
Mediterr. J. Math.          (2022) 19:170 

https://doi.org/10.1007/s00009-022-02076-5
c© The Author(s), under exclusive licence to Springer
Nature Switzerland AG 2022

Degenerate Fractional Kirchhoff-Type
System with Magnetic Fields and Upper
Critical Growth
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Abstract. This paper deals with the following degenerate fractional
Kirchhoff-type system with magnetic fields and critical growth:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−M(‖u‖2
s,A)[(−Δ)s

Au + u] = Gu(|x|, |u|2, |v|2)
+

(
Iμ ∗ |u|p∗)

|u|p∗−2u in R
N ,

M(‖v‖s,A)[(−Δ)s
Av + v] = Gv(|x|, |u|2, |v|2)

+
(
Iμ ∗ |v|p∗)

|v|p∗−2v in R
N ,

where

‖u‖s,A =

(∫∫

R2N

|u(x) − ei(x−y)·A( x+y
2 )u(y)|2

|x − y|N+2s
dxdy +

∫

RN

|u|2dx

)1/2

,

and (−Δ)s
A and A are called magnetic operator and magnetic poten-

tial, respectively, M : R
+
0 → R

+
0 is a continuous Kirchhoff function,

Iμ(x) = |x|N−μ with 0 < μ < N , C1-function G satisfies some suitable

conditions, and p∗ = N+μ
N−2s

. We prove the multiplicity results for this
problem using the limit index theory. The novelty of our work is the ap-
pearance of convolution terms and critical nonlinearities. To overcome
the difficulty caused by degenerate Kirchhoff function and critical non-
linearity, we introduce several analytical tools and the fractional version
concentration-compactness principles which are useful tools for proving
the compactness condition.
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1. Introduction

This paper deals with the following degenerate fractional Kirchhoff-type sys-
tem with magnetic fields and critical growth:

⎧
⎪⎪⎨

⎪⎪⎩

−M(‖u‖2
s,A)[(−Δ)s

Au + u] = Gu(|x|, |u|2, |v|2)
+

(Iμ ∗ |u|p∗) |u|p∗−2u in R
N ,

M(‖v‖2
s,A)[(−Δ)s

Av + v] = Gv(|x|, |u|2, |v|2)
+

(Iμ ∗ |v|p∗) |v|p∗−2v in R
N ,

(1.1)

where

Iμ(x) = |x|N−μ, with 0 < μ < N, ‖z‖s =
(

[z]2s,A +
∫

RN

|z|2dx

)1/2

,

[z]s,A =

(∫∫

R2N

|z(x) − ei(x−y)·A( x+y
2 )z(y)|2

|x − y|N+2s
dxdy

)1/2

,

(−Δ)s
A and A are called magnetic operator and magnetic potential, respec-

tively. According to the Hardy–Littlewood–Sobolev inequality (see (2.2)), the
exponent p∗ = N+μ

N−2s is called upper critical. The continuous Kirchhoff func-
tion M : R+

0 → R
+
0 and C1-function G : [0,+∞) × R

2 → R
+ will satisfy the

following assumptions throughout the paper:
(M) (M1) inft>0 M(t) = m∗ > 0.

(M2) For all t ∈ [0,+∞), there exists σ ∈ (1, p∗/2) such that σM (t) ≥
M(t)t, where M (t) =

∫ t

0
M(s)ds.

(M3) For all t ∈ (0,+∞), there exists m1 > 0 such that M(t) ≥
m1t

σ−1, moreover M(0) = 0.
(G) (G1) For all (r, ξ, η) ∈ [0,+∞) × R

2, there exist C > 0 and 2 < τ <
2∗ := 2N

N−2 such that

|Gξ(r, ξ, η)| + |Gη(r, ξ, η)| ≤ C
(
|ξ| τ−1

2 + |η| τ−1
2

)
.

(G2) For all (r, ξ, η) ∈ [0,+∞) × R
2, there exists 2σ < θ < 2p∗ such

that

0 < θG(r, ξ, η) ≤ ξGξ(r, ξ, η) + ηGη(r, ξ, η),

where σ is defined by (M2).
(G3) ξGξ(r, ξ, η) ≥ 0 for all (r, ξ, η) ∈ [0,+∞) × R

2.
(G4) G(r, ξ, η) = G(r,−ξ,−η) for all r ≥ 0 and ξ, η ∈ R.

Remark 1.1. A typical function which satisfies conditions (M1)-(M3) is given
by M(t) = a + b tσ−1 for t ∈ R

+
0 , where a ∈ R

+
0 , b ∈ R

+
0 , and a + b > 0. In

particular, when M(t) ≥ d > 0 for some d and all t ≥ 0, this case is said to
be non-degenerate, while it is called degenerate if M(0) = 0 and M(t) > 0
for t > 0. However, in proving the compactness condition, the two cases
of degenerate and non-degenerate are completely different, and it is more
complicated in the degenerate case. In this paper, we mainly deal with the
degenerate fractional Kirchhoff-type system with magnetic fields. Therefore
we need to develop new techniques to conquer some difficulties induced by
the degeneration.
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The fractional magnetic operator (−Δ)s
A was recently introduced by

d’Avenia and Squassina [4], which up to normalization constants, can be
defined on smooth functions u as follows

(−Δ)s
Au(x) := 2 lim

ε→0

∫

RN \Bε(x)

u(x) − ei(x−y)·A( x+y
2 )u(y)

|x − y|N+2s
dy, x ∈ R

N .

The equation with fractional magnetic operator often arises as a model for
various physical phenomena, in particular in the study of the infinitesimal
generators of Lévy stable diffusion processes [6]. A vast literature on nonlocal
operators and on their applications exists, we refer the interested reader to [1,
7,17,32,46]. To further research this type of question by variational methods,
many scholars have established the basic properties of fractional Sobolev
spaces - for this the reader is referred to [6,33,35].

First, we make a quick overview of the literature on the magnetic
Schrödinger equation. To begin, we note that there are works concerning
the magnetic Schrödinger equation

− (∇u − iA)2u + V (x)u = f(x, |u|)u, (1.2)

which have appeared in recent years, where the magnetic operator in (1.2) is
given by

−(∇u − iA)2u = −Δu + 2iA(x) · ∇u + |A(x)|2u + iudivA(x).

As stated in Squassina and Volzone [41], up to correcting the operator by
the factor (1 − s), it follows that (−Δ)s

Au converges to −(∇u − iA)2u as
s → 1. Thus, up to normalization, the nonlocal case can be seen as an
approximation of the local one. Ji and Rădulescu [13] obtained the mul-
tiplicity and concentration properties of solutions for a class of nonlinear
magnetic Schrödinger equation using variational methods, penalization tech-
niques, and the Ljusternik–Schnirelmann theory. For more interesting results,
we refer to [14,28,44,48]. Recently, many researchers have paid attention to
the equations with fractional magnetic operator. In particular, Mingqi et al.
[30] proved some existence results for Schrödinger–Kirchhoff type equation
involving the fractional p–Laplacian and the magnetic operator

M([u]2s,A)(−Δ)s
Au + V (x)u = f(x, |u|)u in R

N , (1.3)

where f satisfies the subcritical growth condition. For the critical growth
case, Wang and Xiang [42] have obtained the existence of two solutions and
infinitely many solutions to fractional Schrödinger–Choquard–Kirchhoff type
equations with external magnetic operator. Subsequently, Liang et al. [23] in-
vestigated the existence and multiplicity of solutions to problem (1.1) without
Choquard-type term in the non-degenerate case. We draw the attention of
the reader to the degenerate case involving the magnetic operator in Liang
et al. [24] and Mingqi et al. [30].

For the case A ≡ 0 in problem (1.1), there exist numerous articles
dedicated to the study of the following Choquard equation,

− Δu + V (x)u = (|x|−μ ∗ F (u))f(u), x ∈ R
N . (1.4)
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Eq. (1.4) can be used to describe many physical models. For example, it
was proposed by Laskin [16] as a result of expanding the Feynman path
integral from the Brownian-like to the Lévy-like quantum mechanical paths.
The study of existence and uniqueness of positive solutions to Choquard type
equations attracted a lot of attention of researchers due to its applications in
physical models Pekar [36]. In d’Avenia et al. [5], the authors obtained the
existence of ground state solutions for following fractional Choquard equation
of the form

(−Δ)su + ωu = (Kμ ∗ |u|p) |u|p−2u, u ∈ Hs(RN ), N ≥ 3, (1.5)

where s ∈ (0, 1), ω > 0 is a given parameter, μ ∈ (0, N), and Kμ(x) = |x|N−μ

is the Riesz potential. In Pucci et al. [37], the authors obtained the exis-
tence of nonnegative solutions to a class of Schrödinger–Choquard–Kirchhoff-
type fractional equation using the Mountain pass theorem and the Ekeland
variational principle. For more results for problems with Hardy–Littlewood–
Sobolev critical nonlinearity without the magnetic operator case, see Cassani
and Zhang [3], Ma and Zhang [29], and Song and Shi [38,39].

Once we turn our attention to the critical nonlocal system with critical
nonlinearity, we immediately see that the literature is relatively scarce. In
this case, we can cite recent works [9,10,45]. We call attention to Furtado et
al. [10] who dealt with the following non–degenerate Kirchhoff system

{
−m

(∫

Ω
|∇u|2) Δu = Fu(x, u, v) + μ1|u|4u, in Ω,

−l
(∫

Ω
|∇v|2) Δv = Fv(x, u, v) + μ2|v|4v, in Ω,

(1.6)

where Ω ⊂ R
3 is a smooth bounded domain, the nonlinearity F is subcrit-

ical and locally superlinear at infinity, and they obtained multiple solutions
with the aid of the symmetric mountain-pass theorem. For the degenerate
case, Xiang et al. [45] investigated the existence and asymptotic behaviour
of solutions to critical Schrödinger–Kirchhoff type systems by applying the
mountain-pass theorem and Ekeland’s variational principle.

It is well known that the Limit Index Theory due to Li [18] is one of the
most effective methods to study the existence of infinitely many solutions
for the noncooperative system. For example, Song and Shi [40] considered
the noncooperative critical nonlocal system with variable exponents, Fang
and Zhang [8] studied systems of p&q-Laplacian elliptic equations with crit-
ical Sobolev exponent, Liang et al. [22] dealt with a class of noncooperative
Kirchhoff-type system involving the fractional p-Laplacian and critical expo-
nents. We also refer the interested reader to Huang and Li [12], Liang and Shi
[20], and Liang and Zhang [21] for some applications of this method. How-
ever, to the best of our knowledge, none of the cited works address the system
with upper critical exponent and magnetic operator in R

N in the degenerate
case.

Inspired by the previously mentioned works, our main objective is to
study the existence and multiple solutions to problem (1.1), by means of the
Limit Index Theory. To the best of our knowledge, this is the first time in the
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literature to use the Limit Index Theory to investigate the degenerate frac-
tional Kirchhoff-type system with magnetic fields and upper critical growth.
Our main result is the following.

Theorem 1.1. Suppose that assumptions (M) and (G) are fulfilled. Then
problem (1.1) has infinitely many solutions.

Remark 1.2. The main difficulty of this paper lies in the following three as-
pects: First, to recover the compactness of the Palais-Smale sequence, we shall
use the second concentration-compactness principle for the convolution type
nonlocal problem in the fractional Sobolev space. Second, the appearance of
the magnetic field also brings additional difficulties to the study of problem
(1.1), such as effects of the magnetic fields on the linear spectral sets and on
the solution structure. Finally, since we consider problem (1.1) in the whole
space, to apply the Limit Index Theory, we need to establish new techniques
to overcome this difficulty. To the best of our knowledge, our theorem is also
valid for s = 1, hence the corresponding result in this case is new as well.

The organization of this paper is as follows: In Sect. 2, we give some basic
definitions of fractional Sobolev space and the well known Hardy–Littlewood–
Sobolev inequality. In Sect. 3, we mainly introduce the Limit Index Theory.
In Sect. 4, we prove some compactness lemmas for the functional associated
to our problem. The proof of the main result Theorem 1.1 is given in Sect. 5.

2. Preliminaries

In this section, we collect some known results for the readers convenience and
the later use. First, we shall give some useful facts for the fractional order
Sobolev spaces. Let Hs(RN ) be a fractional order Sobolev spaces which is
defined as follows

Hs(RN ) :=
{
u ∈ L2(RN ) : [u]s < ∞}

,

where [u]s denotes the Gagliardo semi-norm

[u]s :=
(∫∫

R2N

|u(x) − u(y)|2
|x − y|N+2s

dxdy

)1/2

,

equipped with the inner product

〈u, v〉 :=
∫∫

R2N

(u(x) − u(y))(v(x) − v(y))
|x − y|N+2s

dxdy

+
∫

RN

ξηdx for all u, v ∈ Hs(RN )

and the norm

‖u‖s :=
(

[u]2s +
∫

RN

|u|2dx

) 1
2

.

Here, L2(RN ) denotes the Lebesgue space of real-valued functions with
∫

RN

|u|2dx < ∞. From [6, Theorem 6.7 ], we know that the embedding Hs(RN ) ↪→
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Lt(RN ) is continuous for any t ∈ [2, 2∗
s ]. Moreover, there exists a positive

constant Ct such that

|u|Lt(RN ) ≤ Ct‖u‖s for all u ∈ Hs(RN ). (2.1)

To obtain the existence of radial weak solutions to system (1.1), we shall use
the following embedding theorem due to Lions [26].

Theorem 2.1. Assume that 0 < s < 1 and 2s < N . Then the embedding

Hs
r (RN ) ↪→↪→ Lt(RN ),

is compact for any 2 < t < 2∗
s, where Hs

r (RN ) is radial symmetric space,
defined by

Hs
r (RN ) := {u ∈ Hs(RN ) : u(x) = u(|x|), x ∈ R

N}.

Suppose that A : RN → R
N is a continuous function. Then

[ u]s,A =

(∫∫

R2N

|u(x) − ei(x−y)·A( x+y
2 )u(y)|2

|x − y|N+2s
dxdy

)1/2

is the Gagliardo semi-norm. Define

Hs :=
{
u ∈ L2(RN ,C) : [u]s,A < ∞}

.

It can be endowed with the norm

‖u‖s,A :=
(

[u]2s,A +
∫

RN

|u|2dx

) 1
2

.

The scalar product on Hs is defined by

(ξ, η)s,A := 〈ξ, η〉L2 + 〈ξ, η〉s,A,

where

〈ξ, η〉s,A

= R

∫∫

R2N

(ξ(x) − ei(x−y)·A( x+y
2 )ξ(y))(η(x) − ei(x−y)·A( x+y

2 )η(y))
|x − y|N+2s

dxdy.

From [4, Proposition 2.1], one knows that (Hs, (·, ·)s,A) is a real Hilbert space.
Moreover, the space C∞

c (RN ,C) is a subspace of Hs, see [4, Proposition 2.2].
Let Hs

A(RN ) be the closure of C∞
c (RN ,C) in Hs. Then we have the

following lemma, and its proof can be found in d’Avenia and Squassina [4].

Lemma 2.1. Let u ∈ Hs
A(RN ). Then |u| ∈ Hs(RN ), that is,

‖|u|‖s ≤ ‖u‖s,A for all u ∈ Hs
A(RN ).

Following the same discussion as in d’Avenia and Squassina [4], together
with Lemma 2.1, we arrive at the following embedding result.

Lemma 2.2. The space Hs
A(RN ,C) is continuously embedded in Lϑ(RN ,C)

for all ϑ ∈ [2, 2∗
s ]. Furthermore, the space Hs

A(RN ,C) is continuously com-
pactly embedded in Lϑ(K,C) for all ϑ ∈ [2, 2∗

s ] and any compact set K ⊂
R

N .
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From Lemma 2.1, Theorem 2.1, and the Brézis-Lieb Lemma, we obtain
the following lemma.

Lemma 2.3. Let

Hs
r,A(RN ,C) := {u ∈ Hs

A(RN ,C) : u(x) = u(|x|), x ∈ R
N}.

Then the space Hs
r,A(RN ,C) is continuously compactly embedded in Lτ (RN ,C)

for any τ ∈ (2, 2∗
s).

By [6, Proposition 3.6 ], we have

[u]s = ‖(−Δ)
s
2 ‖L2(RN ) for any u ∈ Hs(RN ),

i.e.
∫∫

R2N

|u(x) − u(y)|2
|x − y|N+2s

dxdy =
∫

RN

|(−Δ)
s
2 u(x)|2dx.

Moreover,
∫∫

R2N

(u(x) − u(y))(v(x) − v(y))
|x − y|N+2s

dxdy =
∫

RN

(−Δ)
s
2 u(x) · (−Δ)

s
2 v(x)dx.

Now, recall the well known Hardy–Littlewood–Sobolev inequality, see
[25, Theorem 4.3].

Lemma 2.4. Assume that p, r > 1 and 0 < μ < N with 1/p + (N − μ)/N +
1/r = 2, f ∈ Lp(RN ), and h ∈ Lr(RN ). Then there exists a sharp constant
C(p, r, μ,N), independent of f, h, such that

∫

RN

∫

RN

f(x)h(y)
|x − y|N−μ

dxdy ≤ C(p, r, μ,N)‖f‖Lp‖h‖Lr . (2.2)

Set p = r = 2N/(N + μ). Then

C(p, r, μ,N) = C(N,μ) = π
N−μ

2
Γ(μ

2 )

Γ(N+μ
2 )

{
Γ(N

2 )
Γ(N)

} μ
N

.

If u = v = |w|q, then Lemma 2.4 implies that
∫

RN

(Iμ ∗ |w|q) |w|q dx

is well defined, if w ∈ Lrq(RN ) for some r > 1 satisfying 2/r+(N −μ)/N = 2.
Thus, if w ∈ Hs(RN ), then by the Sobolev embedding theorem we get that
q ∈ [p∗, p∗]. In particular, in the upper critical case,

∫

RN

(
Iμ ∗ |u|p∗)

|u|p∗
dx ≤ C(N,μ)‖u‖2p∗

2∗
s

(2.3)

and the equality holds if and only if

u = C

(
l

l2 + |x − m|2
)N−2

2

, (2.4)

for some x0 ∈ R
N , where C > 0 and l > 0, see [25]. Let

S = inf
u∈Ds(RN )\{0}

{∫∫

R2N

|u(x) − u(y)|2
|x − y|N+2s

dxdy :
∫

RN

|u|2∗
s dx = 1

}

(2.5)
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and

SH = inf
u∈Ds(RN )\{0}

{∫∫

R2N

|u(x) − u(y)|2
|x − y|N+2s

dxdy :

×
∫

RN

(
Iμ ∗ |u|p∗)

|u|p∗
dx = 1

}

. (2.6)

By (2.5) and (2.3), SH is achieved if and only if u satisfies (2.4) and SH =
S/C(N,μ)

1
p∗ , see Mukherjee and Sreenadh [34].

3. Limit Index Theory

In this section, we shall show that all hypotheses of the Limit Index Theory
are satisfied and this will eventually yield the conclusion that there exist
infinitely many solutions. To this end, we introduce some definitions from
the Limit Index Theory that can be found in Li [18] and Willem [43], the
reader may also refer to Fang and Zhang [8] and Liang and Shi [20].

Definition 3.1 [18,43]. The action of a topological group G on a normed space
Z is a continuous map

G × Z → Z : [g, z] �→ gz

such that

1 · z = z, (gh)z = g(hz) z �→ gz is linear, for all g, h ∈ G.

The action is isometric if

‖gz‖ = ‖z‖ for all g ∈ G, z ∈ Z

and in this case Z is called a G-space.
The set of invariant points is defined by

Fix(G) := {z ∈ Z : gz = z, for all g ∈ G} .

A set A ⊂ Z is invariant if gA = A for every g ∈ G. A function ϕ : Z → R is
invariant ϕ ◦ g = ϕ for every g ∈ G, z ∈ Z. A map f : Z → Z is equivariant
if g ◦ f = f ◦ g for every g ∈ G.

Assume that Z is a G-Banach space, that is, there is a G isometric
action on Z. Let

Σ := {A ⊂ Z : A is closed and gA = A, for all g ∈ G}
be a family of all G-invariant closed subsets of Z, and let

Γ :=
{
h ∈ C0(Z,Z) : h(gu) = g(hu), for all g ∈ G

}

be the class of all G-equivariant mappings of Z. Finally, we call the set

O(u) := {gu : g ∈ G}
the G-orbit of u.
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Definition 3.2 (see [18]). An index for (G,Σ,Γ) is a mapping i : Σ → Z+ ∪
{+∞} (where Z+ is the set of all nonnegative integers) such that for all
A,B ∈ Σ, h ∈ Γ, the following conditions are satisfied:
1. i(A) = 0 ⇔ A = ∅;
2. (Monotonicity) A ⊂ B ⇒ i(A) ≤ i(B);
3. (Subadditivity) i(A ∪ B) ≤ i(A) + i(B);
4. (Supervariance) i(A) ≤ i(h(A)), for all h ∈ Γ;
5. (Continuity) If A is compact and A ∩ Fix(G) = ∅, then i(A) < +∞ and
there is a G-invariant neighbourhood N of A such that i(N) = i(A);
6. (Normalization) If x �∈ Fix(G), then i(O(x)) = 1.

Definition 3.3 (see [2]). An index theory is said to satisfy the d-dimensional
property if there is a positive integer d such that

i(V dk ∩ S1) = k

for all dk-dimensional subspaces V dk ∈ Σ such that V dk ∩ Fix(G) = {0},
where S1 is the unit sphere in Z.

Suppose that U and V are G-invariant closed subspaces of Z such that

Z = U ⊕ V,

where V is infinite-dimensional and

V =
∞⋃

j=1

Vj ,

where Vj is a dnj-dimensional G-invariant subspace of V , j = 1, 2, . . . , and
V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ · · · . Let

Zj = U
⊕

Vj ,

and for all A ∈ Σ, let

Aj = A
⊕

Zj .

Definition 3.4 (see [18]). Let i be an index theory satisfying the d-dimensional
property. A limit index with respect to (Zj) induced by i is a mapping

i∞ : Σ → Z ∪ {−∞,+∞}
given by

i∞(A) = lim sup
j→∞

(i(Aj) − nj).

Proposition 3.1 (see [18]). Let A,B ∈ Σ. Then i∞ satisfies:
1. A = ∅ ⇒ i∞ = −∞;
2. (Monotonicity) A ⊂ B ⇒ i∞(A) ≤ i∞(B);
3. (Subadditivity) i∞(A ∪ B) ≤ i∞(A) + i∞(B);
4. If V ∩ Fix(G) = {0}, then i∞(Sρ ∩ V ) = 0, where Sρ = {z ∈ Z : ‖z‖ = ρ};
5. If Y0 and Ỹ0 are G-invariant closed subspaces of V such that V = Y0 ⊕ Ỹ0,
Ỹ0 ⊂ Vj0 for some j0 and dim(Y0) = dm, then i∞(Sρ ∩ Y0) ≥ −m.
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Definition 3.5 (see [43]). A functional I ∈ C1(Z,R) is said to satisfy the
condition (PS)∗

c if any sequence {unk
}, unk

∈ Znk
such that

I(unk
) → c, dInk

(unk) → 0, as k → ∞,

possesses a convergent subsequence, where Znk
is the nk-dimensional sub-

space of Z, Ink
= I|Znk

.

Theorem 3.1 (see [18]). Assume that
(D1) I ∈ C1(Z,R) is G-invariant;
(D2) There are G-invariant closed subspaces U and V such that V is infinite-
dimensional and Z = U ⊕ V ;
(D3) There is a sequence of G-invariant finite-dimensional subspaces

V1 ⊂ V2 ⊂ · · · ⊂ Vj ⊂ · · · , dim(Vj) = dnj ,

such that V = ∪∞
j=1Vj;

(D4) There is an index theory i on Z satisfying the d-dimensional property;
(D5) There are G-invariant subspaces Y0, Ỹ0, Y1 of V such that V = Y0 ⊕ Ỹ0,
Y1, Ỹ0 ⊂ Vj0 for some j0 and dim(Ỹ0) = dm < dk = dim(Y1);
(D6) There are α and β, α < β, such that f satisfies (PS)∗

c , for all c ∈
[α, β];

(D7)

⎧
⎨

⎩

(a) either Fix(G) ⊂ U ⊕ Y1, or Fix(G) ∩ V = {0},
(b) there is ρ > 0 such that for all u ∈ Y0 ∩ Sρ, f(z) ≥ α,
(c) for all z ∈ U ⊕ Y1, f(z) ≤ β,

If i∞ is the limit index corresponding to i, then the numbers

cj = inf
i∞(A)≥j

sup
z∈A

f(u), −k + 1 ≤ j ≤ −m,

are critical values of f , and α ≤ c−k+1 ≤ · · · ≤ c−m ≤ β. Moreover, if
c = cl = · · · = cl+r, r ≥ 0, then i(Kc) ≥ r + 1, where Kc = {z ∈ Z : df(z) =
0, f(z) = c}.

4. Proof of (PS)c Condition

In this section, to overcome the lack of compactness caused by the critical ex-
ponents, we intend to employ the second concentration-compactness principle
introduced in Li et al. [19]. In consideration of the appearance of convolution,
it is natural to consider a variant of the concentration-compactness principle
for the convolution type problem in the fractional Sobolev space. Since the
proof is similar to that of [11,27,47], we omit the details.

Lemma 4.1 [19]. Assume that {un} be a bounded sequence in Hs(RN ) satis-
fying un ⇀ u weakly in Hs(RN ), un → u strongly in L2

loc(R
N ) and un → u

a.e. on R
N . Let |(−Δ)

s
2 un|2 ⇀ ω, |un|2∗

s ⇀ ξ and
(Iμ ∗ |un|p∗) |un|p∗

⇀ ν
weakly in the sense of measures, where ω, ξ and ν are bounded nonnegative
measures on R

N . Define



MJOM Degenerate Fractional Kirchhoff-Type System Page 11 of 23   170 

ω∞ = lim
R→∞

lim sup
n→∞

∫

{x∈RN :|x|>R}
|(−Δ)

s
2 un|2dx,

ξ∞ = lim
R→∞

lim sup
n→∞

∫

{x∈RN :|x|>R}
|un|2∗

sdx,

and

ν∞ = lim
R→∞

lim sup
n→∞

∫

{x∈RN :|x|>R}

(
Iμ ∗ |un|p∗)

|un|p∗
dx.

Then there exists a (at most countable) set of distinct points {xi}i∈I ⊂ R
N

and a family of positive numbers {νi}i∈I such that

ν =
(
Iμ ∗ |u|p∗)

|u|p∗
+

∑

i∈I

νiδxi
,

∑

i∈I

ν
N

N+μ

i < ∞, (4.1)

ξ ≥ |u|2∗
s + Cμ(N)− N

N+μ

∑

i∈I

ν
N

N+μ

i δxi
, ξi ≥ Cμ(N)− N

N+μ ν
N

N+μ

i , (4.2)

and

ω ≥ |(−Δ)
s
2 u|2 + SH

∑

i∈I

ν
1

p∗
i δxi

, ωi ≥ SHν
1

p∗
i , (4.3)

where δxi
is the Dirac-mass of mass 1 concentrated at x ∈ R

N . For the energy
at infinity, we have

lim sup
n→∞

∫

RN

(
Iμ ∗ |un|p∗)

|un|p∗
dx =

∫

RN

dν + ν∞, (4.4)

lim sup
n→∞

∫

RN

|(−Δ)
s
2 un|2dx =

∫

RN

dω + ω∞, (4.5)

lim sup
n→∞

∫

RN

|un|2∗
sdx =

∫

RN

dξ + ξ∞, (4.6)

ξ∞ ≤ (
S−1ω∞

) 2∗
s
2 , (4.7)

ν∞ ≤ Cμ(N)
(∫

RN

dξ + ξ∞

)N+μ
2N

ξ
N+μ
2N∞ , (4.8)

and

ν∞ ≤ S−p∗
H

(∫

RN

dω + ω∞

) p∗
2

ω
p∗
2∞ . (4.9)

Now, to show that all hypotheses of the Limit Index Theory are satisfied
3.1, we denote G1 = O(N), where O(N) is the group of orthogonal linear
transformations in R

N , E = Hs
r,A(RN ,C) and

EG1 = Hs
r,A,O(N) := {u ∈ Hs

r,A(RN ,C) : gu(x) = u(g−1x) = u(x), g ∈ O(N)}.

For convenience, let G2 = Z2, Y = E ×E, X = YG1 = EG1 ×EG1 . The space
Y is endowed with the norm ‖(u, v)‖s,A = ‖u‖s,A + ‖v‖s,A. Using d’Avenia
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and Squassina [4], it is easy to prove that (Y, ‖ · ‖s,A) is a reflexive Banach
space. The corresponding energy functional of problem (1.1) is given by

J (u, v) = −1
2
M (‖u‖2

s,A) +
1
2
M (‖v‖2

s,A) − 1
2p∗

∫

RN

(
Iμ ∗ |u|p∗)

|u|p∗
dx

− 1
2p∗

∫

RN

(
Iμ ∗ |v|p∗)

|v|p∗
dx − 1

2

∫

RN

G(|x|, |u|2, |v|2)dx (4.10)

for each (u, v) ∈ Y . By condition (F), we know that the functional J is well
defined on Y and belongs to C1(Y,R). Moreover, its Fréchet derivative is
given by

〈J ′(u, v), (z1, z2)〉 = −M(‖u‖2
s,A)

(

〈u, z1〉s,A + R

∫

RN

uz1dx

)

+M(‖v‖2
s,A)

(

〈v, z2〉s,A + R

∫

RN

vz2dx

)

−R

∫

RN

(Iμ ∗ |u|p∗
)|u|p∗−2uz1dx − R

∫

RN

(Iμ ∗ |v|p∗
)|v|p∗−2vz2dx

−R

∫

RN

Fu(|x|, |u|2, |v|2)uz1dx − R

∫

RN

Fv(|x|, |u|2, |v|2)vz2dx = 0

for any (u, v), (z1, z2) ∈ Y , where

〈ζ, zi〉s,A

= R

∫∫

R2N

(ζ(x) − ei(x−y)·A( x+y
2 )ζ(y))(zi(x) − ei(x−y)·A( x+y

2 )zi(y))
|x − y|N+2s

dxdy

for any ζ, zi ∈ Hs
A(RN ,C) (i = 1, 2). By condition (F), we know that the

functional J is O(N)-invariant. Therefore, from the principle of symmetric
criticality of Krawcewicz and Marzantowicz [15], we know that (u, v) is a
critical point of J if and only if (u, v) is a critical point of J = J |X=EG1×EG1

.
So, we just need to prove the existence of a sequence of critical points J on
Y .

Now, we begin to prove the (PS)c condition.

Lemma 4.2. Let (M) and (G) hold, {(unk
, vnk

)} be a sequence such that
{(unk

, vnk
)} ∈ Xnk

,

Jnk
(unk

, vnk
) → c < c∗ as k → ∞,

where Jnk
= J |Xnk

and

c∗ = min
{(

1
θ

− 1
2p∗

)

(m1S
σ
H)

p∗
p∗−σ ,

(
1
θ

− 1
2p∗

)

×
(
m1Ĉ(μ,N)−1S

p∗
2

) 2
p∗−2σ

}

.

Then there exists a subsequence of {(unk
, vnk

)} strongly convergent in X.

Proof. If infn∈N ‖unk
‖s,A = 0 or infn∈N ‖vnk

‖s,A = 0, then there exists a
subsequence of {unk

} (or {vnk
}) such that unk

→ 0 or vnk
→ 0 in EG1 as n →
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∞. Thus, we can assume that infn∈N ‖unk
‖s = d1 > 0 and infn∈N ‖vnk

‖s =
d2 > 0 in the sequel.

On the one hand, from (M1) and (F3), we get

o(1)‖unk
‖s,A ≥ 〈−dJnk

(unk
, vnk

), (unk
, 0)〉

= M(‖unk
‖2

s,A)‖unk
‖2

s,A +
∫

RN

(
Iμ ∗ |unk

|p∗)
|unk

|p∗
dx

+
∫

RN

Gu(|x|, |unk
|2, |vnk

|2)|unk
|2dx

≥ m∗‖unk
‖2

s,A. (4.11)

Therefore,{unk
} is bounded in EG1 . On the other hand, from (F2) and the

fact that 2σ < θ < 2p∗, we have

c + o(1)‖vnk
‖s,A = Jnk

(0, vnk
) − 1

θ
〈dJnk

(unk
, vnk

), (0, vnk
)〉

=
1
2
M (‖vnk

‖2
s,A) − 1

θ
M(‖vnk

‖2
s,A)‖vnk

‖2
s,A

+
(

1
θ

− 1
2p∗

)∫

RN

(
Iμ ∗ |vnk

|p∗)
|vnk

|p∗
dx

−
∫

RN

[

G(|x|, 0, |vnk
|2) − 1

θ
Gv(|x|, 0, |vnk

|2)|vnk
|2

]

dx

≥
(

1
2σ

− 1
θ

)

M(‖vnk
‖2

s,A)‖vnk
‖2

s,A

≥
(

1
2σ

− 1
θ

)

m∗‖vnk
‖2

s,A. (4.12)

This fact implies that {vnk
} is bounded in EG1 . Thus ‖unk

‖s,A + ‖vnk
‖s,A is

bounded in X.
Next, we shall prove that {(unk

, vnk
)} contains a subsequence strongly

convergent in X. Since {unk
} is bounded in EG1 it follows that, up to a

subsequence, unk
⇀ u0 weakly in EG1 and unk

→ u0, a.e. in R
N . Thus, it

follows from (M1) and (F3) that

0 ← 〈−dJnk
(unk

− u0, vnk
), (unk

− u0, 0)〉
= M(‖unk

− u0‖2
s,A)‖unk

− u0‖2
s,A

+
∫

RN

Gu(|x|, |unk
− u0|2, |vnk

|2)|unk
− u0|2dx

+
∫

RN

(
Iμ ∗ |unk

− u0|p∗)
|unk

− u0|p∗
dx

≥ m∗‖unk
− u0‖2

s,A,

which implies that

unk
→ u0 strongly in EG1 . (4.13)

It suffices to prove that there exists v0 ∈ EG1 such that

vnk
→ v0 strongly in EG1 . (4.14)
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Next, to prove (4.14), we divide the following proof into three claims.
Claim 1. Fix i ∈ I. Then either νi = 0 or

νi ≥ (m1S
σ
H)

p∗
p∗−σ . (4.15)

To prove (4.15), we take φ ∈ C∞
0 (RN ) be a radial symmetric function sat-

isfying 0 ≤ φ ≤ 1; φ ≡ 1 in B(xi, ε), φ(x) = 0 in R
N \ B(xi, 2ε). For any

ε > 0, define φε := φ
(

x−xi

ε

)
, where i ∈ I. Clearly {φεvnk

} is bounded in
Hs

r,A(RN ,C) and 〈dJnk
(unk

, vnk
), (0, vnk

φε)〉 → 0 as n → ∞. Hence

M
(‖vnk

‖2
s,A

)
(∫∫

R2N

|vnk
(x) − ei(x−y)·A( x+y

2 )vnk
(y)|2φε(y)

|x − y|N+2s
dxdy

+
∫

RN

|vnk
|2φε(x)dx

)

= −R

{

M
(‖vnk

‖2
s,A

)

∫∫

R2N

(vnk
(x) − ei(x−y)·A( x+y

2 )vnk
(y))vnk

(x)(φε(x) − φε(y))
|x − y|N+2s

dxdy

}

+
∫

RN

(
Iμ ∗ |vnk

|p∗)
|vnk

|p∗
φε dx

+
∫

RN

Gv(|x|, |unk
|2, |vnk

|2)|vnk
|2φεdx + on(1). (4.16)

We deduce from (M2) and diamagnetic inequality that

M
(‖vnk

‖2
s,A

)
(∫∫

R2N

|vnk
(x) − ei(x−y)·A( x+y

2 )vnk
(y)|2φε(y)

|x − y|N+2s
dxdy

+
∫

RN

|vnk
|2φε(x)dx

)

≥ m1

(∫∫

R2N

|vnk
(x) − ei(x−y)·A( x+y

2 )vnk
(y)|2φε(y)

|x − y|N+2s
dxdy

+
∫

RN

|vnk
|2φε(x)dx

)σ

≥ m1

(∫∫

R2N

||vnk
(x)| − |vnk

(y)||2 φε(y)
|x − y|N+2s

dxdy

)σ

. (4.17)

We note that

lim
ε→0

lim
n→∞

∫∫

R2N

||vnk
(x)| − |vnk

(y)||2 φε(y)
|x − y|N+2s

dxdy = lim
ε→0

∫

RN

φεdω = ωi

(4.18)

and

lim
ε→0

lim
n→∞

∫

RN

(
Iμ ∗ |vnk

|p∗)
|vnk

|p∗
φε dx = lim

ε→0

∫

RN

φεdν = νi. (4.19)
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By the Hölder inequality, we have
∣
∣
∣
∣
∣
R

{

M
(‖vnk‖2

s,A

)

∫ ∫

R2N

(vnk (x) − ei(x−y)·A( x+y
2 )vnk(y))vnk (x)(φε(x) − φε(y))

|x − y|N+2s
dxdy

}∣
∣
∣
∣
∣

≤ C

∫∫

R2N

|vnk (x) − ei(x−y)·A( x+y
2 )vnk (y)| · |φε(x) − φε(y)| · |vnk (x)|

|x − y|N+2s
dxdy

≤ C

(∫∫

R2N

|vnk (x)|2|φε(x) − φε(y)|2
|x − y|N+2s

dxdy

)1/2

. (4.20)

As the proof of Zhang et al. [47, Lemma 3.4], we get

lim
ε→0

lim
n→∞

∫∫

R2N

|vnk
(x)|2|φε(x) − φε(y)|2

|x − y|N+2s
dxdy = 0. (4.21)

Furthermore, the Lebesgue dominated convergence theorem and (F1) imply
that

∫

RN

Gv(|x|, |unk
|2, |vnk

|2)|vnk
|2φε(x)dx

→
∫

RN

Gv(|x|, |u0|2, |v0|2)|v0|2φε(x)dx as n → ∞. (4.22)

The definition of φε(x) gives us
∣
∣
∣
∣

∫

RN

Gv(|x|, |u0|2, |v0|2)|v0|2φεdx

∣
∣
∣
∣

≤
∫

Bε(0)

|Gv(|x|, |u0|2, |v0|2)|v0|2dx → 0 as ε → 0. (4.23)

Combining (4.16)–(4.21), we get that

νi ≥ m1ω
σ
i .

It follows from (4.3) that νi = 0 or

νi ≥ (m1S
σ
H)

p∗
p∗−σ .

Claim 2. νi = 0, for all i ∈ I and ν∞ = 0.
Indeed, if Claim 2 were false, then there would exist a i ∈ I such that

(4.15) would hold. Similar to (4.12), by (M3) and (F2), we deduce

c = lim
ε→0

lim
n→∞

(

Jnk
(0, vnk

) − 1
θ
〈dJnk

(unk
, vnk

), (0, vnk
)〉

)

≥
(

1
θ

− 1
2p∗

) ∫

RN

(
Iμ ∗ |vnk

|p∗)
|vnk

|p∗
dx

≥
(

1
θ

− 1
2p∗

) ∫

RN

(
Iμ ∗ |vnk

|p∗)
|vnk

|p∗
φε dx

≥
(

1
θ

− 1
2p∗

)

νi ≥
(

1
θ

− 1
2p∗

)

(m1S
σ
H)

p∗
p∗−σ . (4.24)
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On the other hand, we show that ν∞ = 0. For this, we take a cut off
function φR ∈ C∞(RN ) such that

φR(x) =

{
0 |x| < R,

1 |x| > R + 1

and |∇φR| ≤ 2/R. Using the Hardy–Littlewood–Sobolev and Hölder’s in-
equality, we get

ν∞ = lim
R→∞

lim
n→∞

∫

RN

(
Iμ ∗ |vnk

|p∗)
|vnk

|p∗
φR(y)dx

≤ Cμ(N) lim
R→∞

lim
n→∞ |vnk

|p∗
2∗

s

(∫

RN

|vnk
(x)|2∗

s φR(y)dx

) p∗
2∗

s

≤ Ĉ(μ,N)ξ
p∗
2∗

s∞ . (4.25)

Note that {φRvnk
} is bounded in Hs

r,A(RN ,C). Hence, 〈dJnk
(unk

, vnk
),

(0, vnk
φR)〉 → 0 as n → ∞, which yields that

M
(‖vnk

‖2
s,A

)
(∫∫

R2N

|vnk
(x) − ei(x−y)·A( x+y

2 )vnk
(y)|2φR(y)

|x − y|N+2s
dxdy

+
∫

RN

|vnk
|2φR(x)dx

)

= −R

{

M
(‖vnk

‖2
s,A

)

∫∫

R2N

(vnk
(x) − ei(x−y)·A( x+y

2 )vnk
(y))vnk

(x)(φR(x) − φR(y))
|x − y|N+2s

dxdy

}

+
∫

RN

(
Iμ ∗ |vnk

|p∗)
|vnk

|p∗
φR dx

+
∫

RN

Gv(|x|, |unk
|2, |vnk

|2)|vnk
|2φRdx + on(1). (4.26)

We can easily deduce that

lim sup
R→∞

lim sup
n→∞

∫∫

R2N

||vnk
(x)| − |vnk

(y)||2φR(y)
|x − y|N+2s

dxdy = ω∞

and
∣
∣
∣
∣
∣
R

{

M
(‖vnk

‖2
s,A

)

∫∫

R2N

(vnk
(x) − ei(x−y)·A( x+y

2 )vnk
(y))vnk

(x)(φR(x) − φR(y))
|x − y|N+2s

dxdy

}∣
∣
∣
∣
∣

≤ C

(∫∫

R2N

|vnk
(x)|2|φR(x) − φR(y)|2

|x − y|N+2s
dxdy

)1/2

.
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Furthermore,

lim sup
R→∞

lim sup
n→∞

∫∫

R2N

|vnk
(x)|2|φR(x) − φR(y)|2

|x − y|N+2s
dxdy

= lim sup
R→∞

lim sup
n→∞

∫∫

R2N

|vnk
(x)|2|(1 − φR(x)) − (1 − φR(y))|2

|x − y|N+2s
dxdy.

On the other hand, similar to the proof of Zhang et al. [47, Lemma 3.4 ], we
have

lim sup
R→∞

lim sup
n→∞

∫∫

R2N

|vnk
(x)|2|(1 − φR(x)) − (1 − φR(y))|2

|x − y|N+2s
dxdy = 0.

It follows from (M2) that

M
(‖vnk

‖2
s,A

)
(∫∫

R2N

|vnk
(x) − ei(x−y)·A( x+y

2 )vnk
(y)|2φR(y)

|x − y|N+2s
dxdy

+
∫

RN

|vnk
|2φR(x)dx

)

≥ m1

(∫∫

R2N

|vnk
(x) − ei(x−y)·A( x+y

2 )vnk
(y)|2φR(y)

|x − y|N+2s
dxdy

+
∫

RN

|vnk
|2φR(x)dx

)σ

≥ m1

(∫∫

R2N

||un(x)| − |un(y)||2 φR(y)
|x − y|N+2s

dxdy

)σ

= m1ω
σ
∞.

By the definition of φR and conditions (F1)–(F2), we have

lim
R→∞

lim
n→∞

∫

RN

Fv(|x|, |unk
|2, |vnk

|2)|vnk
|2φRdx

= lim
R→∞

∫

RN

Fv(|x|, |u0|2, |v0|2)|v0|2φRdx = 0.

Therefore, by (4.26) together with (4.25), we can obtain that

Ĉ(μ,N)ξ
p∗
2∗

s∞ ≥ ν∞ ≥ m1ω
σ
∞.

It follows from (4.3) that ν∞ = 0 or

ν∞ ≥
(
m1Ĉ(μ,N)−1S

p∗
2

) 2
p∗−2σ

.

Then we have

c = lim
R→∞

lim
n→∞

(

Jnk
(0, vnk

) − 1
θ
〈dJnk

(unk
, vnk

), (0, vnk
)〉

)

≥
(

1
θ

− 1
2p∗

)∫

RN

(
Iμ ∗ |vnk

|p∗)
|vnk

|p∗
φR dx

≥
(

1
θ

− 1
2p∗

)

ν∞ ≥
(

1
θ

− 1
2p∗

)(
m1Ĉ(μ,N)−1S

p∗
2

) 2
p∗−2σ

. (4.27)
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Invoking the arguments above and together with (4.24), (4.27), set

c∗ = min

{(
1

θ
− 1

2p∗

)

(m1S
σ
H)

p∗
p∗−σ ,

(
1

θ
− 1

2p∗

) (

m1Ĉ(μ, N)−1S
p∗
2

) 2
p∗−2σ

}

.

Then for any c < c∗ we have

νi = 0 for all i ∈ I and ν∞ = 0.

Claim 3. vnk
→ v0 strongly in EG1 . Indeed, by Claim 2 and Lemma 3.1,

we know

lim
n→∞

∫

RN

(
Iμ ∗ |vnk

|p∗)
|vnk

|p∗
dx = lim

n→∞

∫

RN

(
Iμ ∗ |v0|p∗)

|v0|p∗
dx.

(4.28)

Now, we define the linear functional L(v) on EG1 as follows

[L(v), w] = R

∫∫

R2N

(v(x) − ei(x−y)·A( x+y
2 )v(y))(w(x) − ei(x−y)·A( x+y

2 )w(y))

|x − y|N+2s
dxdy

+ R

∫

RN

vwdx

= 〈v, w〉s,A + R

∫

RN

vwdx

for any v ∈ EG1 . Obviously, L is a bounded bi-linear operator. By the Hölder
inequality, we have

|[L(v), w]| ≤ ‖v‖s,A‖w‖s,A.

Since vnk
⇀ v0 weakly in EG1 we have

lim
n→∞[L(v0), vnk

− v0] = 0. (4.29)

Clearly, [L(vnk
), vnk

− v0] → 0 as n → ∞. Hence by (4.29), one has

lim
n→∞[L(vnk

) − L(v0), vnk
− v0] = 0. (4.30)

Hence, by (4.29) and (4.30), one has

o(1) = 〈dJnk (unk , vnk ) − dJnk(u0, v0), (0, vnk ) − (0, v0)〉
= M(‖vnk‖2

s,A)‖vnk‖2
s,A − M(‖vnk‖2

s,A)[L(vnk ), v0]

−M(‖v0‖2
s,A)[L(v0), vnk − v0]

−λ

∫

RN

[Gv(|x|, unk , vnk ) − Gv(|x|, u0, v0)](vnk − v0)dx

−
∫

RN

[
(Iμ ∗ |vnk |p∗

)|vnk |p∗−2vnk − (Iμ ∗ |v0|p
∗
)|v0|p

∗−2v0
]
(vnk − v0)dx

= M(‖vnk‖2
s,A)[L(vnk ) − L(v0), vnk − v0]

−
∫

RN

(Iμ ∗ |vnk − v0|p
∗
)|vnk − v0|p

∗
dx + o(1). (4.31)

This fact together with ‖vnk
‖s,A → β implies that

M(β2) lim
n→∞ ‖vnk

− v0‖2
s,A = 0. (4.32)

It follows from (M1) that vnk
→ v0 strongly in EG1 .
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To sum up, we know that {(unk
, vnk

)} contains a subsequence converg-
ing strongly in X and the proof of Lemma 4.2 is complete. �

5. Proof of Theorem 1.1

In this section, we prove that problem (1.1) has infinitely many solutions.

Proof of Theorem 1.1. To apply Theorem 3.1, we define

Y = U ⊕ V, U = EG1 × {0}, V = {0} × EG1 ,

Y0 = {0} × Em⊥
G1

, Y1 = {0} × E
(k)
G1

,

where m and k are yet to be determined. Obviously, Y0, Y1 are G-invariant
and

codimV Y0 = m, dim Y1 = k.

It’s easy to verify that (D1), (D2), (D4) in Theorem 3.1 are satisfied. Let

Vj = E
(j)
G1

= span{e1, e2, . . . , ej}.

Hence (D3) in Theorem 3.1 holds. To verify the conditions in (D7) in The-
orem 3.1, note that Fix(G) ∩ V = 0, thus (a) of (D7) in Theorem 3.1 is
satisfied. Now, we verify that (b) and (c) of (D7) in Theorem 3.1 holds.

(i) Let (0, v) ∈ Y0 ∩ Sρm
, then from (F1) and (F3), we get

J(0, v) =
1

2
M (‖v‖2s,A) − 1

2p∗

∫

RN

(
Iμ ∗ |v|p∗)

|v|p∗
dx − 1

2

∫

RN

G(|x|, 0, |v|2)dx

≥ m∗

σ
‖v‖2s,A − S−p∗

H

p∗
s

‖v‖2p∗
s,A − c‖v‖p

s,A. (5.1)

Therefore we can choose ρm > 0 such that J(0, v) ≥ α for ‖v‖s,A = ρm since
2 < p < 2p∗. This fact implies that (b) of (D7) in Theorem 3.1 holds.

(ii) From (F1) we have

J(u, 0) = −1

2
M (‖u‖2

s,A) − 1

2p∗

∫

RN

(
Iμ ∗ |u|p∗)

|u|p∗
dx −

∫

RN

G(|x|, |u|2, 0)dx

≤ 0.

On the other hand, we can take α such that

α > sup
u∈EG1

J(u, 0).

Let (u, v) ∈ U ⊕ Y1, then we have

J(u, v) = −1
2
M (‖u‖2

s,A) +
1
2
M (‖v‖2

s,A) − 1
2p∗

∫

RN

(
Iμ ∗ |u|p∗)

|u|p∗
dx

− 1
2p∗

∫

RN

(
Iμ ∗ |v|p∗)

|v|p∗
dx − 1

2

∫

RN

G(|x|, |u|2, |v|2)dx

≤ c

2
‖v‖2

s,A − c

2p∗ ‖u‖2p∗
s,A + α.
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Note that all norms are equivalent on the finite-dimensional space Y1, so we
can choose k > m and βk > αm such that

JU⊕Y1 ≤ βk.

Hence (c) of (D7) in Theorem 3.1 holds. By Lemma 4.2, J(u, v) satisfies the
condition of (PS)∗

c for any c ∈ [αm, βk]. Therefore (D6) in Theorem 3.1 holds.
Hence, by Theorem 3.1, we know that

cj = inf
i∞(A)≥j

sup
z∈A

J(u, v), −k + 1 ≤ j ≤ −m, αm ≤ cj ≤ βk,

are critical values of J . Letting m → ∞, we can obtain an unbounded se-
quence of critical values cj . Since the functional J is even, we can get two
critical points (±uj ,±vj) of J corresponding to cj . �
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