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Abstract

We prove the following theorem: Suppose that m 2 3(n + 1)/2 and that f: K — R is a PL
map of an n-dimensional finite polyhedron K. Then f is approximable by embeddings if and only
if there exists an equivariant homotopical extension @ : K — .’:”'" of the map f: KT — §m"
defined by f(r.y) = (f(x) ~ f())/ (@) = FI). where KT = {(x,y) € K x K | f(x) #
J{y)}. Our result is a controlled version of the classical deleted product criterion of embeddability
of n-dimensional polyhedra in R™. The proot requires additional (compared with the classical
result) general position arguments, for which the restriction m. 22 3(n + 1) /2 is again necessary. We
also introduce the van Kampen obstruction for approximability by embeddings. @ 1998 Published
by Elsevier Science B.V.
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1. Introduction

The main goal of this paper is to prove a controlled version of the following classical
result:
Theorem 1.1 [28,35,36]. For every integer m = 3(n + 1)/2, every n-dimensional finite

polyhedron K is embeddable in R™ if and only if there exists a Zn-equivariant map
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®: K — S Moreover; for each such ® there exists an embedding o : K~ R"™ such
that p~®.
eq

Here K = {(z.y) € K x K | # y}. and the involutions on K and S ' © R™ are
given by (x,y) — (y.x) and .r — —ua, respectively. For any embedding v : K* — R™,
the map : K — S is defined by

-~ elr) —¢ly)

olr,y) = - —

Y = A
For any map f: K — R, let

K = {(e,y) € K x K| f(x) # fly)}

and define the map f: A/ -~ §"=U by f(r.y) = (f(z) = fu))/(| F(x) ~ f(y)])- By
a polyhedron we always mean a finite polyhedron.

Theorem 1.2. If a PL-map [: K — R" of an n-dimensional polyhedron K is approx-

imable by (PL or TOP) embeddings then there exists an equivariant map & : K —» 5™~

such thatr 9| wr 2 o Foreveryn 2 3(n+ 1)/2 this condition is also sufficient, whereas
eq

~

form < 3(n+1)/2 it need not be. Moreover, when m > 3(n+1)/2, [ is approximable
by embeddings ¢ such that p il D, for each such &.

Inverse limits criteria [25.29] reduce, roughly speaking, embeddability of compacta
into R™ to embeddability of /°L-maps between polyhedra in R™. A map f: K = M is
said to be embeddable. or realizable in R via an embedding «': A7 — R if o o fis
approximable by embeddings. Examples [29] show that this notion is rather geometric
and is also interesting by itself (see also [1.2,16]). Suppose that m = 3{n + 1}/2 and
that f: K — M is a PL-map between polyhedra A and M of dimensions at most n.
It follows by Theorem 1.2 that f is embeddable in R™ via an embedding ¢ : A/ — R"™
if and only if there exists an equivariant map @ A — S§"=! such that (]’jl:._( ‘N:l ¢ o 1.

where f(r,y) = (f(x). f(y)) (see diagram (1.1)).

~ b .
K— sm 1

J Tnp (1.1

R —=a1
Perhaps this criterion can be used to study embeddability of compacta in R™. in particular
to attack Borsuk’s conjecture that every contractible locally contractible n-dimensional
compactum (CAR) is embeddable into R*". Approximability by embeddings of every
map of a compactum K into R™ was studied in [6] as a general position property.
Theorem 1.2 can be compared with [7,33] (for a short survey see {8: Introduction]):
every map of an n-dimensional compactum K into R is approximable by embeddings
if and only if every map g: A — S~! of a closed subset A C K x K is extendable
over K » K (this is possible only for m > 2n).
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Let us state an equivalent formulation of Theorem 1.2 which is convenient for appli-
cations. For a triangulation T of K, let

'f:U{(rXTETX']'|(,THT'::(Z]}
and
T =J{oxreT xT|flo)n f(r) =0}

If 7" 1s so small that f is linear on simplices of T, then the necessary (and for m >
3(n + 1)/2 also sufficient) condition in Theorem 1.2 can be replaced by the requirement
that there exists an equivariant extension of the map f:ff — $™~! to T. This is
equivalent to Theorem 1.2, since (IN ff‘) is an equivariant retract of (R;, ];’f) and because
of the equivariant analogue of Borsuk’s Extension Theorem.

The proof of necessity in Theorem 1.2 is easy. Take a triangulation T of X such that
flo is linear for each o « T, Take

€<%min{d1st(f( Vo F) Loy o fir) =0}

and any embedding ¢ : K — R™, s-close to f. Then for every pair (z, y) € T olr,y)
and f(.l‘ y) are not antipodal points of S7*~!. Hence ,,EN o~ f and so  is the ruqmred

homotopical extension.

Example 1.3 [29]. The composition f:S' -+ S' ¢ R? of the standard map of degree 2
and an arbitrary embedding is not approximable by embeddings.

Proof. We have (§],§1«") ~(A.0A), where
eq

A= {(z,y) € S x &'

dist(x Y < ¢ }

is an annulus and 9A is its boundary. It is easy to see that both restrictions of f to the
two connected components of 3.4 have degree 2. Hence f is extendable over A. But the
circle Ag = {(x,—2) | # € S'} C A is invariant under the involution on S'. Hence if
f extends to an equivariant map ®#: A — 5!, then &4, has odd degree. Hence D)4, is
homotopic to @|, (x is any connected component of dA). Contradiction. [

This proof shows that ‘equivalent extension’ in Theorem 1.2 cannot be replaced by
Just “extension’. In Chapter 5 we present a generalization of this example—we prove that
certain maps S — S™ are not embeddable into R"** via an embedding S" ¢ R"*
[2,p.4]. Here k = 1,3,7and n > 1 (for k = 1Y or n = k+ 1 (for k = 3. 7). Hence any
embedding S < R™** is TOP-standard.

Let us also state and discuss pre-limit formulation of Theorem 1.2. Denote

}?f = {({x.y) € K x K | dist(f(x). f(y)) = c}.

If amap f: K — R™ of a compactum K is ;5 -close to an embedding, then there exists
an equivariant homotopical extension ®.: K — S™=! of the map j|, 7% Thus if f is
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approximable by embeddings, then such &, exists, for each € > 0. In general, there is
no unique ¢ for all <. as an example from [21] shows: Set m = 2, P = the pseudoarc,
i:P < R? any embedding, K = P _ P, and f = i L i. This necessary condition
can be reformulated in spirit of [34]: 0 € R"™ must be an inessential point of the map
T:K — K™, defined by f(x.y) = f(2) ~ f(y). On the contrary. it follows from the
proof of Theorem 1.2 that if m 2 3(n + 1)/2 and there exists an equivariant homotopical
extension @, : K — 5"~ of the map [| js- then fis C'(n) - e-close to an embedding.

Note that necessary conditions for embeddability of X x I in R™*' (or even for the
existence of an uncountable collection of disjoint copies of X in R™* ") [2].22] are partial
cases of the pre-limit formulation of Theorem 1.2 for K = XUX and f = i_Ji (after [21]
was published, the authors discovered that a stronger result than [21, Theorem 1.3} had
been proved in [11], although that proof does not work under weaker assumptions than
embeddability of X x [ into R™"'). For another (simple) criterion for approximability
of maps by embeddings see [30].

Let us construct a controlled analogue of the van Kampen obstruction J(f) €
H¥(T, T4, Z) to approximability of an arbitrary PL-map f: K — R>" by embed-
dings (cf. [15,24]). Take a general position PL-map g:K — R*", sufficiently close
to f. Fix orientations on every simplex of 7. Fix an orientation of R*". For any two
disjoint oriented edges o and 7 of 1", count every intersection where the orientation of
g(o) followed by that of g(7) agrees with that of R*™ as +1, and as —1 otherwise. Then
9(f) is the class of the cocycle ¥, ( f)(a. 7) which counts algebraically the intersections
of g(o) and g(7) in this fashion. If f maps the entire K to a point, then )( f) is the van
Kampen obstruction to embeddability of K in ",

Theorem 1.4. If a PL-map f: K — R>" of an n-dimensional polyhedron K is approx-
imable by (PL or TOP) embeddings, then 0(f) = 0. For n = 3, this condition is also
sufficient, whereas for n = 1.2 it need not be.

For another cohomological reformulation of Theorem 1.2 see (4, Definition 4.2]. Be-
sides the deleted product condition and van Kampen’s obstruction for embeddability in
R™, there are several other necessary conditions [20], e.g., the normal Whitney classes.

Problem 1.5. Find the controlled analogue of the normal Whitney classes.

Theorem 1.1 is a special case of Theorem 1.2 when f is the constant map. Therefore
it follows from [9,14,18,26,27] that Theorem 1.2 is false for pairs (rn.7) such that 3 <
m < 3(n 4+ 1)/2. Analogously, it follows from [9] that Theorem 1.4 is false for n = 2.
Although both Theorem 1.1 and its cohomological version are true for 1 = 2n = 2,
neither one of Theorems 1.2 and 1.4 is.

Example 1.6 (cf. [3}, Example 1.5]). Let A = S' and f:S' — S' ¢ R? be a com-
position of a degree 3 map and an embedding (on Fig. 1(a) the general position map
g:K — R close to f, is shown, so as to make ¥(f) = 0 evident). Then f is not



D. Repovs, A.B. Skopenkov / Topology and its Applications 87 (1998) {-19 5

b)

approximable by embeddings, even though ¥(f) = 0 and there exists an equivariant map
#:K — S' such that ¢|~

If_

The reason for non-approximability of f by embeddings in Example 1.6 is that no such
@ is realizable by embeddings (i.e., there is no embedding y: K — R? such that & ~ &).

e
Note that for n > 3(n + 1)/2, every equivariant map &: K — S ' is realizable by
embeddings [35].

Example 1.7. Let K be either the ‘letter H or the ‘letter X’ and f: K — [ ¢ R?
be either of the two maps, defined in [29] (in Figs. 1(b) and (c) general position maps
g:K — R? close to f, are shown). Then 9¥(f) # 0 even though there exists a map

®: K — S', realizable by embeddings and such that @]K ,
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Conjecture 1.8. The sufficiency in Theorem 1.2 holds for n = 1 when A" is a tree.

For further discussion see [4]. The inverse limits criterion from [2] and |25] also
motivated the following:

Conjecture 1.9. Suppose that A is an n-dimensional polyhedron, f: /A - R™ is a
PL-map, and 1 > 3(n -+ 1)/2. Then:

(a) (cf. [17,13}) For each £ > 0, there exists & > 0 such that every two 7L é-close
to f and é-concordant embeddings g, g2 i — R™ are s-isotopic;

(b) (cf. [19, Theorem |1]; {35, Theorem 1’|) For each £ > 0, there exists & > O such
that every two é-close to f PL-embeddings g).g2: K — R with ¢, 2 g, rel Kf
are £-isotopic; -

(¢) (E.V. Sgepin) If g: A — R™ is a PL-embedding and ;}\};_, :‘:1]‘ then there is a
pseudo-isotopy from ¢ to f: and

(d) If f is approximable by embeddings. then there exists a pseudo-isotopy from an
embedding to f.

Embeddings f.g: R —+ R are said to be é-concordant if there exists an embed-
ding F: K x I — R™ x ] such that F'(x.0) = {f(2),0), F(z.1) = (g(«).1) and
dist(F'(x.t), F(z,0)) < 6, for each 2 € K, t € I. Conjecture 1.9(b) follows from
Conjecture 1.9(a) and the relative version of Theorem 1.2 (cf. [35, §7]).

A homotopy F,: KA — R" is said to be a pseudo-isotopy from an embedding,
Fy:K — R"™ toamap F): N -+ R" if the map I} is an embedding for each ¢ < 1.
Conjectures 1.9(c), (d) are corollaries of Conjecture 1.8(b) and the pre-limit version of
Theorem 1.2.

In the controlled topology the situation when the distances are controlled not in the
target space, but in the control space is often studied. In [25] a map f: /N - A was
said to be embeddable into K" via an embedding 4»: M — R’ and a cell-like map
p:R™ — R™ if there exists an embedding ¢ : K — K" such that 420 f = po .

This motivated the following generalization of Theorem 1.2. let [ /A — R" be
a PL-map of an n-dimensional polyhedron K, p:R™ — R"" a cell-like map, and
m > 3(n + 1)/2. Then for each = > Q. there is an embedding ¢ : K - R™ such that
po @ is e-close to f if and only if there exists an equivariant map @ : 5 — R™ such
that @(Rf) C R™ and /:,: po® |, (see diagram (1.2)).

K 2 KI
\

5l o S ! (12)
7

R™ D) R i

This generalization is proved analogously to Theorem 1.2. The following properties of
the cell-like map p: R™ — R™ are used:
(1) for each € > 0, there exists approximative -lifting ¢ : K — R and
(2) for each ¢ € R™ and ¢ > 0, there exists a PL m-ball B < R such that
p~'(a) C B Cp " (Oca).
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2. Idea of the proof

The proof of sufficiency in Theorem 1.2 may appear to be a trivial extension of that of
Theorem 1.1. For the special case it was even claimed in [35, Theorem 3] and ‘done’ in
[10, Corollary 4]. But in fact, the control requires additional general position arguments,
for which the restriction m 2 3(n + 1)/2 is again necessary. This is the reason why the
proofs of improvements of Theorem 1.1 beyond the metastable case m > 3(n +1)/2
[24,32] do not yield their controlled versions (which is false even for m = 2n == 2, cf.
Examples 1.6 and 1.7).

To make a brief introduction into the rather technical Sections 3 and 4, let us sketch a
proof of the sufficiency in Theorem 1.2 (in Theorem 1.4 it is proved analog()usly) Take
a small triangulation 7" of K and approximate f by a general position map i, linear
on the simplices of T'. Then the proof naturally splits into two steps. The first one (see
Section 3) is a controlled version of the generalized Whitney trick [35, Proposition 6] (a
controlled version of a similar theorem is [?4 Theorem 3]). We modify by a homotopy
for each o x 7 € T and obtain floyn f(z) = 0. foreach o x 7 € T', and preserve fl,
as an embedding for cach o & 7. By hypothesns (i.e., that f <15 on T and hence ¢ o~ <l'

on Tf), and since 7" is small, each homotopy is small.

The second step (see Section 4) is a controlled version of the generalized van Kampen
construction, cf. [35, Proposition 7]. Our proofs is a controlled version of (31, 43]. In
fact, it is a new and short proof of [35, Theorem 3] (a stronger result was prmed n [3]).
We modify ¢ so as to obtain ¢(a) Me(7) = ¢(e N 7), foreach o x 7 € T x T, and
¢|, an embedding for each o ¢ 7. Hence » becomes an embedding. We modify ¢ by
a small homotopy for each o x 7 € T2\ T.

Although each of the above modifications is small, their number (depending on the
number of simplices of 7) can be arbitrary large. So without special care the resulting
modification can be large (cf. [10}, Proof of Corollary 4]). Example 1.6 illustrates this
point. But using general position (which requires m > 3(n + 1)/2) we can take the
supports of the above modifications to be disjoint for the same (dim o, dim 7). Hence we
can make all modifications to be disjoint for the same (dim o, dim 7) simultaneously. So
the number of non-simultaneous modifications depends only on n = dim K. Therefore
the resulting modification of  is small.

3. Elimination of distant double points

Given ¢ > 0, take a triangulation T of K such that

meshA(T) < G
and f is linear on the simplices of 7. Our Theorem 1.2 then follows by Proposition 3.1
(for p = ¢ = n) and Proposition 4.1 (for p = ¢ = r = n) below.

We fix some conventions and notations. Hereafter, the phrase “Since ; is a general
position map, we may assume without loss of generality that ...” will be abbreviated
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to “By general position...”. Since the approximability by embeddings is a topological
property, we can choose a metric on R™ for which e-neighborhoods of points are PL
balls. For PL topology we follow the notation of [23]. We use the lexicographical order
on pairs and triples of integers.

Proposition 3.1. Suppose that K is an n-dimensional polyhedron with « triangulation
T, n<2m/3—1, f: K — R"™ a map, linear on simplices of T and ¢:1T — Sm=1 an

equivariant map such that f = ®|= . For each 0 < ¢ <p < n let

€y
Jpg={ox1€ T | either (dimo,dimT) < (p.q)
or dist(f(a). f(7)) > 2- 9p3+"meshf(T)}.

Then there exists a general position PL map ¢ : K — R™ such thar:
(3.1.1) |, is an embedding, for each o € T’
(3.1.2) pa) () =0, for each o x 7 € Jpqt
3.1.3) ¢ Tpa = Plipgt and
(3.1.4) dist(, f) < 9" +emeshf(T).

Proof. By induction on (p,¢). To begin the inductive argument, i.e., for (p,¢) = (0,0)
take a map ¢: K — R™ to be linear on each simplex of 7', in general position and
sufficiently close to f. Inductive step for ¢ = 0 follows by the inductive hypothesis. So
assume that ¢ > | and that  satisfies (3.1.1)—(3.1.4). Let 6 = meshf(T). If p = ¢, take
an ordering ‘<’ on p-simplices of 7". Let

Jt={oxrte T | (dima.dim7) = (p,q) and
dist(f(o). f(T)) <2 grta=lg (and if p=gq. 0 > 7)}.

Suppose that p 4+ ¢ = m — 1 (otherwise (3.1.2) and (3.1.3) hold by general position and
(3.1.1) and (3.1.4) by the inductive hypothesis).

First Ball Lemma 3.2 (cf. [35, Lemme 2, p. 41]). There exists a collection {Bo+} o xre g+
of PL m-balls in R™ such that for each o x 7 € JT, the following assertions hold:
(3.2.1) ByrNiplo) C gp(fur) (respectively By, Ng(T) C (,9(79)) is a PL p-ball (respec-
tively q-ball), properly embedded in B, ;
(3.2.2) (o) Np(7) C Bor
(3.23) Bor N(Pr) =0, where Py = {a e T |agxa€ Jy,1}:
(3.2.4) diam B,, <8 -9 14 and
(3.2.5) Bor N Boiyr = () provided that o x 7 # o’ x 7.

Proof of Proposition 3.1 modulo the First Ball Lemma. We have that

Jpg \Jpgr CITU{r xo oxre ]}

Take a collection {By;},xrec s+ given by the First Ball Lemma. Then we follow [35,
Preuve de I’affirmation I’aide du Lemme 2]. For each o x 7 € Jt let w: D? — By, N
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¢(o) and v: DY — B,, M p(7) be a P L-homeomorphism. Define the map o.: d(DP x
D9) — 8™V by a(z,y) = (u(x) - v(y))/(|u(z) — v(y)|). Since 1 —p = 3, u(DP) is
unknotted in B, it follows that B, \ u(DP) =~ §m-r=1

Define the coefficient of the intersection I(v, u) € m,(S™ *~!) to be the homotopy
class of the map v|ape: 0D9 — By, \ u(DP). Let

g:3(D? x D) — d[(o N 'u(DP)) x (rn¢ ' w(DY))] = X

be a PL- homeomorphlsm such that @ = @ o g. By (3.1.3), $|x is homotopic to &|y.
Since & is defined over 7', ®|x is null- homotoplc hence ¢ x is null-homotopic and so a
is null-homotopic. By [35, Proposition 1], the homotopy class of a is X91(v; ), where
2’ is the suspension. Since p — 1 < 2(m ~ g — 1) — 1, it follows by the Freudenthal
Suspension Theorem that /(v. ) = 0. Therefore by [35, Proposition 3], there is a family
of isotopies {/ior: (0 N 'Byy) x I — B,y | o x 7 € J*} such that:

@(T) Nhor (0N 'Byy)y =0 and  Foplyy, ~ Dloxr rel 3o x 7). (3.2.6)

where
hora(z) — ¢
Py (o) - eza(®) = o)
“hO'T 1 1) - ”(7/) (
Since 3(n +1)/2 > n + 3, it follows by [23, 7.3] that the isotopies /., are ambient,
i.e., there is a family of isotopies {h, :B.; x I — B, | ¢ x 7 € J¥} such that
hort = h,., 0. Define ¢ : K ~» R as follows

hpe (2(2)) if p(x) € Byy and x € 1,

et (x) = for some o x 7€ J* and 1 D o,
o(z) otherwise.

By (3.2.5), ¢ is well-defined. Since B,, N (o) C ©(5), the map ¢ is continu-
ous. Let us verity (3.1.1)=(3.1.4) for ¢* and (p,q). Since h!_ are isotopies, (3.1.1)
follows. From (3.2.6) we get (3.1.2) and (3.1.3) for (dimo,dim7) = ('p g}. By
(3.2.3) we get (3.1.2) and (3.1.3) for (dimo.dimT) < (p,g). Since dist(y 1‘) <
dist(p, f)+max, ¢ s+ diam B, < 9 4§ by (3.2.4), (3.1.4) follows. Since dist{" (),

P*(7)) > dist(f(0), f(r)) - 2dist(", f) > 0, (3.12) and (3.1.3) for dnst (f(o)
f(7)) > 297495 follows. Therefore " is the required map. O

’

Proof of the First Ball Lemma. By (3.1.2), ©(0) N 9(37) = ¢(30) N @(r) = . By
general position, dim(¢ () (7)) < p+ g - m. Let C,, (respectively (', ) be the trail
of ¢(a) N ¢(7) under a sequence of collapses () ™, (a point in (7)) (respectively
(1) "\, (a pointin (7))). Then C,,, C,, are collapsible, Cyr C (5) and ', C ,9(70'),
(o) Np(r) C Cor, Cro and dim Cor, dimCry < p+ ¢ — m + 1.

By general position on C,., it follows that (7, Coy = 0 when 7 # 7 (since
2(p+g+1—m)+1< p). Because of that and since Cyy, " Corrr C p(a)Nip(07) © Crr,
it follows that Cpr N Cyrr = ), when o x 7 # o' x 7. By (3.1.2), (', , Ne(Fy) = 0.
By general position, dim(2(F5) N (7)) < 1+ ¢ — m. hence again by general position
onp, Cro Np(Py) =0 (since n—qg-—-m+p+q+1—m<q).
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Take any points =, € (). Since dist(f(o), f(7)) < 297" +4=15 we have by (3.1.4)
that
P(a) U (1) T O giye sTa-
Since O, g,214-140 18 @ PL ball, it collapses to some point in its interior. Let G, be
the trail of C'y, U C-, under this sequence of collapses. Then G- is collapsible,

Gor CINYO, g4 01 570)-
Gor D Cur UC,.
dimG,, < p+g—m—2.

By general position on {Gsr},
Gor Nplo) = Cor. Gor N(r) = Crp

(sincep+p+qg—m+2<mand g+p+q—m+2<m), Gor NGer = 0 when
o x T # o x71 (since 2(p g —m+2)+1 < m)and Gy N (%) = O (since
p+q+p—m-+2 < m) Therefore, in some sufficiently small triangulations of R™, the
regular neighborhoods of &, are the required balls B,,. O

4. Elimination of close double points

The upper index of a polyhedron shows its dimension (but if a = &, then X* and Xb
are distinct).

Proposition 4.1. Suppose that K is an n-dimensional polyhedron with a triangulation
T.m > 3(n+1)/2 and f: K — R™ is a general position map such that f|, is an
embedding for each o €T, and foN fT =0, forevery o X 1 € T. Then for every triple
of integers p,q,r such that —1 < r < q < p < n, there exists a general position PL
map ¢: K — R™ such that:

4.1.1) gla)Ne(B) =0, for each v x 3 € T

(4.1.2) 2| is an embedding, for each o € T,

(4.1.3) @5 is equivariantly homotopic to ,)‘7\,7,;

4.1.4) o(a)Np(r) = oo 7). for (dimo.dim7,dim(c N 7)) < (p.q.7); and

(4.1.5) dist(f.0) < 777" mesh f(T).

Proof (cf. [31, Proof of Proposition 2.1]). By induction on (p, ¢, 7). To begin the induc-
tive argument, i.e., when (p.¢.7) = (0.0, —1) we take ¢ = f. The inductive step for
g = 0 and r = —1 follows by the inductive hypothesis. So assume that ¢ > r > 0 and
that ¢ satisfies (4.1.1)—(4.1.5). If p = ¢. take an ordering ‘<’ on the p-simplices of T".
Let

Jt = {(7 xTe T\ T | (dimo.dim7.dim(c 7 T)) = (p.q.7), 7 ¢ o, and

o > 7 when p=g}.
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Second Ball Lemma 4.2. There exist collections {D}, ., DE_ D4 D CR™|oxT €
J 1} of PL-balls such that for every o x 7 € J*:

(4.2.1) D2 C D Uo(d) and D4, C DU p(7):

(422) Db = D}t (o) and DY = DU 1 o(T) are properly embedded in D7 ;

(423) D, =203Dr _nobDi.;

(4.2.4) D7 is unknotted in dD%_ and in 0DY_;

(4.2.5) ,r = Cl{(p(0) N (7)) = D},) © Dy U DL,

(4.2.6) DL "X, C D, where X, = Jp{o €T No=0ordima < g}

(4.2.7) diam D7 < 2mesh (7). and

(4.2.8) lo)z,'f. M 3 m =), whenever o x T # o' x 7.

Proof of Proposition 4.1 modulo the Second Ball Lemma 4.2. Take collection of PL-
bails D7, D?_, D2_. D7 given by the Second Ball lemma. Recall [17, Theorem 9] and
discussion before its statement: If 13 = p.¢, S, 59 C S™ and SP N SY = )", where
D" is unknotted in S” and in 5%, then SP U S? is unknotted in S™. Hence we may
assume that the embedding D% Up, 0DZ_ < 8D7. is the standard one.

By the relative Unknotting Balls Theorem (which follows from [23, Theorems 7.1 and
3.22i] and [37, 1.2] we may assume that the embedding (DZ_,0D% ) C (D dD™ )
is the standard one. Hence the embedding 0% € 0D can be extended to a new
embedding of DP_ into (D™ \ D¢ _)LdDP._,

By the relative Unknotting Balls Theorem this new embedding is ambiently iso-
topic to DE_ C D rel 0D7'.. So there is a collection of isotopies {h,,,: D’ —
Dy rel dD: | oxr € J*} suchthat DI Nk D2 = D' Defineamap ot : K — R™
as

hori(p(x)) if p(x) € D and & € v for some
T (x) = yeT,oxtcJt, vOo,
o(r) otherwise.

By (4.2.8), ¢ is well-defined. Since D?_ < 3D™ U Q(;))') ¢ is continuous. Evident-
ly, ™ satisfies (4.1.1)~(4.1.3). By (4.1.2), o and 7 are not contained in the boundary of the
same simplex of 7'. Therefore D, Vh,- DV = D’ and by (4.2.5) and (4.2.6), ' sat-
isfies also (4.1.4). From (4.1.5) it follows that mesh ¢(T) < 3 x 77'+9"+*"mesh f(T). By
(4.2.7), »+ is 2 mesh (7")-homotapic to @ and hence 77"+ +7+1 mesh S{(T)-homotopic
to f. Therefore ™ is the required map. The inductive step is thus completed. [

Proof of the Second Ball Lemma. Let us make two conventions concerning triangula-
tions. First, for polyhedra M = Z 5 Y the notation Rx;(Z.Y) shall mean ‘a regular
neighborhood of Z rel ¥ in M in some small triangulation of R™, when first appears,
and ‘the regular neighborhood of Z rel Y in M’, when second or more appears. Second,
regular neighborhoods, defining /)7, D7 and D™ below are in the restrictions of the
same triangulation of R"". Also, /25, (Z) = Ra(Z.0).

For every o x 7 € .J*, make the following constructions.
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Construction of D’ . If » < ¢ — 2, then let D), = @(cN 7). If r = ¢ — 1, then
dimp(cNT)N Xy < p+g—m—1.Since 2(p+q—m—1) <r = g— 1, it follows that
(as in the proof of the First Ball Lemma 3.2) for each v € T, such that dim~ = r, there
is a collection of disjoint PL r-balls { D7 cp(%) |ox7e . Jt and o 7 =~} such
that [O);,T S (enT)r X, Since D]\, (some point in 10327), D! & Intyp(onT) and
by [23, Theorem 4.11], we have (dp(a). D4.) = (0,0 N 7). Hence D}, is unknotted
in 0p(0). Analogously, D7 is unknotted in oy (7). Let D = D, .

Construction of S, and é,,. Let S,, be the link of some r-simplex from IOJZ',T
in some small triangulation of R’™. Then S,, is a PL (m — r — 1)-sphere and
bor = Rpw (D% ,0D7_ ) = S, « D is a PL m-ball. By (4.1.2), 6, 1 f(«) =
Ry(a(D},. 0D} ) goes to (S,; N f(«)) * D under this homeomorphism for each
a € T (for o 7 o N 7 each of these three sets is empty). Also Sy, M f(«) is a PL
((dime) —r — 1)-ball foreacha € T, o« 2 onN7. fr < g—2and D, = ploNT)

then we take these S,, so that S,, = S,/,+, whenever 6 17 = o’ N 7’.

Construction of 3,,. If r < g — 2, then dim(S,, N (7)), dim(S,> M p(7)) = ¢ —
r—12>1.If r = ¢ — | then S, are disjoint for distinct ¢ x 7. Because of this

and since dim(S,- M X,) < 10— — 1. there are points ay, € (Sar N ',a('(‘r),) —~ X and
gy € (Sor f‘up(%)) - X, distinct from each other for distinct o x 7. Since m.—r—1 2 2
and (n —r— 1)+ 1 <m —r — 1, it follows that there are arcs {,r C S,-, joining Gy,
to gy such that I, N X, =W, lor Np(d) = agr. lor Np(T) = a,r and {,, are disjoint

for distinct o x 7. Let 3., = Ry, (lo+) * D5_. Then

Bor Npla) = (Rsm (Io7) 0 Q('U)) « D= Rg Atgr)* D

arpiod

is a PL p-ball. Analogously, 3, N(7) is a PL g-ball. Also, 3,, Np(ec " 7) = D _.
If « o7 then () N Rp (D5, 0D ) =0. 1t o D o N7 then

() N Ry (D, 0D, ) == (Sar Niglar)) + DL
Therefore 3,, N X, = D 1f o x 7,0’ x 7' € JT then dim(c N7) = dim(¢’ N7') = r.
Hence IntRg~ (D7, 8D ) either coincide or do not intersect for distinct o x 7, o' x 7' €

o]
J~. Therefore 3.3, =, for distinct @ x 7, 7' x 77 € J~.

Collapsing Lemma 4.3. If A and F are regular neighborhoods of u polvhedron X in a
PL-manifold M rel Y and A C F then F'\ Arel Y.

Proof. Follows from [5, Theorem 3.1 and Addendum 3.4].

Construction of D?_ and D¢_. By the inductive hypothesis, @(0) N (07) = p(d)N
@(r) = Dj,. Hence Y, < ((0) N (7)) U Dj,. Both ¢(o) and @(0) M 8y, =
(Ser N (o)) * D] are regular neighborhoods of D! _ rel 9D! _ in (o). Then by
Collapsing Lemma 4.3, @(a) ™\, (Sor N@l(a)) x DI rel D _. Both S, M (o) and
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Fig. 2.

Rs, .. ..., (asr) are regular neighborhoods of ., in S,, N (). Again by Collapsing

Lemma 4.3, S, Np(o) N\, Rg (a,+). Hence

(Sn‘r n f(ﬂ)) * D(’77 \\ RS\"\.,,W(YT] ('(l‘fTT) * [)rlrﬂ— = r"-ffTT n 99(0-) rel [)ZTT
Let C;- be a trail of X, under the above sequence of collapses.
() . (Sor N(a) % DL Aor N p(0) rel DI

that is in general position. Let D2 = R_,,((3,- N (o)) U Cyyr. D7), Then (4.2.1)
and (4.2.4) are true for D?_ and we have that

(@) Cpr Cplo):

(b) Xor C (j//”nr Ne(a)) UCss:

(c) D¥_is a PL p-ball;

d Corn X, =0;

() D2 NnX, D ;

(fy Cor N(r) = Xyt and

(8) Cor NCorpn C DD,
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In fact, (a), (b) are obvious. Since X, < D] _U go((cf) it follows that ', < DI U
gp(((;), hence (4.2.1) is true. Since (o) is a PL-manifold and p(a) N (3, N p(e)) U
Cor rel D _ then ¢(o) is a regular neighborhood of (3,- N(0))UC,, in p(a) rel DI
[5, Theorem 9.1]. By [5, Theorem 3.1] there is an isotopy H;: (o) — pla) rel (3, 0
(o)) U Cyy between Hy = id and a homeomorphism G of (o) onto D! _ rel (H,, N
@(0)) U C,r. This implies (c¢).

Moreover, Hi 3,(+) is 2 homeomorphism of (o) onto D% rel D, _. Since D
is unknotted in 0 (o), (4.2.4) is true for D? . By general position, dim X, < 2n — m.
Then dimC,, < 2n — m + 1. By general position and since n + (2n - m) < m,
Y., N X, = 0. Again, general position and n + (2n — . + t) < m imply (d).

Since I, N X, = B, it follows that 3, ™ (o) 7 X, = D7 _. This and (d) imply (e).
By definition of relative collapse, (', M1 DL = X, M D! . Hence by general position,
n+ (2n —m+2) < m, we have

Cor M) = (Cyr 1 p(f/g),) U(Cor D) = X U(Cor NDL) = Xor,
i.e., (f). By general position, (g) is true.
Analogously we can construct polyhedra (7, and D4

4 _ such that (4.2.1), (4.2.4) and
(a)~(g) are true for Cpr — (- and p — .
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Construction of D, By our assumption, J, = ()meshy(T (some point in ])’ yis a
PL m-ball. Then J._ C é,,. Moreover, (J. ., 6,-) 2 ([=2,2]", [~1,1]") (actually, by
[23,3.19), J., — 507 & [-2,2]" — Int[~1, 1]", and applying the Alexander trick we can
extend the homeomorphism 96, = 9[—1.1]" to a homeomorphism 8, 2 [—1,1]™).

Take a PL (m—1 — 1)-ball B,, C 5(,*\ ar Jp(cUT)). Since J! ZUT > by, x 1
it follows that T,,- = Ras.. (a point in B”T)x] is a tube joining 0.J. . to 06,,. Since
B, Np(cUT) =0, we may assume that T,,» N (o UT) = .

Since (J, ., b5r) = ([-2,2]".[~1,1]"), we have that Jor =T \Tor \ (Bor x D)
is a PL m-ball. Since Cor UJ. ., Cpr N (Bor+ D) C p(a)N (B(,- * D) = (plo)N
Bor)# D7, = D7 _and Coy NTpr © p(0) N Ty .A._w it follows that Cay © Jor UDT,.
Analogously Cr, C Jor U D? . Then similarly to construction of DL and DY_, let
G, be a trail of Cy, U, under a sequence of collapses

R =

Jor N\ Jor 80y = (Spr — Bor) * DLy Ny Rs, (2 ) * Dl = Bor rel DI

Analogously to (a)-(c), it is proved that

s]
Gor CJor WD,
Cor UCro C Bor UGy,
DY =Ry, (Bor UGer, D}.)

is a PL m-ball. Analogously to (d), using (d) and n + (2n — m + 2) < m it is proved
that G,- N X, = (. Then (4.2.6) is proved analogously to (e). (f} and general position
imply

Gor N (T) = ( or (jf(f) A '79(7_) =, U (C'rrr n ‘P(T)) = Crg UXor = Chop.

Analogously, G, N(o) = C,,. Therefore, (F5r UGsr) Nip(o) = (Bor Nplo)) U Coyr
and (B,+ UGy ) Np(1) = (357 N(7)) UC,,. Because of that and since D?_. D4 and
D™ are regular neighborhoods rel D7 of (3s- N(0))UChr, (Bor V(1)) o Crpy and
3s7 U Gy in restriction of the same triangulation of R™ to ¢(o), ¢(7) and J, (4.2.2)
follows. By (b) and definitions of D%, D2 . X,

@D, — DL )N (dDL, — D4.) € (9(0) — Zor) N (9(7) — Epr) = 0.
Hence (4.2.3) is true. By (a) we have
Sor € (Bor Np(0)) U Cor € Bor JGar © D™ U DY

$o (4.2.5) is true. From diam DZ: < mesh f(T') + diam(3,- U G5;) < mesh f(T) +
diam 6., +diam 3, ., we derive (4.2.7). Since 3,-NX, = 0 and G, N X, = (), we have
that D™ N X, = . Since 3,, C J,r C J._, it follows that diam D7 < 2 mesh (7).
Since 2(p + ¢ — m + 2) < m, we may assume by general position that G, " Gy C

[+3 s}
>N D7, . From this and 3, M3, =0, (42.8) follows. O

ol !
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5. Maps of spheres, nonapproximable by embeddings

Recall the construction of Akhmetiev’s example. For k& = 1, 3,7 there exists an immer-
sion RP¥ o §™ with trivial normal bundle. Let f:S* x D"~ % — RP* x D"~k g5 g7
be a composition of (the projection S¥ — RP*) x id D"~* and an immersion
RP* x D"=% — S extending the immersion RP* 3~ S, We will prove that f is
not embeddable in R"** through the standard embedding S < R"~*. Then any ex-
tension of f to S™, in which S¥ x D" % js standardly embedded, is the required map
S — S™, non-embeddable in R"*+*,

Recall that

DP = {(.’I?] ) € R ;17% ey, < 1}
and

SP U ={(zy e ay) €RV a4+ .1:?) =1}
For each z € S* take neighborhoods D* of x in S* and B = D* x D"* of x x 0 in
Sk D"k, so small that DX(1D¥ = @ and f|p. is an embedding. Since # = 1.3.7, S%
and RP* are parallelizable. Therefore there is a family of homeomorphisms h, : D¥ —
D¥, continuously depending on = ¢ S*, and such that h_, = —h,, for each = € S¥. Let
B" = D¥x D" * and take families of homeomorphisms ¢, = fo(h,xid D" *): B" —
f(B?)y and p, = g, x id D*: B" x D* — f(B") x D¥,

Suppose to the contrary that f is -close to an embedding F : S* x D"+ — §" ¢

S x DF ¢ R"* where < is sufficiently small:

‘ |- ,
< min dist(q,(—b’”).q_,,(a])”))
ae Sl 2
- : L t( y y
min —dist| ¢ = ).ogx| —= ) .
(zy)eSkxapn 2 \1' 2 I 2

Since ¢ is small, F'(3B}) < f(B}) x D¥. Then {p;'F(3B))},cq is a family of
n-balls in B" x D* (Fig. 3). We shall prove that

m

and

1)

e 1 .
p;]F(;Bg) np! F(; B”\,‘> 410 for some x € S*. (%)

Since h, = —h_,, q. = ¢, and hence p, = p_, for each = ¢ S*. Therefore
F(%Bﬁ) N F(%Bﬁ.,. ) # 0. which contradicts the assumption that F’ is an embedding.
To prove (%), consider the collection {p;'F(1B")}.es« of n-balls and the map

2/2). Look at §* x B™ as at a neighborhood of the standard S¥ ¢ $"*+* We shall prove
that some extension of  onto S™** identify some pair of antipodes. These antipodes
will actually lie in S* x 3", Then (x) is true by definition of . More precisely, consider

e e R I FE LR [ S £ SN P S Ll (1
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f(BZ) x D*

Fig. 4.

Embed S* x B™ into such S"** by the formula

Y Ll ,,
(r.y) — Pr(‘l" T ) llyll # O.
pr({e} x 571> {0}) gl =o.

Extend ¢ to a map 3: 5"k — B" x D* by

7,5(pr<;r,y, 1—_—;—{)) = t(%.()) + (1 = typ(x.y). forte 0, 1]

Evidently, T is well-defined. By the Borsuk—Ulam theorem, % identifies some pair
of antipodes pr(x,y,t) and pr{-.r, —y, —t). But since £ is small, for each + ¢ S*
and y € 0B", p(x.y) = P(r,y) is very close to (4.0). Again, since ¢ is small,
@(z,y) # @(—x.—y). Since the involution pr(x,y.t) < pr(—z,~y. —#) on S"7% 5
S* % B™ is an extension of the involution (z,3) < (—z.—y) on S x B", it follows
that  actually identifies some pair of antipodes (x,y) and (—z., —y).
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