/s
V (RN ) and ∥u∥ ≤ K with 0 < K <

(αN,s

α

)(N−s)/N and
φ ∈ W

s,N/s
V (RN ). Then there exists a constant C(N, s, α, K) > 0 such that∫

RN
Φα(u)|φ|dx ≤ C(N, s, α, K)∥φ∥Lν (RN ),

for some ν > N/s.

Proof. Our paper is motivated by [34]. We may assume u, φ ≥ 0, since we can replace u, φ by |u| and |φ|,
respectively. To use the Schwarz symmetrization method, we briefly recall some basic properties (see [21]).
Let 1 ≤ p < ∞ and u ∈ Lp(RN ) such that u ≥ 0. Then there is a unique nonnegative function u∗ ∈ Lp(RN ),
called the Schwarz symmetrization of u, which depends only on |x|, u∗ is a decreasing function of |x|; and
for all λ > 0

|{x : u∗(x) ≥ λ}| = |{x : u(x) ≥ λ}|,

and there exists Rλ > 0 such that {x : u∗(x) ≥ λ} is the ball BRλ
(0) of radius Rλ centered at origin.

Moreover, for any continuous and increasing function G : [0, ∞) → [0, ∞) such that G(0) = 0,∫
RN

G(u∗(x))dx =
∫
RN

G(u(x))dx.

Furthermore, if u ∈ W s,N/s(RN ), then u∗ ∈ W s,N/s(RN ) and∫∫
R2N

|u∗(x) − u∗(y)|N/s

|x − y|2N
dxdy ≤

∫∫
R2N

|u(x) − u(y)|N/s

|x − y|2N
dxdy, (2.2)

see [1,7].
According to the property of the Schwarz symmetrization (see [1,10,16]), for u, φ ∈ W

s,N/s
V (RN ), we can

conclude that ∫
RN

Φα(u)|φ|dx ≤
∫
RN

Φα(u∗)|φ∗|dx,

where u∗, φ∗ are the Schwarz symmetrization of u and φ, respectively. Applying Hölder’s inequality, we get∫
{|x|≤R}

Φα(u)|φ|dx ≤
∫
RN

Φα(u∗)|φ∗|dx

≤
∫

{|x|≤R}
exp(α|u∗|N/N−s)|φ∗|dx

≤

(∫
{|x|≤R}

exp(rα|u∗|N/N−s)dx

)1/r (∫
|x|≤R

|φ∗|νdx

)1/ν

, (2.3)

where r > 1 is sufficiently close to 1 so that rα < αN,s and ν = r(r − 1)−1 > N/s and R > 0 is a number
to be determined later.

Let us recall two elementary inequalities. Since the function g : [0, ∞) → R given by

g(t) =
{[

(t + 1)
N

N−s − t
N

N−s − 1
] /

t
s

N−s , if t ̸= 0,

0, if t = 0.

is bounded on [0, ∞), there exists A = A(N, s) > 0 such that

(u + v)
N

N−s ≤ u
N

N−s + Au
s

N−s v + v
N

N−s , ∀u, v ≥ 0. (2.4)
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If ϵ and ϵ′ are positive real numbers such that ϵ + ϵ′ = 1, then for all ε > 0, by the Young inequality we have

uϵvϵ′
≤ εu + ε− ϵ

ϵ′ v, ∀u, v ≥ 0. (2.5)

Let

v(x) =
{

u∗(x) − u∗(Rx0) if x ∈ BR(0),
0 if x ∈ RN \ BR(0),

where x0 is some fixed point in RN with |x0| = 1. If x ∈ RN \ BR and y ∈ BR, then

u∗(x) ≤ u∗(y) and u∗(x) ≤ u∗(Rx0) ≤ u∗(y),

since u∗(x) is a decreasing function with respect to |x|. Thus,∫∫
R2N

|v(x) − v(y)|N/s

|x − y|2N
dxdy

=
∫

BR

∫
BR

|u∗(x) − u∗(y)|N/s

|x − y|2N
dxdy + 2

∫
BR

∫
RN \BR

|u∗(x) − u∗(Rx0)|N/s

|x − y|2N
dxdy

≤
∫

BR

∫
BR

|u∗(x) − u∗(y)|N/s

|x − y|2N
dxdy + 2

∫
BR

∫
RN \BR

|u∗(x) − u∗(y)|N/s

|x − y|2N
dxdy

=
∫∫

R2N

|u∗(x) − u∗(y)|N/s

|x − y|2N
dxdy,

which means that v ∈ W
s,N/s
0 (Ω).

By (2.4) and (2.5), we obtain

|u∗(x)|
N

N−s = |v + u∗(Rx0)|
N

N−s ≤ |v|
N

N−s + A|v|
s

N−s u∗(Rx0) + |u∗(Rx0)|
N

N−s ,

and
v

s
N−s u∗(Rx0) = (v

N
N−s ) s

N [(u∗(Rx0))
N

N−s ]
N−s

N ≤ ε

A
|v|

N
N−s +

( ε

A

)− s
N−s (u∗(Rx0))

N
N−s .

It follows that
|u∗|

N
N−s ≤ (1 + ε)|v|

N
N−s + C(ε, s, N)(u∗(Rx0))

N
N−s ,

where C(ε, s, N) = A
N

N−s ε
s

s−N + 1. Therefore,∫
|x|<R

exp(αr|u∗|
N

N−s )dx ≤ exp
(

C(ε, s, N)u∗(Rx0)
N

N−s

)∫
|x|<R

exp(rα|(1 + ε)v|
N

N−s )dx

≤ exp
(

C(ε, s, N)u∗(Rx0)
N

N−s

)∫
|x|<R

exp
(

rα((1 + ε)∥v∥)
N

N−s | v

∥v∥
|

N
N−s

)
dx.

Choosing ε > 0 and K small enough such that

r[(1 + ε)∥v∥]
N

N−s α ≤ r[(1 + ε)∥u∗∥]
N

N−s α ≤ r[(1 + ε)K]
N

N−s α < αN,s,

we get ∫
|x|<R

exp(rα|(1 + ε)v|
N

N−s )dx ≤ CN,s|BR(0)|,

thanks to the Trudinger–Moser inequality on bounded domains. Hence, we obtain∫
|x|<R

exp(αr|u∗|
N

N−s )dx ≤ CN,s
ωN−1RN

N
exp

(
C(ε, s, N)u∗(Rx0)

N
N−s

)
.
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Furthermore, (2.1) yields that∫
|x|<R

exp(αr|u∗|
N

N−s )dx ≤ CN,s
ωN−1RN

N
exp

(
C(ε, s, N)|R|−

sN
N−s

(
N

ωN−1

) s
N−s

K
N

N−s

)
.

Therefore, by (2.3), we arrive at∫
|x|<R

Φα(u)|φ|dx ≤ C(N, α, s, K)∥φ∥Lν (RN ). (2.6)

On the other hand, we have∫
|x|≥R

Φα(u∗)|φ∗|dx =
∫

|x|≥R

∞∑
j=k0

αj |u∗|
N

N−s j |φ∗|
j! dx,

where k0 is the smallest integer such that k0 ≥ p−1. Using (2.1), ∥u∗∥ ≤ ∥u∥ ≤ K and the Hölder inequality,
we get ∫

|x|≥R

|u∗|Nj/(N−s)|φ∗|dx

≤

((
N

V0ωN−1

)s/N

∥u∗∥

)Nj/(N−s) ∫
|x|≥R

|φ∗|
|x|Nsj/(N−s) dx

≤

((
N

V0ωN−1

)s/N

∥u∗∥

)Nj/(N−s)(∫
|x|≥R

1
|x|rNsj/(N−s) dx

)1/r (∫
|x|≥R

|φ∗|νdx

)1/ν

≤ ωN−1RN

((
N

V0ωN−1

)s/N

R−rsK

)Nj/(N−s)

∥φ∥Lν (RN ), (2.7)

for all j ≥ k0 > p − 1. Choosing

Rrs = K

(
N

V0ωN−1

)s/N

,

we can deduce from (2.7) that∫
|x|≥R

|u∗|Nj/(N−s)|φ∗|dx ≤ C(N, s, K)∥φ∥Lν (RN ) for all j ≥ k0. (2.8)

For the case k0 = p − 1, we have by the Hölder inequality,∫
|x|≥R

|u∗|N/s|φ∗|dx ≤

(∫
|x|≥R

|u∗|rN/s
dx

)1/r (∫
|x|≥R

|φ∗|νdx

)1/ν

≤ C(N, s, K)∥φ∥Lν(RN ). (2.9)

Here we have used the continuous embedding W
s,N/s
V (RN ) ↪→ LNr/s(RN ).

Combining (2.8) and (2.9), we can conclude that∫
|x|≥R

Φα(u∗)|φ∗|dx =
∞∑

j=k0

αj

j!

∫
|x|≥R

|u∗|Nj/(N−s)|φ∗|dx

≤ C(N, s, K)∥φ∥Lν (RN )

∞∑
j=k0

αj

j!

≤ C(N, s, K)∥φ∥Lν (RN ) exp(αN,s),

which together with (2.6) yields the desired result. □
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Similarly, we can obtain the following lemma.

Lemma 2.3. Let α < αN,s, N/s < q, u ∈ W
s,N/s
V (RN ) and ∥u∥ ≤ K with 0 < K <

(αN,s

α

)(N−s)/N . Then
there exists C(N, s, α, K) > 0 such that∫

RN
Φα(u)|u|qdx ≤ C(N, s, α, K)∥u∥q.

To study the nonnegative solutions of Eq. (1.1), we define the associated functional Iλ : W
s,N/s
V (RN ) → R

as
Iλ(u) = s

N
M (∥u∥N/s) −

∫
RN

F (x, u)dx − λ

∫
RN

h(x)|u+|pdx,

where u+ = max{u, 0}. Under the assumption (f1) and the fractional Trudinger–Moser inequality, one can
verify that Iλ is well defined, of class C1(W s,N/s

V (RN ),R), and

⟨I ′
λ(u), v⟩ = M(∥u∥N/s)

(
⟨u, v⟩s,N/s +

∫
RN

V (x)|u|N/s−2
uvdx

)
−
∫
RN

f(x, u)vdx − λ

∫
RN

h|u+|p−2
u+vdx,

for all u, v ∈ W
s,N/s
V (RN ). Hereafter, ⟨·, ·⟩ denotes the duality pairing between

(
W

s,N/s
V (RN )

)′ and
W

s,N/s
V (RN ). Clearly, the critical points of Iλ are exactly the weak solutions of Eq. (1.1). Moreover, the

following lemma shows that every nontrivial weak solution of problem (1.1) is nonnegative.

Lemma 2.4. Let (M1) and (f1) hold. If h(x) ≥ 0 for almost every x ∈ RN , then for all λ > 0 any
nontrivial critical point of functional Iλ is nonnegative.

Proof. Fix λ > 0 and let uλ ∈ W
s,N/s
V (RN ) \ {0} be a critical point of functional Iλ. Clearly,

u−
λ = max{−u, 0} ∈ W

s,N/s
V (RN ). Then ⟨I ′

λ(uλ), −u−
λ ⟩ = 0, a.e.

M(∥uλ∥N/s)
(

⟨uλ, u−
λ ⟩s,N/s +

∫
RN

V |uλ|N/s−2
uλ(−u−

λ )dx

)
=
∫
RN

f(x, uλ)(−u−
λ )dx + λ

∫
RN

h|u+
λ |p−2

u+
λ (−u−

λ )dx.

We observe that for a.e. x, y ∈ RN ,

|uλ(x) − uλ(y)|N/s−2(uλ(x) − uλ(y))(−u−
λ (x) + uλ(y)−)

=|uλ(x) − uλ(y)|N/s−2
u+

λ (x)u−
λ (y) + |uλ(x) − uλ(y)|N/s−2

u−
λ (x)u+

λ (y) + [u−
λ (x) − u−

λ (y)]N/s

≥|u−
λ − u−

λ (y)|N/s
,

f(x, uλ)u−
λ = 0 a.e. x ∈ RN by (f1) and∫

RN
V |uλ(x)|N/s−2

uλ(−u−
λ (x))dx =

∫
RN

V |u−
λ |N/s

dx.

Moreover, h|u+
λ |p−2

u+
λ (−u−

λ ) ≤ 0 a.e. in RN . Hence,

M(∥uλ∥N/s)
(

[u−
λ ]N/s

s,N/s + ∥u−
λ ∥N/s

N/s,V

)
≤ 0.

This, together with ∥uλ∥ > 0 and (M1), implies that u−
λ ≡ 0, that is uλ ≥ 0 a.e. in RN . This completes the

proof. □
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3. Proof of Theorem 1.1

Let us recall that Iλ satisfies the (PS)c condition in W
s,N/s
V (RN ), if any (PS)c sequence {un}n ⊂

W
s,N/s
V (RN ), namely a sequence such that Iλ(un) → c and I ′

λ(un) → 0 as n → ∞, admits a strongly
convergent subsequence in W

s,N/s
V (RN ).

In the sequel, we shall make use of the following general mountain pass theorem (see [4]).

Theorem 3.1. Let E be a real Banach space and J ∈ C1(E,R) with J(0) = 0. Suppose that

(i) there exist ρ, α > 0 such that J(u) ≥ α for all u ∈ E, with ∥u∥E = ρ;
(ii) there exists e ∈ E satisfying ∥e∥E > ρ such that J(e) < 0.

Define Γ = {γ ∈ C1([0, 1]; E) : γ(0) = 1, γ(1) = e}. Then

c = inf
γ∈Γ

max
0≤t≤1

J(γ(t)) ≥ α

and there exists a (PS)c sequence {un}n ⊂ E.

To find a mountain pass solution of problem (1.1), let us first verify the validity of the conditions of
Theorem 3.1.

Lemma 3.1 (Mountain Pass Geometry 1). Assume that (V1), (f1), and (f3) hold. Then for each λ > 0,
there exist ρλ > 0 and κ > 0 such that Iλ(u) ≥ κ > 0 for any u ∈ W

s,N/s
V (RN ), with ∥u∥ = ρλ.

Proof. By (f3), there exists τ, δ, Cε > 0 such that for all |u| ≤ δ

|F (x, u)| ≤ sM (1)
N

(λ1 − τ)|u|N/s for all x ∈ RN . (3.1)

Moreover, by (f1), for each q > N/s, we can find a constant C = C(q, δ) > 0 such that

F (x, u) ≤ C|u|qΦα(u) (3.2)

for all |u| ≥ δ and x ∈ RN . Combining (3.1) and (3.2), we obtain

F (x, u) ≤ sM (1)
N

(λ1 − τ)|u|N/s + C|u|qΦα(u) (3.3)

for all u ∈ R and x ∈ RN .
On the other hand, (M2) gives

M (t) ≥ M (1)tθ for all t ∈ [0, 1]. (3.4)

Thus, by using (3.3), (3.4) and the Hölder inequality, we obtain for all u ∈ W
s,N/s
V (RN ), with ∥u∥ ≤ 1 small

enough,

Iλ(u) ≥ sM (1)
N

∥u∥θN/s − sM (1)
N

(λ1 − τ)
λ1

∥u∥θN/s − C(N, s, α)∥u∥q − λ|h|∞∥u∥p

Lp(RN )

≥ τsM (1)
λ1N

∥u∥θN/s − C(N, s, α)∥u∥q − λ|h|∞Sp
p∥u∥p,

where Sp is the best constant from embedding W
s,N/s
V (RN ) to Lp(RN ). Since 1 < θN/s < p, q, we

can choose ρ ∈ (0, 1) such that τsM (1)
λ1N ρθN/s − C(N, s, α)ρq − λ|h|∞Sp

pρp > 0. Thus, Iλ(u) ≥ κ :=
τsM (1)

λ1N ρθN/s − C(N, s, α)ρq − λ|h|∞Sp
pρp > 0 for all u ∈ W

s,N/s
V (RN ), with ∥u∥ = ρ. □



86 M. Xiang, B. Zhang and D. Repovš / Nonlinear Analysis 186 (2019) 74–98

Lemma 3.2 (Mountain Pass Geometry 2). Assume that (f1)–(f2) hold. Then there exists a nonnegative
function e ∈ C∞

0 (RN ), independent of λ, such that Iλ(e) < 0 and ∥e∥ ≥ ρλ for all λ ∈ R+.

Proof. It follows from (M2) that

M (t) ≤ M (1)tθ for all t ≥ 1. (3.5)

Furthermore, F (x, t) ≥ 0 for all (x, t) ∈ RN × R by (f1) and (f2). Let u ∈ W
s,N/s
V (RN ) \ {0}, u ≥ 0 with

compact support Ω = supp(u) and ∥u∥ = 1. By (f2), we obtain that for µ > θN/s, there exist positive
constants C1, C2 > 0 such that

F (x, t) ≥ C1tµ − C2 for all x ∈ Ω and t ≥ 0. (3.6)

Then for all t ≥ 1, we have

Iλ(tu) ≤ s

N
M (1)tθN/s∥u∥θN/s − C1tµ

∫
Ω

|u|µdx + C2|Ω |.

Hence, Iλ(tu) → −∞ as t → ∞, since θN/s < µ. The lemma is now proved by taking e = Tu, with T > 0
so large that ∥e∥ ≥ ρλ and Iλ(e) < 0. □

By Theorem 3.1, there exists a (PS)c sequence {un}n ⊂ W
s,N/s
V (RN ) such that

Iλ(un) → cλ and I ′
λ(un) → 0 as n → ∞,

where
cλ = inf

γ∈Γ
max

t∈[0,1]
Iλ(γ(t)), (3.7)

and Γ =
{

γ ∈ C([0, 1]; W
s,N/s
V (RN )) : γ(0) = 0, Iλ(γ(1)) = e

}
. Obviously, cλ > 0 by Lemma 2.4. Moreover,

we have the following result.

Lemma 3.3. Suppose that V satisfies (V1)–(V2) and f satisfies (f1)–(f2). Then

lim
λ→∞

cλ = 0,

where cλ is given by (3.7).

Proof. For e given by Lemma 3.2, we have limt→∞ Iλ(te) = −∞. Therefore, there exists tλ > 0 such that
Iλ(tλe) = maxt≥0 Iλ(te). Hence, by I ′

λ(tλe) = 0, we have

t
N/s
λ M(∥tλe∥N/s)∥e∥N/s =

∫
RN

f(x, tλe)tλedx + λtp
λ

∫
RN

hepdx. (3.8)

Let us first claim that {tλ}λ is bounded. Arguing by contradiction, we assume that there exists a
subsequence of {tλ}λ still denoted by {tλ}λ such that tλ → ∞ as λ → ∞. Then for λ large enough,
by (M2) and (3.5) we get

θM (1)tNθ/s
λ ∥e∥Nθ/s ≥ λtp

λ

∫
RN

hepdx,

thanks to (f2). It follows from p > Nθ/s that tλ → 0 as λ → ∞ which is a contradiction. Hence {tλ}λ is
bounded.

Therefore, up to a subsequence, one can prove that tλ → 0 as λ → ∞. Put γ(t) = te. Clearly, γ ∈ Γ , thus
by the continuity of M , we have

0 < cλ ≤ max
t≥0

Iλ(γ(t)) = Iλ(tλe) ≤ 1
p
M (∥tλe∥N/s) → 0

as λ → ∞. The lemma is now proved. □
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Lemma 3.4. Let {un}n ⊂ W
s,N/s
V (RN ) be a (PS)cλ

sequence associated with Iλ. Then there exists Λ1 > 0
such that for all λ > Λ1, up to a subsequence still denoted by {un}n,

lim sup
n→∞

∥un∥ <

(
αN,s

α0

)N−s
N

.

Proof. We first claim that {un}n is bounded in W
s,N/s
V (RN ). Indeed, this follows from the fact that {un}n

is a (PS)cλ
sequence such that

Iλ(un) − 1
µ

⟨I ′
λ(un), un⟩ ≤ cλ + o(1) + o(1)∥un∥.

On the other hand, if Nθ/s < µ ≤ p, by (f2) we have

Iλ(un) − 1
µ

⟨I ′
λ(un), un⟩ =

(
s

Nθ
− 1

p

)
M(∥un∥N/s)∥un∥N/s

+
∫
RN

(
1
µ

f(x, un)un − F (x, un)
)

dx +
(

1
µ

− 1
p

)
λ

∫
RN

h(x)|un|pdx

≥
(

s

Nθ
− 1

µ

)
M(∥un∥N/s)∥un∥N/s.

Then (
s

Nθ
− 1

µ

)
M(∥un∥N/s)∥un∥N/s ≤ cλ + o(1) + o(1)∥un∥ (3.9)

which means that {un}n is bounded in W
s,N/s
V (RN ). Similarly, if µ > p, we obtain

Iλ(un) − 1
p

⟨I ′
λ(un), un⟩ =

(
s

Nθ
− 1

µ

)
M(∥un∥N/s)∥un∥N/s

+
∫
RN

(
1
p

f(x, un)un − F (x, un)
)

dx

≥
(

s

Nθ
− 1

p

)
M(∥un∥N/s)∥un∥N/s.

Then (
s

Nθ
− 1

p

)
M(∥un∥N/s)∥un∥N/s ≤ cλ + o(1) + o(1)∥un∥. (3.10)

If d := infn≥1 ∥un∥ > 0, then by (M1), (3.9) and (3.10) we get

lim sup
n→∞

∥un∥ ≤ max
{(

µNθκ(d)
µs − Nθ

) s
N

,

(
pNθκ(d)
ps − Nθ

) s
N

}
c

s
N
λ .

Hence by Lemma 3.3, there exists Λ1 > 0 such that for all λ > Λ1

lim sup
n→∞

∥un∥ <

(
αN,s

α0

)N−s
N

.

If d := infn≥1 ∥un∥ = 0, we can take a subsequence of {un}n such that the result holds. Thus, the proof is
complete. □

Lemma 3.5 (The (PS)cλ
condition). Let (V1)–(V2) and (f1)–(f2) hold. Then the functional Iλ satisfies the

(PS)cλ
condition for all λ > Λ1.
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Proof. Let {un}n be a (PS)cλ
sequence. Then by Lemma 3.4, passing to a subsequence, if necessary, we

obtain ∥un∥ → η ≥ 0. If η = 0, then the proof is complete. Thus, in the sequel we can assume that η > 0.
Then for n large, ∥un∥ ≥ 1

2 η > 0.
Next, we show that {un}n has a convergent subsequence in W

s,N/s
V (RN ). By Lemma 3.4 and Theorem 2.1,

passing if necessary to a subsequence, we can assume that

un ⇀ u weakly in W
s,N/s
V (RN ),

un → u strongly in Lν(RN )(ν ≥ N/s),
un → u a.e. in RN . (3.11)

Since {un}n is a bounded (PS)c sequence in W
s,N/s
V (RN ), we have

o(1) = ⟨I ′
λ(un), un − u⟩

= M(∥un∥N/s)
(

⟨un, un − u⟩s,N/s +
∫
RN

V |un|
N
s −2

un(un − u)dx

)
−
∫
RN

[
f(x, un)(un − u) + λh(x)|u+

n |p−2
u+

n (un − u)
]

dx. (3.12)

Define a functional L as follows

⟨L(v), w⟩ = ⟨v, w⟩s,N/s +
∫
RN

V (x)|v|
N
s −2

vwdx

for all v, w ∈ W
s,N/s
V (RN ). By the Hölder inequality, one can see that

|⟨L(v), w⟩| ≤ ∥v∥N/s−1∥w∥,

which together with the definition of L implies that for each v, L(v) is a bounded linear functional on
W

s,N/s
V (RN ). Thus, ⟨L(u), un − u⟩ = o(1), that is,

⟨u, un − u⟩s,N/s +
∫
RN

V (x)|u|N/s−2
u(un − u)dx = o(1).

Similarly, one can deduce that

lim
n→∞

∫
RN

h(x)|u+
n |p−2

u+
n (un − u)dx = 0.

Using assumptions (f1) and (f2), we have⏐⏐⏐⏐∫
RN

f(x, un)(un − u)dx

⏐⏐⏐⏐ ≤ b1

∫
RN

|un|Nθ/s−1|un − u|dx + b2

∫
RN

Φα(un)|un − u|dx.

Further, by the Holder inequality, we get∫
RN

|un|Nθ/s−1|un − u|dx ≤ ∥un∥Nθ/s−1
LNθ/s(Rn)

∥un − u∥LNθ/s(RN )

≤ C∥un − u∥LNθ/s(RN ) → 0 as n → ∞.

On the other hand, by Lemmas 2.2 and 3.4, for some ν > Nθ/s we obtain∫
RN

Φα(un)|un − u|dx

≤ C∥un − u∥Lν (RN ) → 0 as n → ∞.
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In conclusion, we can deduce from (3.12) that

M(∥un∥N/s)
[
⟨un, un − u⟩s,N/s − ⟨u, un − u⟩s,N/s

+
∫
RN

V (x)
(

|un|N/s−2
un − |u|N/s−2

u
)

(un − u)dx

]
= o(1).

By using the following inequality:

(|ξ|N/s−2
ξ − |η|N/s−2

η) · (ξ − η) ≥ Cs,N |ξ − η|N/s
, N ≥ 2 > 2s,

we can easily obtain that ∥un − u∥ → 0 as n → ∞. Thus, the proof is complete. □

Proof of Theorem 1.1. By Lemmas 3.1 and 3.2, we know that Iλ satisfies all assumptions of Theorem 3.1.
Hence there exists a (PS)cλ

sequence. Moreover, by Lemma 3.5, there exists a threshold λ∗ = Λ1 > 0 such
that for all λ > λ∗ the functional Iλ admits a nontrivial critical point u ∈ W

s,N/s
V (RN ). The critical point

uλ is a mountain pass solution of Eq. (1.1). Using a similar discussion as in Lemma 3.4, we can deduce that
∥uλ∥ → 0 as λ → ∞. Furthermore, Lemma 2.4 shows that u is nonnegative. □

4. Proof of Theorem 1.2

Throughout this section we always assume that the conditions in Theorem 1.2 hold. To prove Theorem 1.2,
we first state several basic results.

Lemma 4.1. There exist Λ2 > 0 and δ2 > 0 such that for 0 < λ < Λ2, there exists ρ̃λ > 0 such that
Iλ(u) ≥ δ2 > 0 for any u ∈ W

s,N/s
V (RN ), with ∥u∥ = ρ̃λ. Furthermore, ρ̃λ can be chosen so that ρ̃λ → 0 as

λ → 0.

Proof. By using (3.3) and (3.4) and the Hölder inequality, we obtain for all u ∈ W
s,N/s
V (RN ), with ∥u∥ ≤ 1

small enough,

Iλ(u) ≥ sM (1)
N

∥u∥θN/s − sM (1)
N

(λ1 − τ)
λ1

∥u∥θN/s − C(N, s, α)∥u∥q − λ∥h∥
L

N
N−sp (RN )

∥u∥p

LN/s(RN )

= τsM (1)
λ1N

∥u∥θN/s − C(N, s, α)∥u∥q − λSp
p∥h∥

L
N

N−sp (RN )
∥u∥p.

Hence,
Iλ(u) ≥

(
τsM (1)

λ1N
∥u∥θN/s−p − C(N, s, α)∥u∥q−p − λSp

p∥h∥
L

N
N−sp (RN )

)
∥u∥p.

Since 1 < p < θN/s < q, we can choose ρ̃λ ∈ (0, 1) such that τsM (1)
λ1N ρ̃

θN/s−1
λ − C(N, s, α)ρ̃q−1

λ > 0. Thus,

Iλ(u) ≥ δ1 :=
(

τsM (1)
λ1N ρ̃

θN/s−p
λ − C(N, s, α)ρ̃q−p

λ − λSp
p∥h∥

L
N

N−sp (RN )

)
ρ̃p

λ > 0 for all u ∈ W
s,N/s
V (RN ), with

∥u∥ = ρ̃λ and all 0 < λ < Λ2 :=
(

τsM (1)
λ1N ρ̃

θN/s−p
λ − C(N, s, α)ρ̃q−p

λ

)
/(Sp

p∥h∥
L

N
N−sp (RN )

). □

Lemma 4.2. There exists Λ3 > 0 such that for all 0 < λ < Λ3, the functional Iλ satisfies the (PS)c

condition for c ≤ 0.

Proof. Fix c ≤ 0 and assume that {un}n ⊂ W
s,N/s
V (RN ) satisfies

Iλ(un) → c, I ′
λ(un) → 0 as n → ∞.

If d := infn≥1 ∥un∥ = 0, then up to a subsequence, we can get that un → 0 in W
s,N/s
V (RN ).
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In the following, we assume that d := infn≥1 ∥un∥ > 0. Proceeding as in (3.9), we can deduce(
s

Nθ
− 1

µ

)
M(∥un∥N/s)∥un∥N/s ≤ λ

(
1
p

− 1
µ

)
Sp

p∥h∥
L

N
N−sp (RN )

∥un∥p + c + o(1) + o(1)∥un∥,

which means that {un}n is bounded in W
s,N/s
V (RN ). By (M1), we then get[(

s

Nθ
− 1

µ

)
κ(d)∥un∥N/s−p − λ

(
1
p

− 1
µ

)
Sp

p∥h∥
L

N
N−sp (RN )

]
∥un∥p ≤ o(1) + o(1)∥un∥.

It follows that

lim sup
n→∞

∥un∥ ≤

⎡⎣ κ(d)(
s

Nθ − 1
µ

)λ

(
1
p

− 1
µ

)
Sp

p∥h∥
L

N
N−sp (RN )

⎤⎦ s
N−sp

Set

Λ3 = p(sµ − Nθ)
κ(d)Nθ(µ − p)Sp

p∥h∥
L

N
N−sp (RN )

(
αN,s

α0

) (N−s)(Nθ−s)
Ns

.

Then for all 0 < λ < Λ3, we get

lim sup
n→∞

∥un∥ <

(
αN,s

α0

)N−s
N

.

By using the same argument as in Lemma 3.5, we can prove that Iλ satisfies the (PS)c condition for all
c ≤ 0. □

Proof of Theorem 1.2. Choosing a function 0 ≤ v ∈ W
s,N/s
V (RN )\{0} with ∥v∥ = 1 and

∫
RN h(x)vpdx >

0, we can deduce from (f2) that

Iλ(tv) ≤
(

max
0≤τ≤1

M(τ)
)

stN/s

N
− λtp

∫
RN

h(x)|v|pdx

for all 0 ≤ t ≤ 1. Since N/s > p, it follows that Iλ(tv) < 0 for t ∈ (0, 1) small enough. Thus,

c = inf
u∈B

ρ̃λ

Iλ(u) < 0 and inf
u∈∂B

ρ̃λ

Iλ(u) > 0,

where ρ̃λ > 0 is given by Lemma 4.1 and B
ρ̃λ

= {u ∈ W
s,N/s
V (RN ) : ∥u∥ < ρ̃λ}. We can choose λ small

enough such that

ρ̃λ <

(
αN,s

α0

)(N−s)/N

.

Let εn → 0 be such that
0 < εn < inf

u∈∂Bρ̃λ

Iλ(u) − inf
u∈Bρ̃λ

Iλ(u). (4.1)

By Ekeland’s variational principle, there exists {un} ⊂ Bρ̃λ
such that

c ≤ Iλ(un) ≤ c + εn

and
Iλ(un) < Iλ(w) + ε∥un − w∥, ∀w ∈ Bρ̃λ

, w ̸= un.

Then, from (4.1) and the definition of c, we get

Iλ(un) ≤ c + εn = inf
u∈Bρ̃λ

Iλ(u) + εn < inf
u∈∂Bρ̃λ

Iλ(u)

and thus {un}n ⊂ B
ρ̃λ

.
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Consider the sequence vn = un + tφ ⊂ B
ρ̃λ

for all φ ∈ B1 and t > 0 small enough. Then it follows that

Iλ(un + tφ) − Iλ(un)
t

≥ −εn∥φ∥.

Passing to the limit as t → 0, we deduce

⟨I ′
λ(un), φ⟩ ≥ −εn∥φ∥, ∀φ ∈ B1.

Replacing φ with −φ, we have
⟨I ′

λ(un), −φ⟩ ≥ −εn∥φ∥, ∀φ ∈ B1.

Then
|⟨I ′

λ(un), φ⟩| ≤ εn, ∀φ ∈ B1

and thus
∥I ′

λ(un)∥ → 0 as n → ∞.

Therefore there exists a sequence {un}n ⊂ Bρλ
such that Iλ(un) → c ≤ 0 and I ′(un) → 0, as n → ∞.

Observing that

∥un∥ ≤ ρ̃λ <

(
αN,s

α0

)(N−s)/N

,

by Lemma 4.2, there exists 0 < λ∗ ≤ min{Λ2,Λ3} such that for all λ ∈ (0, λ∗), {un}n has a convergent
subsequence, still denoted by {un}n, such that un → uλ in W

s,N/s
V (RN ). Thus, uλ is a nontrivial nonnegative

solution with Iλ(uλ) < 0. Moreover, ∥uλ∥ ≤ ρ̃λ → 0 as λ → 0. Hence, the proof is complete. □

5. Proof of Theorem 1.3

In this section, we discuss the multiplicity of solutions for (1.1). To this end, we first recall some basic
notions about the Krasnoselskii genus.

Let X be a Banach space and A a subset of X. A is said to be symmetric if u ∈ A implies −u ∈ A. Let
us denote by Ξ the family of closed symmetric subsets A ⊂ X \ {0}.

Definition 5.1. Let A ∈ Ξ . The Krasnoselskii genus γ(A) of A is defined as the least positive integer k

such that there is an odd mapping φ ∈ C(A,Rk) such that φ(x) ̸= 0 for all x ∈ A. If k does not exist, we
set γ(A) = ∞. Furthermore, by definition, γ(∅) = 0.

In the sequel we list some properties of the genus that will be used later. For more details on this subject,
we refer to [42].

Proposition 5.1. Let A, B be sets in Ξ .

(1) If there exists an odd map φ ∈ C(A, B), then γ(A) ≤ γ(B).
(2) If A ∈ Γ and γ(A) ≥ 2, then A has infinitely many points.
(3) If A ⊂ B, then γ(A) ≤ γ(B).
(4) γ(A

⋃
B) ≤ γ(A) + γ(B).

(5) If S is a sphere centered at the origin in Rk, then γ(S) = k.
(6) If A is compact, then γ(A) < ∞ and there exists δ > 0 such that Nδ(A) ∈ Ξ and γ(Nδ(A)) = γ(A),

where Nδ(A) = {x ∈ X : ∥x − A∥ ≤ δ}.
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Define
Iλ(u) = s

N
M (∥u∥N/s) −

∫
RN

F (x, u)dx − λ

∫
RN

h(x)|u|pdx,

for all u ∈ W
s,N/s
V (RN ). Clearly, under assumption (f1), Iλ ∈ C1(W s,N/s

V (RN ),R) and the critical points
are the weak solutions of (1.1).

Following the ideas of [6] (see also [22]), we construct a truncated functional Jλ such that critical points
u of Jλ with Jλ(u) < 0 are also critical points of Iλ. Since the system (1.1) contains a nonlocal coefficient
M(∥u∥N/s) and the operator (−∆)s

N/s is nonlocal, our task is complicated. To overcome these difficulties in
the building of Jλ, we split the discussion into two cases ∥u∥ ≤ 1 and ∥u∥ > 1.

Case 1 : ∥u∥ ≤ 1. By (f1) and (f ′
3), we obtain for any τ ∈ (0, λ1) and q > Nθ/s there exists C > 0 such that

F (x, u) ≤ (a + b) s

N
(λ1 − τ)|u|Nθ/s + C|u|qΦα(u)

for all u ∈ R and x ∈ RN . Furthermore, from the definition of I, there exist τ ∈ (0, λ1) and C(N, s, α) > 0
such that

Iλ(u) ≥ τs(a + b)
λ1N

∥u∥θN/s − C(N, s, α)∥u∥q −
λSp

N/s

p
∥h∥

L
N

N−sp (RN )
∥u∥p

for all u ∈ W
s,N/s
V (RN ) with ∥u∥ ≤ 1, where SN/s is the embedding constant from W

s,N/s
V (RN ) to LN/s(RN ).

Define

Gλ(t) = τs(a + b)
λ1N

tθN/s − C(N, s, α)tq −
λSp

N/s

p
∥h∥

L
N

N−sp (RN )
tp,

for all t ≥ 0. Then
Iλ(u) ≥ Gλ(∥u∥) (5.1)

for all u ∈ W
s,N/s
V (RN ) with ∥u∥ ≤ 1. Since p < θN/s < q, there exists λ∗∗ ∈ (0, λ∗] small enough such

that Gλ attains its positive maximum for λ ∈ (0, λ∗∗). Here λ∗ > 0 is given by Theorem 1.2. Denote by
0 < T0(λ) < T1(λ) the unique two positive roots of Gλ(t) = 0. Indeed, to get the solutions of Gλ(t) = 0 for
all t > 0, one can consider G̃λ defined as

G̃λ(t) =
[

τs(a + b)
λ1N

tθN/s−p − C(N, s, α)tq−p −
λSp

N/s

p
∥h∥

L
N

N−sp (RN )

]
tp

for all t ≥ 0.
Actually, T0(λ) has the following property.

Lemma 5.1. limλ→0+ T0(λ) = 0.

Proof. By Gλ(T0(λ)) and G′
λ(T0(λ)) > 0, we have

τs(a + b)
λ1N

T0(λ)Nθ/s =
λSp

N/s

p
∥h∥

L
N

N−sp
(RN )T0(λ)p + C(N, s, α)T0(λ)q (5.2)

and
τθ(a + b)

λ1
T0(λ)Nθ/s−1 > λSp

N/s∥h∥
L

N
N−sp (RN )

T0(λ)p−1 + qC(N, s, α)T0(λ)q−1. (5.3)

Combining (5.2) and (5.3), we get

T0(λ) ≤
(

(a + b)(Nθ − ps)τ
λ1N(q − p)C(N, s, α)

) s
sq−Nθ

,
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which means that T0(λ) is uniformly bounded with respect to λ. Fix any sequence {λk}k ⊂ (0, ∞), with
λk → 0 as k → ∞. Assume that T0(λk) → T0 as k → ∞. Then by (5.2) and (5.3), we have

τs(a + b)
λ1N

T
Nθ/s
0 = C(N, s, α)T q

0 (5.4)

and
τθ(a + b)

λ1
T

Nθ/s−1
0 ≥ qC(N, s, α)T q−1

0 . (5.5)

It follows from (5.4) and (5.5) that (
s

N
− θ

q

)
τ(a + b)

λ1
T

Nθ/s
0 ≤ 0,

which implies that T0 = 0, thanks to q > Nθ/s. The arbitrary choice of {λk}k yields that limλ→0+ T0(λ) = 0.
This completes the proof. □

By Lemma 5.1, we can assume that T0(λ) < 1 for small enough λ. Thus, T0(λ) < min{T1(λ), 1}. Take
Ψ ∈ C∞

0 ([0, ∞)), 0 ≤ Ψ(τ) ≤ 1 for all τ ≥ 0 and

Ψ(t) =
{

1, if t ∈ [0, T0(λ)],
0, if t ∈ [min{T1(λ), 1}, ∞).

Then we define the functional

Jλ(u) = s

N
M (∥u∥N/s) − λ

p

∫
RN

h(x)|u|pdx − Ψ(∥u∥)
∫
RN

F (x, u)dx.

One can easily verify that Jλ ∈ C1(W s,N/s
V (RN ),R) and Jλ(u) ≥ Hλ(∥u∥) for all u ∈ W

s,N/s
V (RN ) with

∥u∥ < 1, where

Hλ(t) := τs(a + b)
λ1N

tθN/s − C(N, s, α)Ψ(t)tq −
λSp

N/s

p
∥h∥

L
N

N−sp (RN )
tp. (5.6)

Clearly, Hλ(t) ≥ Gλ(t) ≥ 0 for all t ∈ (T0(λ), min{T1(λ), 1}]. By the definitions of Iλ and Jλ, we know
that Iλ(u) = Jλ(u) for all ∥u∥ ≤ T0(λ) < min{T1(λ), 1}. Let u be a critical point of Jλ with Jλ(u) < 0. If
∥u∥ < T0(λ), then u is also a critical point of Iλ. To show that ∥u∥ < T0(λ) it is important to ensure that
Jλ(u) ≥ 0 when ∥u∥ ≥ 1.

Case 2 : ∥u∥ > 1. Note that in this case we always have Ψ(∥u∥) = 0. Hence, for all ∥u∥ > 1, we obtain by
(M3) that

Jλ(u) = s

N
M (∥u∥N/s) − λ

p

∫
RN

h(x)|u|pdx

≥ s(a + b)
N

∥u∥N/s − λ

p
Sp

N/s∥h∥
L

N
N−sp (RN )

∥u∥p

= g̃(∥u∥),

where g̃ : [0, ∞) → R is defined by

g̃(t) = s(a + b)
N

tN/s − λ

p
Sp

N/s∥h∥
L

N
N−sp (RN )

tp.

It is easy to check that g̃ has a global minimum point at tλ =
(

1
(a+b) λSp

N/s∥h∥
L

N
N−sp (RN )

) s
N−sp

and

g̃(tλ) =
(

1
(a + b)

sp
N

λSp
N/s∥h∥

L
N

N−sp (RN )

) N
N−sp (

s

N
− 1

p

)
< 0,
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being p < N/s. Observe that g̃(t) ≥ 0 if and only if t ≥
(

λNS
p
N/s

sp(a+b) ∥h∥
L

N
N−sp (RN )

) s
N−sp

:= t0. Thus, to

ensure that Jλ(u) ≥ 0 for all ∥u∥ ≥ 1, we let t0 < 1, that is, λ < sp(a+b)
NS

p
N/s

∥h∥
L

N
N−sp (RN )

:= λ0. Hence, we take

λ∗∗ ≤ λ0. Then for each λ ∈ (0, λ∗∗) we have Jλ(u) ≥ 0 for any ∥u∥ > 1.

Lemma 5.2. Let λ ∈ (0, λ∗∗). If Jλ(u) < 0, then ∥u∥ < T0(λ) and Jλ(v) = Iλ(v) for all v in a small
enough neighborhood of u. Moreover, Jλ satisfies a local (PS)c condition for all c < 0.

Proof. Since λ ∈ (0, λ∗∗), Jλ(u) ≥ 0 for all ∥u∥ ≥ 1. Thus, if Jλ(u) < 0 we have ∥u∥ < 1 and consequently
Gλ(∥u∥) ≤ Jλ(u) < 0. Therefore ∥u∥ < T0(λ) and Jλ(u) = Iλ(u). Moreover, Jλ(v) = Iλ(v) for all v satisfying
∥v − u∥ < T0(λ) − ∥u∥. Let {un}n be a sequence such that Jλ(un) → c < 0 and J ′

λ(un) → 0. Then for n

sufficiently large, we have Iλ(un) = Jλ(un) → c < 0 and I ′
λ(un) = J ′

λ(un) → 0. Note that Jλ is coercive in
W

s,N/s
V (RN ). Thus, {un}n is bounded in W

s,N/s
V (RN ). By using a similar discussion as Lemma 4.2, up to a

subsequence, {un}n is strongly convergent in W
s,N/s
V (RN ). □

Remark 5.1. Set Kc = {u ∈ W
s,N/s
V (RN ) : J ′

λ(u) = 0, Jλ(u) = c}. If λ ∈ (0, λ∗∗) and c < 0, it follows
from Lemma 5.2 that Kc is compact.

Next, we will construct an appropriate mini–max sequence of negative critical values for the functional
Jλ. For ϵ > 0, we define

J−ϵ
λ = {u ∈ W

s,N/s
V (RN ) : Jλ(u) ≤ −ϵ}.

Lemma 5.3. For any fixed k ∈ N there exists ϵk > 0 such that

γ(J−ϵk
λ ) ≥ k.

Proof. Denote by Ek a k-dimensional subspace of W
s,N/s
V (RN ). For any u ∈ Ek, u ̸= 0, set u = rkv with

v ∈ Ek, ∥v∥ = 1 and rk = ∥u∥. By the assumption on h, we know that (
∫
RN h(x)|v|pdx)1/p is a norm of Ek.

Since all norms are equivalent in a finite-dimensional Banach space, for each v ∈ Ek with ∥v∥ = 1, there
exists Ck > 0 such that ∫

RN
h(x)|v|pdx ≥ Ck.

Thus, for rk ∈ (0, T0(λ)), we have

Jλ(u) = Iλ(u) = s

N
M (∥u∥N/s) − λ

p

∫
R3

h(x)|u|pdx −
∫
RN

F (x, u)dx

≤ s(a + b)
N

r
Nθ/s
k − λ

p
Ckrp

k.

Since p < Nθ/s, we can choose rk ∈ (0, T0(λ)) so small that Jλ(u) ≤ −ϵk < 0. Set Srk
= {u ∈ W

s,N/s
V (RN ) :

∥u∥ = rk}. Then Srk

⋂
Ek ⊂ J

−ϵk
λ . Hence, it follows from Proposition 5.1 that γ(J−ϵk

λ ) ≥ γ(Srk

⋂
Ek) =

k. □

Set Ξk = {A ∈ Ξ : γ(A) ≥ k} and let

ck := inf
A∈Ξk

sup
u∈A

Jλ(u). (5.7)

Then,
−∞ < ck ≤ −ϵk < 0, ∀k ∈ N,
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since J
−ϵk
λ ∈ Ξk and Jλ is bounded from below. By (5.7), we have ck < 0. Since Jλ satisfies (PS)c condition

by Lemma 5.2, it follows by a standard argument that all ck are critical values of Jλ.

Lemma 5.4. Let λ ∈ (0, λ∗∗). If c = ck = ck+1 = · · · = ck+m for some m ∈ N, then γ(Kc) ≥ m + 1.

Proof. Arguing by contradiction, we assume that γ(Kc) ≤ m. By Remark 5.1, we know that Kc is compact
and Kc ∈ Ξ . It follows from Proposition 5.1 that there exists δ > 0 such that

γ(Kc) = γ(Nδ(Kc∞)) ≤ m.

From the deformation lemma (see [42, Theorem A.4]), there exist 0 < ϵ < −c, and an odd homeomorphism
η : W

s,N/s
V (RN ) → W

s,N/s
V (RN ) such that

η(Jc+ϵ
λ \ Nδ(Kc)) ⊂ Jc−ϵ

λ . (5.8)

On the other hand, by the definition of c = ck+m, there exists A ∈ Ξk+m such that supu∈A Jλ(u) < c + ϵ,
which means that

A ⊂ Jc+ϵ
λ .

It follows from Proposition 5.1 that

γ(A \ Nδ(Kc)) ≥ γ(A) − γ(Nδ(Kc)) ≥ k

and

γ(η(A \ Nδ(Kc))) ≥ k.

Thus,

η(A \ Nδ(Kc)) ∈ Ξk,

which contradicts (5.8). This completes the proof. □

Proof of Theorem 1.3. Let λ ∈ (0, λ∗∗). If −∞ < c1 < c2 < · · · < ck < · · · < 0, since ck are critical
values of Jλ, we obtain infinitely many critical points of Jλ. From Lemma 5.2, Iλ = Jλ if Jλ < 0. Hence
system (1.1) has infinitely many solutions.

If there exist ck = ck+m, then c = ck = ck+1 = · · · = ck+m. By Lemma 5.4 , we have γ(Kc) ≥ m + 1 ≥ 2.
From (2) of Proposition 5.1, Kc has infinitely many points. Thus, system (1.1) has infinitely many solutions.
The proof is now complete. □

It is natural to consider the existence of infinitely many solutions for problem (1.1) in the case
1 < p < Nθ/s. For this, we replace M(t) = a + bθtθ−1 with M(t) = tθ−1. Hence, by employing the
same approach as Theorem 1.3, we can get the following result.

Corollary 5.1. Assume that V satisfies (V1)–(V2), and f satisfies (f1)–(f3). If 1 < p < Nθ/s and
0 ≤ h ∈ L

Nθ
Nθ−sp (RN ), then there exists λ∗∗ ∈ (0, λ∗] such that for all 0 < λ < λ∗∗, problem (1.1) has

infinitely many solutions in W
s,N/s
V (RN ).
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6. Extensions to a nonlocal integro-differential operator

In this section, we show that Theorems 1.1–1.2 remain valid when (−∆)s
N/s in (1.1) is replaced by a

nonlocal integro-differential operator LK, defined by

LK(φ) = 2 lim
ε→0+

∫
RN \Bε(x)

|φ(x) − φ(y)|
N
s −2(φ(x) − φ(y))K(x − y)dxdy,

along any function φ ∈ C∞
0 (RN ), where the singular kernel K : RN \ {0} → R+ satisfies the following

properties:

(k1) mK ∈ L1(RN ), where m(x) = min{1, |x|N/s};
(k2) there exists K0 > 0 such that K(x) ≥ K0|x|−2N for all x ∈ RN \ {0}.

Obviously, LK reduces to the fractional N/s-Laplacian (−∆)s
N/s when K(x) = |x|−2N .

Let us denote by W
s,N/s
V,K (RN ) the completion of C∞

0 (RN ) with respect to the norm

∥u∥V,K =
(
[u]N/s

s,K + ∥u∥N/s
N/s,V

)s/N
, [u]s,K =

(∫∫
R2N

|u(x) − u(y)|N/sK(x − y)dxdy

)s/N

,

here we apply (k1). Clearly, the embedding W
s,N/s
V,K (RN ) ↪→ W

s,N/s
V (RN ) is continuous, being

[u]s,N/s ≤ K−1/p
0 [u]s,K for all u ∈ W

s,N/s
V,K (RN ),

by (k2). Hence Theorem 2.1 remains valid and the embedding W
s,N/s
V,K (RN ) ↪→↪→ Lν(RN ) is compact for all

ν ≥ N/s by virtue of (V1) and (V2).
A (weak) solution of

M(∥u∥N/s
V,K )[LK(u) + V (x)|u|N/s−2

u] = f(x, u) + λh(x)|u|p−2
u in RN (6.1)

is a function u ∈ W
s,N/s
V,K (RN ) such that

M(∥u∥N/s
V,K )

(
⟨u, φ⟩s,K +

∫
RN

V |u|
N
s −2

uφdx

)
=
∫
RN

f(x, u)φdx + λ

∫
RN

h(x)|u|p−2
uφdx,

⟨u, φ⟩s,K =
∫∫

R2N
|u(x) − u(y)|

N
s −2(u(x) − u(y))(φ(x) − φ(y))K(x − y)dxdy,

for all φ ∈ W
s,N/s
V,K (RN ).

Here we point out that it is not restrictive to assume K to be even, as in [5], since the odd part of K does
not give contribution in the integral of the left hand side. Indeed, we can write K(x) = Ke(x) + Ko(x) for
all x ∈ RN \ {0}, where

Ke(x) = K(x) + K(−x)
2 and Ko(x) = K(x) − K(−x)

2 .

Then by a direct calculation, one can get that

⟨u, φ⟩s,K =
∫∫

R2N
|u(x) − u(y)|p−2(u(x) − u(y))(φ(x) − φ(y))Ke(x − y)dxdy,

for all u and φ ∈ W
s,N/s
V,K (RN ). Thus, it is not restrictive to assume that K is even.

The nontrivial solutions of (6.1) correspond to the critical points of the energy functional Iλ,K :
W

s,N/s
V,K (RN ) → R, defined by

Iλ,K(u) = s

N
M (∥u∥N/s

V,K ) −
∫
RN

F (x, u)dx − λ

p

∫
RN

h|u+|pdxdy



M. Xiang, B. Zhang and D. Repovš / Nonlinear Analysis 186 (2019) 74–98 97

for all u ∈ W
s,N/s
V,K (RN ). Now we are able to prove the following results for problem (6.1) by employing the

parallel approach as in Theorems 1.1–1.3.

Theorem 6.1. Assume that V satisfies (V1)–(V2), that f satisfies (f1)–(f2) and M fulfills (M1)–(M2). If
0 ≤ h ∈ L∞(RN ) and Nθ/s < p < ∞, then there exists λ̃∗ > 0 such that for all λ > λ̃∗ problem (6.1) admits
a nontrivial nonnegative mountain pass solution uλ ∈ W

s,N/s
V,K (RN ). Moreover,

lim
λ→∞

∥uλ∥V,K = 0.

Theorem 6.2. Assume that V satisfies (V1)–(V2), f satisfies (f1)–(f3), and M fulfills (M1)–(M2). If
1 < p < N/s and 0 ≤ h ∈ L

N
N−sp (RN ), then there exists λ̃∗ > 0 such that for all λ ∈ (0, λ̃∗) problem (6.1)

admits a nontrivial nonnegative solution uλ ∈ W
s,N/s
V,K (RN ). Moreover,

lim
λ→0

∥uλ∥V,K = 0.

Moreover, we can prove the multiplicity of solutions.

Theorem 6.3. Assume that V satisfies (V1)–(V2), f satisfies (f1)–(f3), and M(t) = a + bθtθ−1 for all
t ≥ 0, with a, b ≥ 0, a + b > 0 and θ > 1. If 1 < p < Nθ/s and 0 ≤ h ∈ L

Nθ
Nθ−sp (RN ), then there exists

λ̃∗∗ ∈ (0, λ̃∗] such that for all λ ∈ (0, λ̃∗∗) problem (6.1) has infinitely many solutions in W
s,N/s
V,K (RN ).
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