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A TOTAL FINITE-DIMENSIONAL SELECTION

THEOREM?'
S. M. Ageev and D. Repovs UDC 515

§ 1. Statement of the Theorem

DEFINITION 1.1. A Dim-filtration of a (p + 1)-dimensional paracompact space X is a nested
sequence X = Xp D Xp—1 D --- D Xo D X_1 D X_2 = @ of subspaces of X such that dimy,(X;_;) <
t for all 0 < t < p (which means that the Lebesgue dimension of every closed subset £ of X; lying in
X;¢_1 is at most t, dim E < t).

In a metric space X, the above condition on dimension amounts to the inequality dim(Y;) < (¢+1)
for every stratum Y; = X; \ Xi—1, —1 < t < p, of the dim-filtration of X. The question arises: In
which case does the fulfillment of the conditions of Michael’s (¢ + 1)-dimensional selection theorem
[1,2] on every stratum Y; imply the existence of a global (local) selection? Our Theorem A answers
this question.

We further assume that some (possibly empty) equi-locally-t-connected families &¢, —1 <t < o0,
of closed subsets of Z are fixed in a metric space (Z,p). Also, we assume that US;, the carrier or
underlying set of each family &; with 0 < t < oo, is closed in the union U{US; | 0 < t < oo} of
the carriers of all families.

Theorem A. Assume given a (p + 1)-dimensional paracompact space X, a dim-filtration X =
Xp D Xp-1 DD XegD X1 D X2 =0 of X, and a lower semicontinuous multi-valued mapping
® : X — Z with complete (with respect to the metric p on Z) values ®(z), z € X, for which

(2) the image ®(z) of every point x of the stratum Y;, —1 <t < p, belongs to the family &;.

Then, for every closed A C X and every continuous selection r : A — L of the mapping ® | A,
there are a neighborhood O(A) of A and a continuous extension r’ : O(A) — Z of r that is a selection
of the mapping ® | O(A). If we additionally know that the families &, consist of t-connected sets
then we may assume that the neighborhood O(A) equals X (i.e., the local selection r extends to some
global selection).

REMARK 1. If X = X_; then Theorem A coincides with the zero-dimensional selection theorem.
REMARK 2. If X = X, and X;~; = @ then Theorem A coincides with the finite-dimensional
selection theorem.

REMARK 3. If the set {t < p | YV} # O} consists of two elements then Theorem A is exactly
Theorem 3 of [3].

REMARK 4. The following simple example shows that the requirement of closure of the carries
UG, in the union U{US,; | 0 <t < oo} is essential.

Let ap = 1/n, let Ay, = {an.,.l,an be the closed interval, and let S, be the boundary of A,.
Denote X = {0}ulJ, An C R} Z = R?; &, consists of the cones Con(S,), 1 > 1, in R% over S, with
vertex the point (0,1); So = {z | z € R?}, 6.1 = @; X; = X, Xo = {0} U, Sn, and X_; = @.
Clearly, 67 € equi-LC® NC™, &g consists of convex subsets, dimX; = 1, and dim Xy = 0. It is
easy to verify that the multi-valued mapping F : X — Z. given by the formula F(z) = {z} ifz =10
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or z € Sy and by the formula F(r) = Con S, if r € A, \ Sy, is lower semicontinuous and satisfies
all (but one) conditions of the theorem: the carrier US; of the system &, is not closed in Z. From
the existence of a single-valued selection f : X — Z of F we can easily deduce the possibility of
retracting the interval A, to its boundary S, for n large enough. which is impossible.

REMARK 5. In §3 we demonstrate that it suffices to prove Theorem A, as well as the forthcomin
Theorems B-D, under the following simplifying assumption: (Z, p) is a normed vector space (L, || % b
and the carriers US; with ¢ > —1 coincide with L.

DEFINITION 1.2. Each lower semicontinuous mapping ® mentioned in Theorem A is referred to
as a multi-valued mapping consistent with the dim-filtration X = X, D Xp; D --- D Xg D X_; of
the paracompact space X and the families of sets {S,}.

We deduce Theorem A from the following theorem on approximation of é-selections.

Theorem B. To each covering ¢ € cov L, there exists a covering & € cov L with the following
property: Each é-selection r : X — L of a multi-valued mapping ® : X — L consistent with
the dim-filtration of the paracompact space X and the families of sets {S;} can be €-approximated
by a selection ' : X — L of ®.

By a method familiar from the selection theory, Theorem B is in turn reduced to the following
theorems.

Theorem C. To each covering ¢ € cov L, there exists a covering 6 € cov L such that the following
property holds for every covering p € cov.L: Each é-selectionr : X — L of a multi-valued mapping
® : X — L consistent with the dim-filtration of the paracompact space X and the families of sets
{&:} can be c-approximated by a u-selection ' : X — L of ®.

Theorem D. Suppose that we additionally know that the families &; consist of t-connected
sets. Then, for each covering p € cov L and each multi-valued mapping ® : X — L consistent with
the dim-filtration of the paracompact space X and the families of sets {S,}, there exists a u-selection
r':X = Lof®.

§ 2. Preliminaries

We denote the set of all open coverings of X by cov X and denote by w € cov X some open covering.
We denote sup{diamU | U € w} by cal(w) or mesh(w). The star (or the neighborhood) of a set A C X
with respect tow € cov X is the set U{U|U € w,UNA # @}, denoted by N(A,w) or St(A,w). The star
of a covering w with respect to another covering ' is the covering St(w,w') = {St(U,w') | U € w}.
For brevity, the iterated stars St(w;, St(wa,...,wn)...) are denoted by wy 0 --- 0wy 0wy and, in case
all w; are equal, by (w1)*. The carrier of a system w of open sets is the set U{U | U € w} denoted
by Uw. The intersection of finitely many coverings w; is the covering composed of the intersections of
the elements of w;’s; it is denoted by AL, w;.

The record w > w; means as usual that the covering w refines wy. If f,g: X — Y are mappings,
Ais a subset of Y, and w € covY then the w-proximity of f and g is designated as (f,g) < w.
The inclusion of a set A in an element of a covering w is designated as A < w.

The nerve of a covering w = {Uy | § € B} is the polytope 9w), with the weak Whitehead
topology, whose vertices (Ug) are in a one-to-one correspondence with the index set B and where
w = (Ugy,..-,Ug,) is an s-dimensional simplex of 9w) with vertices (Ug,) if and only if NU3, # @.
The k-dimensional skeleton D{w)(¥) is the subpolytope of M(w) consisting of at most k-dimensional
simplices; 9(w){(~1) = @. The open star Sto((Us,)) of the vertex (U/3,) is the set {Yap-(Ug) €
N(w) | agy # 0}

If a covering o refines a covering w, ¢ > w; then the simplicial mapping 7(o,w) : N(o) — N(w)
is defined that takes each vertex (H) € (o) into the vertex (U) € M{w) such that H C U. We say
that the mapping = is generated by the refinement o of w.

A mapping 6 : X — N(w) is called canonical if the inverse image 8~ 1(Sto(U,,))) of the open star
of each vertex ([7,) lies in U,. It is well known [4] that a canonical mapping exists for every open
covering w« of a paracompact space X. We present the following fact without proof.
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Proposition 2.1. For every covering w € cov X of a (p + 1)-paracompact space X, there exists

a canonical mapping 8 : X — N(w) whose range §(X) lies in the (p + 1)-dimensional skeleton

T{w) P+,

We denote the restriction of a mapping f to a set A by f [ A. All single-valued mappings are
assumed continuous unless they result from some constructions.

A multi-valued mapping ® : X — Z is called closed-valued (compact-valued, complete-valued) if
the image ®(z) of each point r is closed (compact, complete).

We recall that a multi-valued mapping ® : X — Z is said to be lower semicontinuous if the set
{r € X | ®@)NU # @} is open in X for every open set U in Z. A continuous single-valued
mapping f : X — Z is called a selection (6-selection with § € cov Z) of a mapping @ if f(z) € &(z)
(f(z) € N(®(z),6)) for all z € X.

DEFINITION 2.2. A family & = {Z4} of closed subsets of a metric space Z is called equi-locally-
(n — 1)-connected (& € equi-LC™"™1), 1 < n < 0, if for every point z € UZ, and every neighborhood
U of x there is a smaller neighborhood V of z such that every mapping f : SE=1 L,V Zy k <n,
diﬁ?ed on the sphere S%¥~1, extends to a mapping f: B¥ = U N Z, of the ball B¥~! with boundary
SE=L.

If & consists of a single set Zp then we say that Zg is locally-(n — 1)-connected (Zy € LC* .
IfU = V = Z then we say that & is (n — 1)-connected (& € C*!). f U =V = Z and &
consists of a single set Zy then we say that Zy is (n — 1)-connected (Zg € C*™!). It is well known
[4] that the absolute exténsors in dimension n (AE(n)) are exactly the spaces that are both locally
(n — 1)-connected and (n — 1)-connected.

We now introduce some important notions that are connected with the name of S. Lefschetz.

DEFINITION 2.3. Let a be a system of open sets in Z and let 91y be a subpolytope of a polytope

91 which contains all vertices. A partial a-realization of N is a mapping Mo 4, 7 such that the set
f(A N 9NY) lies in some element V € a for every simplex A € 9.

DEFINITION 2.4. A family & = {Z,} of closed subsets of a metric space Z possesses the equi-
Lefschetz property equi-Lf?, p < oo, if, for every system v, Uy D |J, Za, of open sets, there exists
a system &, U§ O U, Za, of open sets such that, for every set Zo and every partial é-realization

N —MNo 4 Zq, dim(M) < (p+ 1), there exists a y-realization fiM— Z,.

Dependence of a family § on 7 is expressed as follows: 6 = equi-Lf’é('y). If U, Za = Z then
instead of systems we should consider coverings of Z.

It is well known [4, p. 156] that Z € ANE(p + 1) = LC?, 1 < p < oo, if and only if, for every
4 € cov Z, there exists § € cov Z, v = Lf%(§). By analogy, we establish the following

Proposition 2.5. A family {Z,} of closed subsets of a metric space Z belongs to the class
equi-LCP, p < oo, if and only if {Z4} possesses the equi-Lefschetz property equi-L{?.

§ 3. Derivation of Theorem A from Theorems B-D

First of all, we demonstrate how Theorem A is reduced to a situation in which the metric space
(Z, p) is a normed vector space (L, || * ||) and the carrier of the system UG; coincides with the whole
space L. To this end, we embed the subspace Zg = U{US; | 0 < t < oo} isometrically in some normed
vector space L, e : Zg — L, so that the image of Zg be closed (5, p. 49]. From the closure of U&; in
Zy and e(Zp) in L we can easily infer that the families &} = €(&;) U {L} of closed subsets belong to
the class equi-LC_f NC? and that their carriers coincide with L. The lower semicontinuous complete-
valued mapping ® = 0 ® : X — L is consistent with the dim-filtration of X and the families of sets
{64}, and by hypothesis there exists a selection # : X — L for ®. Then r: X — Z, r(z) = e~ (F(z)),
is a sought selection for ®.

From now on, we assume that in a normed vector space L there are fixed equi-locally-t-connected
families &;, —1 < t < o0, of closed t-connected sets; moreover, the carriers US;, —1 < t, of the families
coincide with the whole L.
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Forty years ago. E. Michael discovered first selection theorems whose proofs are reduced to con-
struction of approximate selections and the subsequent procedure of finding new, more precise ap-

proximate selections in their neighborhoods. In broad outline, this scheme applies to the situation
under consideration.

Proposition 3.1. Theorem C implies Theorem B.

PROOF. Assume that a covering ¢ € cov L is fixed and let e, € cov L, €1 = ¢, be a sequence of
coverings of L such that (sn41)® > ¢, for n > 1 and limmeshe, — 0. An arbitrary Cauchy sequence
{vn € L} has a limit in v, provided that lim p(vy, ®(z)) = 0 for some point z € X. Clearly, v will
belong to ®(zx).

Let 6; € cov L be chosen so that the pair (¢;,6;) satisfies Theorem C. Also, fix a sequence of
coverings {pi} such that p; > §; and mesh{y;} — 0.

We take 62 as a sought covering 6§ € cov L. Indeed, consider a é-selection r : X — L of ®.
Applying Theorem C repeatedly, we successively obtain mappings r, : X — L, n > 2, such that
(Tn—1,7Tn) < €n+2 and rp(z) € N(®(z), pn) C N(®(z),6n), ¢ € X. Then {r,} is a Cauchy sequence,
and, by virtue of the equality limp(rn(z),®(z)) = 0, it converges to some mapping ' : X — L,
r'(z) € ®(z). Clearly, r' is a sought section of ® ¢-close to r.

Proposition 3.2. Suppose that § € cov L. Then every partial selection X «— A 5 L of &
extends to a é-selection O(A) 5 L of ® over some neighborhood O(A).

Proposition 3.3. The global Theorem A (local Theorem A) is a consequence of Theorems B
and D (B and Proposition 3.2).

ProOF. To save room, we only settle the global case, leaving the case of the local extension of
a selection to the reader.

Let € be a covering of L consisting of one element and let the pair (¢, §) satisfy Theorem B. Using
Theorem D, find a §-selection r of . An e-approximation of r is a sought selection of ®.

§ 4. Michael’s A-Condition

The rest of the article is devoted to proving Theorems C and D. A p-approximation v’ : X — L in
Theorem C is sought as a rule in the form of the composition of a canonical mapping 8 : X — N(w),
generated by some covering w € cov X, and a continuous mapping m : 9Mw) — L. We address
the question: “Which conditions should be imposed on a mapping m for the composition m o 8 to
satisfy Theorem C?” Answering this question, E. Michael introduced the following definition (in terms
differing from those here) and proved a proposition which explains the value of this notion in many
respects.

DEFINITION 4.1. Suppose that w = {V,} € cov X, My is a subpolytope of the nerve M(w), and
A € covX. We say that a mapping m : My — L satisfies Michael's A-condition if the inclusion
m(A) C N(®(z), A) holds for every simplex A = (V3,..., Vi) € Mo and every point z € NV;.

Proposition 4.2. Assume given: (1) coverings v, A € cov L; (2) a covering w € cov X; (3) a par-
tial y-realization M(w) < Mg 5 L satisfying Michael’s A-condition; (4) a mapping k : X — L such
that k(U) C N(m((U)),v) for all U € w.

Then: (5) the composition g : Xg 9—[—{3 No 5 X. where X = 0‘1(%), of m with every canonical

mapping 6 : X — Mw) is (yov)-close to k [ X; (6) the mapping g is a A-selection of the multi-valued
mapping ® [ Xo.

REMARK. If 6(X) is in Mo and if 4> = c and A = y then ¢ = m 00 is a sought e-approximation
of k and a g-approximation of ®.

PROOF OF THE PROPOSITION. Suppose that & € (N, U; and 6(z) = SSoy(Us) € A C No.
Since m is a y-realization, we have m(6(z)) € N(m(l;),v). Moreover, by hypothesis k(z) € k(U;) C
N(m(U;), 7). Therefore. the pairs m(6(z)), m({l’;)) and k(z), m({U;)) belong to some elements of 7,
whereas g(x) = m(6(x)) and k() belong to some element of the covering « o 7.
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Finally, the inclusion g(r) € N(®(x).A) follows from Michael s A-condition: g(z) = m(6(z)) €
m(A) C N(®(z), A).

The next proposition shows that an arbitrary g-selection k : X — L of ® and an arbitrary covering
X € cov L generate a coveringw € cov X and a mapping N(w)(®) -5 L of the zero-dimensional skeleton
of the nerve of w which satisfy the conditions of Proposition 4.2 for the coverings ¥ = (8 0 A2 o j)

and A\. We have thus accomplished all preliminaries for the base of the induction to be carried out in
the sequel.

Proposition 4.3. Assume given a f-selection k : X — L of ® and a covering A € covl.
Then there exist a covering w € covX and a partial mapping M(w) «— Mw)® B L of the zero-
dimensional skeleton which, together with the ﬂ selection k, satisfy the conditions of Proposition 4.2
for the coverings 'y (BoA20pB)and A (i.e., m is ay- reahzatwn satisfying Michael’s A-condition and
the inclusion k(U) C N(m({U)),~) holds for all U € w).

REMARK. Proposmon 4.2 implies that the composition mo 6 : Xo — L of m and every canon-
1cal mapping 8 y2-approximates the mapping k | Xo and A\-approximates ® | Xp , where Xp =

=1 (M(w) ).

We precede the proof of Proposition 4.3 with some simple observation which is an easy corollary
to the definition of lower semicontinuity.

Lemma 4.4. If ® is a lower semicontinuous multi-valued mapping then, for every covering A €
cov L and every compact set K C L, the set {z € X | K C N(®(z),\)} is open (possibly empty).

PROOF OF PROPOSITION 4.3. Associate some point m; in the nonempty intersection N(k(z), 8)N
®(z) with each point z € X. Define the sought covering w € cov X by the formula

w = {U(z) | k(U(z)) C N(k(z),)), m, € N(®(z'), \) for all 2’ € U(z)}

and define the partial realization m by the formula m(U(z)) = m,.

If U(z) N U(y) # @ then there exists a point z € k(U(z)) N k(U(y)). Since (mgz,k(z)) < B,
(k(z),z) < A, (z k(y)) < A, and (k(y),m,) < B, it follows that (mz,my) < (B0 A% 0 ) and so
the mapping m is a partial v-realization.

By the definition of w, for every point y € U(z) we have m((U(z))) = m, € N(®(y), ) for all
y € U(z). We have so verified Michael’s A-condition for m.

Finally, the required inclusion k(U(z)) C N(m(U(z)),v) holds because k(U(z}) C N(k(z),A) and
(k(z),mz) < B.

§ 5. Proof of Theorem C

The proof of Theorem C is based on two Propositions 2 and 8. Proposition 2 shows that, in
a certain situation, a mapping of a polytope can be approximated by a mapping whose range lies in
a fiber ®(x). We note that Proposition 2 was proven by E. Michael in another form.

Proposition 2. To each covering £ € cov L, there exists a covering { € cov L such that, for every
continuous mapping ¢ : P — N(S5,(), S € &, of a (t + 1)-dimensional polytope P, t < oo, there is
a £-homotopy @ : (P x I) — N(5,£) in L such that ® = ¢ and Im(®;) C S.

We designate dependence of ¢ on ¢ as follows: ¢ = (A)(£).

PROOF. Inscrlbe an open convex covering (o € cov L in . Also, choose coverings (1,(2,{ € cov L

such that ((1)® > (o, (2 = equi-Lfg:((y) for all ¢t < p, and (¢)® > (2. Without loss of generality we
assume that £ < (o < (1 < (2 < (.

Let K be a triangulation of P such that {¢(A) | A € K} > ¢ and let ¢g : PO — Sbea mapping
¢-close to o [ PO, Then {do(A®) | A e K} > (® > G and so the partial mapping P « PO % g
is a (2-realization. Therefore, there exists a (j-realization 6:P—=S,4(PO)=¢.

It is easy to verify that (¢, 0) < (o{o(;. Since the last covering refines (g, we infer that (4, ) < (o.
As a £-homotopy @, we can take the linear homotopy between ¢ and ¢.
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The key point in the proof of Theorem C. and Theorem A therewith, is the following

Proposition B. To each covering a € cov L, there exists a covering p € cov L that is a singleton

if so is a and that possesses the following property: Given an arbitrary covering & € cov L, there is
a covering A € cov L such that

(1) for every multi-valued mapping consistent with the dim-filtration of X and the families of
sets {G.};

(2) for every closed embedding of X in a paracompact space X and every extension of ® to a lower

semicontinuous mapping ®: X — L, ® [ X =&,

(3) for every locally finite system w = {U,}, Uw D X of open subsets of X;

(4) for every partial p-realization (w) « M(w)® 5 L k > 0, satisfying Michael’s A-condition
there exist a locally finite system o = {Hz}, UcDX of open sets in X which refines w and a partial
a-realization N(o) «— N(o)**t) L [ satisfying Michael's k-condition and coinciding on the k-
dimensional skeleton M(o)*) with the composition mo g | M) ¥ = mo (x| MN(o)*)y of m and
the simplicial mapping = = w(o,w) : N(o) — N(w).

We designate dependence of p on «, as well as A on a, p, and «, as follows: p = (B)(a),
A = (B)(e, p; £).

Before proving Proposition B, we demonstrate how Theorems C and D are deduced from it and
Propositions 4.2 and 4.3.

PRrOOF OF THEOREMS C AND D. Given a covering ¢, we first construct a sought covering 6.
To this end, we consider a sequence of coverings §; € covL,t =p+2,p+1,...,1, such that

(*) 8 = (B)(bi+1) fori =p+1,p,...,1 and 62, > €.

As & we take a covering for which 6% > §;. It is clear that, fof a one-element covering ¢, the cov-
erings §; = € satisfy condition (), and so we can take é to be a singleton.

Now, given a covering p, we construct one more covering A. To this end, we consider a sequence
of coverings A\; € covL, ¢ =p-+2,p+1,...,1, such that (*%) Apy2 = g, Ai = (B)(8iz1,6:; Ai+1) for
t=p+1,p,..., 1.

We put A = Ag.

Without loss of generality we may assume that 6; > §; and A; > A; for ¢ < j and Apyy > 6.

Let k£ : X — L be a é-approximation of ®. Applying Proposition 4.3 to the coverings A and
B = § € cov L, we obtain a covering w € covX and a partial v-realization 9w) «— N(w)(® 5 L
which satisfies Michael’s A-condition, where v = (8 0 A2 o 8). Moreover, k(U) C N(m(U),~) for all
U € w. Since 72 = §% = §% = 61 = 8,42, the mapping m is a Py-realization.

Since A; = (B)(di+1,6i; Aig1); therefore, taking the paracompact spaces X and X in Proposition B
coincident, we can successively construct coverings w; € cov X and wi4+; > w; and partial §;-realizations
mg : m(w,-)(") — L for i = 1,2,...,p which satisfy Michael’s X;-condition and meet the equalities
m o n(w;,w) = m; on the O-dimensional skeleton 9M(w;)(®). Finally, we consider the partial dpt2-
realization mpy2 : Mwp42)P*? — L. Since dimX < (p + 1), by Proposition 2.1 there exists
a canonical mapping 6 : X — 9, Im(8) C M(wp4+2)P+?). In view of Proposition 4.2, the composition
Mp+200 is (8p42)2-close to k (and so e-close to k) and Ap42-approximates ® (and so u-approximates ).

§6. Proof of Proposition B
We obtain the covering p = (B)(a) € covL on constructing a sequence p1 = a,py,p},p of
coverings of L such that
(*.* *) (1)} = a,p) = iequi-LftSt(p'l') for all t < p, (p)® = 4i.
Without loss of generality we may assume that each successor in the sequence of coverings refines
its predecessor.

Also, we construct the covering A = (B)(a,p;x). It is convenient to represent the process of
arranging the corresponding sequence A\; = &, A, A of convex coverings of L as follows:

A=, (A])7 = A A = (A)YBAX).
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We proceed further by inducting on d = d(X) = max{t|¥; = X;\ Xi=1 # O}. If d = -1 then
X = X_; and dim(X) < 0. In this case we easily validate Proposition B, establishing the induction
base.

Suppose that Proposition B is valid for all X with d(X) < p and examine the case of d(X) = p.
Consider the given partial p-realization 9M(w) « Mw)*) B L, k < p, satisfying Michael’s -
condition. Given a point € X, consider all elements U, € w containing z (there are only finitely
many of them!) and denote the corresponding simplex by A; = (Up,...,Un). Now, the partial

mapping AFt! > A¥ I [ is a p-realization and satisfies Michael’s A-condition.

First of all, observe that the number k can be assumed not exceeding p. Indeed, if £ > p then we
should take as o an arbitrary locally finite open system in X refining w and having multiplicity at most
(p +2). In this case M(a)*+1) = 9(o)(®) and the partial realization ¢ = m o 7(a,w) | (N(a)*+1)) is
also a partial p-realization and satisfies Michael’s A-condition. The possibility of constructing a desired
covering o is provided by the following lemma.

Lemma 6.1. If a closed subset Zy of a paracompact space Z has dimension at most t then, for
every locally finite open covering £ = {F¢} in Zy of multiplicity at most (t + 1), there exists a locally
finite open system {E¢} in Z such that E¢ N Zy = F for all index elements £ and the multiplicity of
the system is at most (t + 1).

PROOF. The claim can be proven by a slight modification of the arguments in [4, p. 70].
We now demonstrate that, in the case of k < p, with each point ¢ € (X \ X,—;) we can associate

a neighborhood V(z) in X and a mapping m; : A [ so that

(b) m; is an a-realization;

(c) Im(mz) C N(®(z'), £) for all points z' € V{(z);

(d) mg [ (AF) =m [ (D).

Indeed, m(Agk)) is in N(®(z),)), and X = (A)(p A X|) implies existence of a (p A A|)-homotopy
F:a®x1 5 N(®(z),p A A}) for which Fy = m and Fl(Agk)) C ®(z). It is easy to see that
the mapping A‘,"“) e A(zk) i} ®(z) is a (p o p o p)-realization and, in consequence, a p'-realization.
In view of p} = equi—Lf?‘ép(p‘f ), there exists a p}-realization my, : AR ®(z), m, | (Agk)) = F.
The mapping m/, and the (p A ])-homotopy F' agree on the common domain of definition A(zk) x {1};
therefore, the mapping F U (m.) : (Ag‘) x [0,1]) U (Ag-kﬂ) x {1}) — L is well defined.

Lemma 6.2. There exists a mapping v : A (A(zk) x [0,1]) U (Ag_k“) x {1}) (the so-called
“stamping” mapping) possessing the following properties:

(i) v(a) = (a,0) for all a € AY;

(i) v(8) € é x [0, 1] for every simplex § in A(zkﬂ).

PROOF. The claim is proven by induction on the skeletons of the polyhedra Agk'}'l).

Denote the composition {F Um/}ouv : Alk+) 2 (Agk) x [0,1]) U (A&"“) x {1}) Fums L by
me : AT L Since (X A p) > &, we have Im F C N(®(z), &). Therefore, Im(m;) C N(®(z), %)-
By Lemma 4.4 and compactness of Im(m.), we can choose a neighborhood V(z) of z in X such that
mg (AS—_k'H)) C N(®(z'), &) for every point z' € V{(z).

Since Fy = m. we have m, | (Agk)) = m. It is also clear that m, is an a-realization since
(AL A p)op o (M Ap) = (p)® = a. Without loss of generality we may assume that {V(z) | = €
E’X \ }e\’ {’1)} > w. We obtain the system {V'(z) | r € X} of open sets in X by redefining V(z) = X
or r € Xp-1.

Consiﬁeiing the intersection {V(z)|x € X} Aw of the systems, we choose a locally finite refine-
ment that consists of open subsets 8 = Wy, U DO X (X is closed in X!), of X. Without loss of
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generality we may assume that the system {cl Wy} also refines the same intersection. This guarantees
the membership of the point r in the set

e = V() \ (U{c] Wz ¢ clWy))

which is open in X. Observe without proof the following obvious property:

(e)if y € Cz and y € cl Wy then z € cl Wj.

Since ¢ € Cy, the set C = U{C: | z € X \ Xp-1} is open in X and includes X \ Xp—1, whereas
the set E = X \ C is closed in X and is included in X,-;. Hence, dim E < p.

Consider the filtration E; = X; N E, t < (p — 1), of the p-dimensional paracompact space E.
In view of the inequalities dimg, (E;—1) < dimy,(X;—1) < ¢, this filtration is a dim-filtration. Since
Ep\ Epm; = (Xp \ Xp-1) N E = @, it is obvious that d(E) < d(X). By virtue of the inclusions
Ey\Ei_1 C Xp\ Xp-1 C {z | ®(z) € &}, the restriction of the multi-valued mapping ® to E gives
us a mapping consistent with the above dim-filtration of E and the families {&;}.

If we consider the locally finite system 8; = {W | WN E # @} > 8 of open sets in X and

the partial realization 9(6;) « 91(8;)(¥) mexlfe) L, where (0,w) = 7(8,w) o x(8,8), § = {cl(Wp)},
then, for obvious reasons, m o 7(6,w) is a p-realization and satisfies Michael’s A-condition. By the
induction hypothesis (d(E) < d(X)!), there exist a locally finite system o2, Uos D E, of open sets in X
which refines 0; and a partial a-realization MN(oa) — N(ox) ) B [ satisfying Michael’s x-condition
and agreeing with m o 7(a2,61) on 9N(o2)(¥). On applying Lemma 6.1 to o5, we may assume without
loss of generality that the multiplicity of o3 is at most (p+ 1) (dim E < p).

To obtain a sought system o, we must add the system o1 = {C, "Wy |z € X \ Xp-1}:0 =
{Ha} =gy U o to o9.

We turn to constructing the partial o-realization ¢q. Consider the mapping ¢ : My .— L,
g [ Mo)®) = mon(o,w), ¢ | N(o2)*¥+t) = ¢, on the subpolytope 9y = N(o)*) U m(o-g)("“) C
‘n(a)("‘*’l) (we assume 7(o,0) equal to w(é,w) o 7r(t9,§) o 7(0,8)). Since g2 and m o 7(o,w) sat-
isfy Michael’s «-condition and are a-realizations, so is go. We now construct an extension of q2 to
N(o)k+1), preserving these properties.

Let A = (Hgg, ..., Hq,,,) be an arbitrary simplex not lying in M. Among its vertices, there is
at least one (say, Hqq) not belonging to (o). We represent Hyy as C; N Wy, z € X \ Xp-1.

Denote the images of the vertices (Hy;) under the simplicial mapping = (o,w) by (U,,) € N(w)
and demonstrate that

(fyz €U, forall: =0,1,...,k+ 1.

Since o > {Wp} > 0 = w, where § = {cl W}, and (o,w) = 7(8,w) o 7(6,8) o 7 (o, 8); therefore,
we can insert the chain H,, C Wy, C Wy, C U, between H,, and Uy;- On the other hand,
@ # Hoy N Hy; C C; NWy, C V(z) N Wy, and by (e) z € cl W, while cl Wy, C Uy;.

It follows from (f) that 7(o,w)(A) € A¥) Since z € X \ Xp-1 and k < p, the mapping
mg : A(zkH) — L is thus defined which satisfies (b)-(d).

Extending the mapping g2 to A by means of the formulam on(o,w) | A, we construct the mapping
g : N(o)®*+1) — L. Let us check that

(g) ¢ is an a-realization;

(h) ¢ satisfies Michael’s k-condition.

It is obvious that every point : € N(Hy,) also lies in C; N Wy C V{(z). By (c) we thus have
me (AFY) € N(@(2). x).

Since m; is a partial a-realization and 7(o,w) is a simplicial mapping, q [ A is an a-realization.

We have constructed an a-realization ¢ : 9(c)¥+1) — [ that satisfies Michael’s k-condition and
meets the equality ¢ | M(o)® = ¢ | No)¥) = m o 7(0,w), which was required for the proof of
Proposition *B.
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