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A SPECTRAL SEQUENCE IN SURGERY THEORY
AND MANIFOLDS WITH FILTRATIONS

YU. V. MURANOV, D. REPOVŠ, AND R. JIMENEZ

Abstract. In 1978 Cappell and Shaneson pointed out interesting properties of the
Browder–Livesay invariants, which are analogous to the differentials of a certain spec-
tral sequence. Such a spectral sequence was constructed by Hambleton and Kharshi-
ladze in 1991. The main step of the construction of the spectral sequence consists in
constructing an infinite filtration of spectra, in which, as is well known, only the first

two spectra have a clear geometric meaning. In the present paper a geometric inter-
pretation is given to all the spectra of the filtration in the Hambleton–Kharshiladze
construction. Surgery obstruction groups for a system of embedded manifolds are
introduced, and it is proved that the spectra realizing these groups coincide with
the spectra in the Hambleton–Kharshiladze filtration. The algebraic and geometric
properties of these groups and their connections with classical surgery theory are
described. An isomorphism between these groups and the Browder–Quinn surgery
obstruction groups for stratified manifolds is established. The results obtained are
applied to the problem of realization of elements of the Wall groups by normal maps
of closed manifolds and to the study of the iterated Browder–Livesay invariants.

1. Introduction

Let Xn be a closed n-dimensional CAT -manifold (CAT = TOP , PL, DIFF ) with
fundamental group π = π1(X), which is given together with an orientation homomor-
phism w : π1(X) → {±1}. In what follows we assume that all groups are given with
orientation homomorphisms, but we will not indicate this in the notation unless it is
necessary.

The main problem of geometric topology is the description of all the closed n-dimen-
sional CAT -manifolds that are (simply) homotopy equivalent to Xn. More precisely, let
f : Mn → Xn be a simple homotopy equivalence of CAT -manifolds. The structure set
SCAT (X) is the set of the equivalence classes of the s-cobordant CAT -manifolds that
are simply homotopy equivalent to Xn (see [34, 29] and [30, p. 542]). The elements of
SCAT (X) are called s-triangulations of the manifold X.

The Sullivan–Novikov–Wall exact sequence

(1.1) · · · → Ln+1(π) → SCAT (X) → [X, G/CAT ] σ→ Ln(π) → · · ·
is the main tool for describing the structure set SCAT (X) (see [34, 30]).
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In what follows we shall consider only topological manifolds (CAT = TOP ) and the
groups L∗(π) = Ls

∗(π) that determine the obstructions to surgery up to a simple homo-
topy equivalence (see [34, § 10] and [30]). In order to describe the structure set STOP (X)
we must calculate the set of normal invariants [X, G/TOP ], the surgery obstruction
groups Ln(π), and the map σ in (1.1). To describe the map σ we need to know which
elements of the group Ln(π) are realized by normal maps of closed manifolds.

The Ranicki algebraic exact sequence of surgery theory

(1.2) · · · → Lm+1(π1(X)) → Sm+1(X) → Hm(X;L•)
σ→ Lm(π1(X)) → · · ·

is defined for any topological space X (see [29, 30]). In particular, this sequence defines
the assembly map

(1.3) Hn(K(π, 1);L•)
A→ Ln(π),

and the image ImA ⊂ Ln(π) is the subgroup consisting of the elements that are realized
by normal maps of closed manifolds (see, for example, [34, § 13]).

If the space X is simply homotopy equivalent to a topological n-dimensional manifold
(n ≥ 5), then the exact sequence (1.1) is isomorphic to the corresponding part of (1.2).
The exact sequence (1.2) is realized at the spectrum level by the map

(1.4) X+ ∧ L• → L(π1(X)),

where L(π1(X)) is the L-spectrum of surgery theory for the fundamental group π1(X)
with

πn(L(π1(X))) ∼= Ln(π1(X)),
while L• is the 1-connected covering of the Ω-spectrum L(Z) such that L•0 � G/TOP .

In particular, for the manifold X we have the isomorphisms

Sn+1(X) ∼= STOP (X) and Hn(X;L•) ∼= [X, G/TOP ]

(see [29, 30]).
The methods for calculating the structure set STOP (X) are completely different, de-

pending on whether π is a finite or infinite group. The case of an infinite group is closely
related to Novikov’s conjecture (see, for example, [20]). In the case of a finite group with
trivial orientation the solution of this question for the special case of decorations (the
case of intermediate groups L′) was obtained in [23]. The fundamental results in [23] are
based on the analysis of the assembly map and on the methods used in [16, 21]. The
methods developed in [9, 15, 16, 21] allow one to prove that, for an arbitrary group π,
certain elements of the Wall groups Ln(π) that do not belong to the image of the natural
map Ln(1) → Ln(π) are not realizable.

In particular, in [21] Hambleton solved the corresponding problem for Novikov’s pro-
jective groups Lp

∗. These methods are mainly algebraic and are based on the algebraic
theory of splitting homotopy equivalences along submanifolds.

Let Y ⊂ X be a locally flat submanifold of codimension q in a closed topological
manifold X of dimension n. A simple homotopy equivalence f : M → X splits along
the submanifold Y if it is homotopy equivalent to a map g that is transversal to Y with
submanifold N = g−1(Y ) ⊂ M , and the restrictions

(1.5) g|N : N → Y, g|(M\N) : M\N → X\Y
are simple homotopy equivalences. Let U be a tubular neighbourhood of the submanifold
Y in X with boundary ∂U . We denote by

(1.6) F =

⎛
⎝

π1(∂U) → π1(X\Y )
↓ ↓

π1(U) → π1(X)

⎞
⎠
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the push-out square of fundamental groups with orientations. There exists a splitting
obstruction group LSn−q(F ) (see [34, 30]), which depends only on n − q mod 4 and the
square F .

Let (f, b) : M → X be a normal map with map of bundles b : νM → ξ covering f ,
where ξ is the topological reduction of the Spivak normal fibration over X [29, 30]. In
this case the obstruction to the existence of a map (g, b′) with properties (1.5) in the
normal bordism class of the map (f, b) is contained in the group LPn−q(F ) of surgery
obstructions for manifold pairs (see [34, 30]). This group also depends only on n−q mod 4
and the square F of fundamental groups.

The basic relation between the LS∗- and LP∗-groups and the algebraic exact sequence
of surgery theory (1.2) is given by the following commutative diagram [34, § 11]:

(1.7)
· · · → Sn+1(X) → Hn(X;L•)

σ→ Ln(π1(X)) → · · ·
↓ ↓σ1 ↓=

· · · → LSn−q(F ) → LPn−q(F ) s→ Ln(π1(X)) ∂→ · · ·
,

where the rows are exact sequences. It follows from (1.7) that the image of the map σ is
contained in the kernel of the map

∂ : Ln(π1(X)) → LSn−q−1(F ),

which has an explicit geometric description [16, 9].
The lower row in (1.7) is involved in the following braid of exact sequences (see [34,

p. 264] and [30, § 7.2]):
(1.8)

−→ Ln+1(C) −→ Ln+1(D) ∂−→ LSn−q(F ) −→
↗ ↘ s ↗ ↘ ↗ ↘

LPn−q+1(F ) Ln+1(C → D)
↘ ↗ ↘ ↗ ↘ ↗

−→ LSn−q+1(F ) −→ Ln−q+1(B) −→ Ln(C) −→

,

where A = π1(∂U), B = π1(Y ), C = π1(X\Y ) and D = π1(X).
Now suppose that the manifold pair (X, Y ) is a Browder–Livesay pair [4, 9, 13, 16, 21].

This means that Y is a one-sided codimension-1 submanifold of the manifold X, and the
natural embedding Y → X induces an isomorphism of the fundamental groups. In this
case the square F of fundamental groups (1.6) has the form

(1.9) F =

⎛
⎝

π1(∂U) → π1(X\Y )
↓ ↓

π1(Y ) → π1(X)

⎞
⎠ =

⎛
⎜⎝

A
∼=→ A

↓i− ↓i+

B− ∼=→ B+

⎞
⎟⎠ .

The orientation of the group B− in (1.9) differs from the orientation of the group B+

outside the images of the vertical maps (which are embeddings of index 2). All the maps
in the square (1.9), except for the lower horizontal map, preserve orientation. The lower
isomorphism preserves orientation on the image of i− and changes orientation outside
this image. In this case we have an isomorphism

LPn(F ) ∼= Ln+1(i∗−),

where i∗ : Ln+1(B−) → Ln+1(A) is the transfer map. The group LS∗(F ) is denoted by
LN∗(A → B+) = LN∗(A → B) (see [34]) and is called the Browder–Livesay group.

Cappell and Shaneson [20] proved that, for a Browder–Livesay pair (X, Y ), the ele-
ments that are not contained in the kernel of the map

∂ : Ln(π1(X)) → LNn−2(π1(X\Y ) → π1(X))



264 YU. V. MURANOV, D. REPOVŠ, AND R. JIMENEZ

cannot be realized by normal maps of closed manifolds.
Diagram (1.8) for a Browder–Livesay pair has an algebraic description (see [21, 31]).

This diagram has been studied from algebraic and geometric viewpoints in many papers
(see [2, 3, 4, 5, 6, 9, 12, 21, 23, 31]).

The spectral sequence in surgery theory was constructed in [12] by using the realization
of the commutative diagram (1.8) for a Browder–Livesay pair at the spectrum level. We
consider the filtration of spectra in [12],

(1.10) · · · → X3,0 → X2,0 → X1,0 → X0,0 → X−1,0 → · · · ,

where X0,0 = L(π1(X)), with πn(L(π1(X))) = Ln(π1(X)), is the spectrum of surgery
theory, and

X1,0 = ΣLP (F ) = L(i∗−)

is the spectrum for the surgery obstruction groups for the manifold pair (X, Y ).
The map s in the commutative diagrams (1.7) and (1.8) is induced by the map of

spectra X1,0 → X0,0 in the filtration (1.10). The other spectra of the filtration are
defined inductively by using the construction of the pull-back square, and it was known
that they have no geometric meaning. It follows from [12] that the spectral sequence
in surgery theory is closely related to the iterated Browder–Livesay invariants and the
oozing problem. Other versions of the spectral sequence in surgery theory were obtained
in [2, 17, 18].

Let Z ⊂ Y ⊂ X be a triple of closed topological manifolds, so that X has dimension
n, Y has codimension q in X, and Z has codimension q′ in Y . The surgery obstruction
groups LTn−q−q′(X, Y, Z) for a manifold triple were introduced in [8]. These groups
are realized at the spectrum level by LT (X, Y, Z). They are a natural generalization
of the surgery obstruction groups LP∗ for manifold pairs. The natural forgetful map
t : LTn(X, Y, Z) → LPn+1 is well defined, which is realized at the spectrum level.

If a triple (X, Y, Z) consists of Browder–Livesay pairs (X, Y ) and (Y, Z), then the
spectrum Σ2LT (X, Y, Z) coincides with the spectrum X2,0 in the filtration (1.10). The
map X2,0 → X1,0 of the filtration (1.10) defines the map t at the spectrum level [8].

Now suppose that

(1.11) Xk ⊂ Xk−1 ⊂ · · · ⊂ X2 ⊂ X1 ⊂ X0 = X

defines a filtration X of a closed topological manifold X by locally flat embedded subman-
ifolds. We denote by lj the dimension of the submanifold Xj , and by qj the codimension
of Xj in Xj−1 for 1 ≤ j ≤ k. We assume that each pair of manifolds in (1.11) is a
topological manifold pair in the sense of Ranicki [30, § 7.2] and that lk ≥ 5.

For each non-empty subset B ⊂ {k, k − 1, . . . , 2, 1, 0} the filtration (1.11) defines a
subfiltration XB that is obtained by “forgetting” the submanifolds Xj in the filtration
(1.10) for j ∈ {k, k − 1, . . . , 2, 1, 0}\B. In particular, for each 0 ≤ j ≤ k the bounded
filtration

(1.12) Xj ⊂ Xj−1 ⊂ · · · ⊂ X2 ⊂ X1 ⊂ X0 = X

is defined, where B = {j, j − 1, . . . , 2, 1, 0}. We denote the bounded filtration (1.12)
by Xj .

In § 2 we define the notion of s-triangulation for the filtration X in (1.11) and prove
several technical results. The notion of s-triangulation of the filtration X naturally
generalizes the notion of s-triangulation of a manifold and of a manifold pair in [30].
In particular, we prove that for a manifold triple Z ⊂ Y ⊂ X the surgery obstruction
groups LT∗(X, Y, Z) in [8] coincide with the Browder–Quinn groups LBQ

∗ of the stratified
manifold Z ⊂ Y ⊂ X (see [14, 35]).
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In § 3, we introduce the groups of obstructions to surgery of a normal map to an
s-triangulation of the filtration X in (1.11) and study their properties. We introduce
the obstruction groups LM j

i (X ) (0 ≤ j ≤ k), which have period 4 with respect to the
lower index i and are realized by the spectrum LM j(X ) with πi(LM j(X )) = LM j

i (X ).
The groups LMk

∗ (X ) coincide with the Browder–Quinn stratified L-groups LBQ
∗ (X ) (see

[14, 35]) up to a shift of dimension ∗. The spectrum LM0 coincides with the spectrum
L(π1(X)), the spectrum LM1 coincides with the spectrum LP (F ) for the pair (X0, X1)
(see [30, 34]), and the spectrum LM2 coincides with the spectrum LT for the triple
(X0, X1, X2) (see [8, 27, 28]).

Let (f, b) : (M → X) be a normal map into a manifold X with filtration (1.11). For
the above-mentioned groups and for 0 ≤ j ≤ k, the obstruction Θj(f) ∈ LM j

lj
is defined.

In Theorem 3.9 we prove that this obstruction is trivial if and only if the map (f, b) is
normally bordant to an s-triangulation of the bounded filtration Xj in (1.12).

Further in § 3, we define the natural neglecting maps

(1.13) LMk
lk

→ LMk−1
lk−1

→ · · · → LM1
l1 → LM0

l0 ,

which are realized at the spectrum level by the maps

(1.14) Σn−lkLMk → Σn−lk−1LMk−1 → · · · → Σn−l1LM1 → LM0.

In [30] Ranicki introduced the set Sn+1(X, Y, ξ) of homotopy triangulations of a man-
ifold pair (X, Y ), where ξ denoted a normal fibration of Y in X. This set consists
of the concordance classes of the maps f : (M, N) → (X, Y ) that are split along Y .
This structure set is a natural generalization of the structure set Sn+1(X) in the exact
sequence (1.2) and occurs in the exact sequence

(1.15) · · · → Sn+1(X, Y, ξ) → Hn(X,L•) → LPn−q(F ) → · · ·

(see [30, § 7.2]). Note that (1.15) is a natural generalization of (1.2) to the case of manifold
pairs.

Also in § 3, we introduce structure sets for the filtration (1.11) that generalize the
structure sets Sn+1(X, Y, ξ) and Sn+1(X), and we study their properties. Some results
for the case of a manifold triple were obtained in [8, 27, 28].

Suppose that in (1.11) all the pairs Xi+1 ⊂ Xi for 0 ≤ i ≤ k − 1 are Browder–Livesay
pairs. In § 4 we apply our results to study the iterated Browder–Livesay invariants. We
describe the connection between the groups we have introduced and the spectral sequence
of surgery theory. In Theorem 4.1 we prove that in the case under consideration the
filtration (1.14) coincides with the left-hand side of the filtration (1.10) of the Hambleton–
Kharshiladze spectral sequence, starting from X0,0. In addition, in § 4 we describe the
relation of the groups LM i

∗ to the problem of realization of elements of the Wall groups
by normal maps of closed manifolds.

2. Technical results

In this section we present some preliminary results concerning surgery on topological
manifolds and the use of L-spectra (see [1, 8, 19, 22, 29, 30, 33]). We give the requisite
definitions and prove several technical results.

We consider the case of topological manifolds and follow the notation in [30, § 7.2]. Let
(X, Y, ξ) be a manifold pair of codimension q in the sense of Ranicki (see [30, § 7.2]). This
means that a locally flat submanifold Y ⊂ X is given together with a normal fibration

ξ = ξY ⊂X : Y → B̃TOP (q)
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with the associated (Dq, Sq−1) fibration

(2.1) (Dq, Sq−1) → (E(ξ), S(ξ)) → Y,

and the decomposition of the closed manifold is defined:

X = E(ξ) ∪S(ξ) X\E(ξ).

A topological normal map [30, § 7.2]

((f, b), (g, c)) : (M, N) → (X, Y )

into the manifold pair (X, Y, ξ) is represented by a normal map (f, b) into the manifold
X which is transversal to Y with N = f−1(Y ). Here the pair (M, N) is a topological
manifold pair with normal fibration

ν : N
f |N→ Y

ξ→ B̃TOP (q).

In addition, the following conditions hold:
(i) the restriction

(f, b)|N = (g, c) : N → Y

is a normal map;
(ii) the restriction

(f, b)|P = (h, d) : (P, S(ν)) → (Z, S(ξ))

is a normal map into the pair (Z, S(ξ)), where

P = M\E(ν), Z = X\E(ξ);

(iii) the restriction
(h, d)|S(ν) : S(ν) → S(ξ)

coincides with the induced map

(g, c)! : S(ν) → S(ξ),

and (f, b) = (g, c)! ∪ (h, d).
Normal maps into (X, Y, ξ) are called t-triangulations of the manifold pair (X, Y ) and

the set of the concordance classes of t-triangulations of the pair (X, Y, ξ) coincides with
the set of t-triangulations of the manifold X [30, Proposition 7.2].

By definition, an s-triangulation of a manifold pair (X, Y, ξ) in the topological category
[30, p. 571] consists of a t-triangulation of this pair such that the maps

(2.2) f : M → X, g : N → Y, and (P, S(ν)) → (Z, S(ξ))

are simple homotopy equivalences.
A simple homotopy equivalence f : M → X splits along the submanifold Y if f is

homotopy equivalent to a map g that is an s-triangulation of (X, Y, ξ), that is, satisfies
conditions (2.2). In this case, f represents an element of Sn+1(X, Y, ξ). It follows from
the definition of an s-triangulation of the pair (X, Y, ξ) that the neglecting maps

Sn+1(X, Y, ξ) → Sn+1(X), (f, g) → f,

Sn+1(X, Y, ξ) → Sn−q+1(Y ), (f, g) → g

are well defined. In the general case the map Sn+1(X, Y, ξ) → Sn+1(X) is neither an
epimorphism nor a monomorphism [30, p. 571].

We consider a triple of closed topological manifolds Zn−q−q′ ⊂ Y n−q ⊂ Xn. We
assume that each submanifold is locally flat in the ambient manifold and that the sub-
manifolds are equipped with the structure of a normal topological fibration (see [30,
pp. 562–563] and [8]). Each manifold pair defines a topological normal fibration, which
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we denote as follows:
ξ for the submanifold Y in X,
η for the submanifold Z in Y , and
ν for the submanifold Z in X.

We denote the spaces with boundary of the associated fibrations (2.1) by (E(ξ), S(ξ)),
(E(η), S(η)), and (E(ν), S(ν)), respectively. Let ξ|E(η) be the restriction of the fibration
ξ to the space E(η) of the normal fibration η with the restriction of the associated
fibration (2.1)

(Dq, Sq−1) → (E′(ξ), S′(ξ)) → E(η).
Also let ξ|S(η) be the restriction of the fibration ξ with the restriction of the associated
fibration

(Dq, Sq−1) → (E′′(ξ), S′′(ξ)) → S(η).
We assume that the space E(ν) of the normal fibration ν is identified with the space
E′(ξ) of the restriction ξ|E(η) so that the following conditions on the boundary hold:

(2.3) S(ν) = E′′(ξ) ∪ S′(ξ).

Remark 2.1. The existence of normal fibrations for the submanifolds of the manifold
triple

Zn−q−q′
⊂ Y n−q ⊂ Xn

that have associated fibrations satisfying conditions (2.3) implies that the triple Z ⊂
Y ⊂ X is a C-stratified set in the sense of Browder and Quinn [14].

We denote by X the filtration of the closed manifold Xn by the system of subman-
ifolds (1.11). All the pairs of submanifolds are given together with normal fibrations
and the corresponding associated (D∗, S∗−1) fibrations (2.1). We assume that for each
manifold triple Xj ⊂ Xl ⊂ Xm with k ≥ j > l > m ≥ 0 the normal fibrations satisfy
requirements analogous to (2.3) for the triple Z ⊂ Y ⊂ X.

Remark 2.2. Under these assumptions the filtration X in (1.11) is a C-stratified set in the
sense of Browder and Quinn [14] — this follows from Remark 2.1 and [14, Definition 4.2].

A manifold pair (Y, ∂Y ) ⊂ (X, ∂X) of codimension q with boundary was defined in [30,
p. 585]. We have a normal fibration (ξ, ∂ξ) over the pair (Y, ∂Y ) and the decomposition

(2.4) (X, ∂X) = (E(ξ) ∪S(ξ) Z, E(∂ξ) ∪S(∂ξ) ∂+Z),

where (Z; ∂+Z, S(ξ); S(∂ξ)) is a manifold triad. Note that here

∂+Z = ∂X\E(∂ξ).

A topological normal map of a manifold pair with boundary

(f, ∂f) : (M, ∂M) → (X, ∂X)

defines a normal fibration (ν, ∂ν) over the pair (N, ∂N) (see [30, p. 570]), where

(N, ∂N) = (f−1(Y ), (∂f)−1(∂Y )).

We have the decomposition

(2.5) (M, ∂M) =
(
E(ν) ∪S(ν) P, E(∂ν) ∪S(∂ν) ∂+P

)
,

where (P ; ∂+P, S(ν); S(∂ν)) is a manifold triad.
We now define the filtration (X , ∂X ) for the case of manifolds with boundary to be

the filtration

(2.6) (Xk, ∂Xk) ⊂ (Xk−1, ∂Xk−1) ⊂ · · · ⊂ (X0, ∂X0) = (X, ∂X),
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where all the manifold pairs with boundary satisfy conditions analogous to (2.4). We also
assume that the normal fibrations of the manifolds of the filtration and of the boundaries
satisfy conditions analogous to (2.3).

Remark 2.3. Under the assumptions made above, the filtration X in (1.11) gives rise to
the filtration of manifolds with boundary

(
Xk−1\Xk, ∂(Xk−1\Xk)

)
⊂ · · · ⊂

(
X\Xk, ∂(X\Xk)

)
.

This filtration is a C-stratified manifold with boundary in the sense of [14, 35]. We denote
this filtration by Xk = X . We can similarly construct the filtration Xj using the bounded
filtration (1.12).

Definition. A topological normal map (f, b) : M → X that is topologically transversal
to each submanifold of the filtration with transversal inverse images M0 = M and Mi =
f−1(Xi) for 0 ≤ i ≤ k is called a topological normal map into the filtration X in (1.11)
(a t-triangulation of the filtration X ). In addition we assume that the restriction to each
pair of submanifolds (Mj , Ml) (j ≥ l) is a topological normal map into the manifold pair
(Xj , Xl). A bordism between such maps is naturally defined and the equivalence classes
are denoted by T (X ) (see [14, 35]).

It is clear that a t-triangulation of the filtration X defines a t-triangulation of the
bounded filtration XB for any non-empty subset B ⊂ {k, k−1, . . . , 2, 1, 0}. In particular,
for each submanifold Xj in this filtration we have the neglecting map from T (X ) into
the set [Xj , G/TOP ] of normal maps into the manifold Xj .

Proposition 2.4 ([14, 30]). The natural neglecting map

T (X ) → [X, G/TOP ]

is an isomorphism.

Proof. Use the topological transversality (see [14], [30, Proposition 7.2.3], and [35]) and
induction on the number of elements of the filtration. �

Definition. A t-triangulation (f, b) : M → X of the filtration X in (1.11) is an s-trian-
gulation of the filtration X if the constituent normal maps of the pairs

(Mj , Ml) → (Xj , Xl), 0 ≤ j < l ≤ k,

are s-triangulations, that is, they satisfy properties that are analogous to (2.2) for the
manifold pair (X, Y ).

Proposition 2.5. Suppose that a t-triangulation (f, b) : M → X defines an s-trian-
gulation fk : Mk → Xk, where the filtration Xk is obtained from X by forgetting the
submanifold Xk, and similarly for Mk. Suppose that the restriction f |Mk

is an s-trian-
gulation of the pair (Xk−1, Xk). Then (f, b) is an s-triangulation of the filtration X .

Proof. It is sufficient to prove that for each submanifold Xj ⊂ X, 0 ≤ j ≤ k − 2, the
restriction map

f |Mj\Mk
: (Mj\Mk) → Xj\Xk

is a simple homotopy equivalence. But the conditions on the boundaries of tubular
neighbourhoods given in (2.3) are satisfied for the triple Xk ⊂ Xk−1 ⊂ Xj . For such a
triple the result was proved in [27, Proposition 2.1], using the properties of the simple
homotopy equivalence of triads given in [19]. �
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The groups LT∗(X, Y, Z) and the map

Θ∗(f, b) : [X, G/TOP ] → LTn−q−q′(X, Y, Z)

were defined in [8] so that a normal map (f, b) is normally bordant to an s-triangulation
of the triple (X, Y, Z) if and only if Θ∗(f, b) = 0 (for n − q − q′ ≥ 5).

These groups were defined at the spectrum level. First we recall the requisite facts
about applications of spectra in L-theory.

A spectrum E is given by a set of CW -complexes {(En, ∗)}, n ∈ Z, with a set of
cell maps {εn : SEn → En+1}, where SEn is the suspension of the space En [33]. The
conjugate maps ε′n : En → ΩEn+1 are defined (see [33]) and the spectrum E is an Ω-
spectrum if all the conjugate maps are homotopy equivalences. Let ΣE be the spectrum
with {ΣE}n = En+1 and {Σε}n = εn+1. The functor Σ has the inverse functor Σ−1, and
the iterated functors Σk, k ∈ Z, are defined on the category of spectra. For any spectrum
E we have an isomorphism

πn(E) = πn+k(ΣkE)

of homotopy groups. We now recall that in the homotopy theory of spectra there is an
equivalence between pull-back and push-out squares. A homotopy commutative square
of spectra

(2.7)
G → H

↓ ↓
E → F

is a pull-back square if the fibres of the horizontal (vertical) maps are naturally homotopy
equivalent [33]. The square (2.7) is a push-out square if the cofibres of the horizontal
(vertical) maps are naturally homotopy equivalent.

Natural maps of L-groups such as transfer and inducing maps are realized at the
spectrum level. A homomorphism of oriented groups f : π → π′ induces a cofibration of
Ω-spectra (see [22])

(2.8) L(π) → L(π′) → L(f),

where πn(L(π)) = Ln(π), and similarly for other spectra. The homotopy long exact
sequence of the cofibration (2.8) gives rise to the relative exact sequence of L-groups

· · · → Ln(π) → Ln(π′) → Ln(f) → Ln−1(π) → · · · .

For a fibration p : Em+n → Xn over a closed topological manifold Xn, the transfer
map

p∗ : Ln(π1(X)) → Ln+m(π1(E))

is defined (see [25, 26, 34, 35]), which is realized at the spectrum level by the map of
Ω-spectra

(2.9) p! : L(π1(X)) → Σ−mL(π1(E)).

For a manifold pair (X, Y ) we have the homotopy commutative diagram of spectra

(2.10)
L(π1(Y ))

p!
1−→ Σ−qL(π1(∂U) → π1(U)) α−→ Σ−qL(π1(X\Y ) −→ π1(X))

p! ↘ ↓ δ ↓ δ1

Σ1−qL(π1(∂U))
β−→ Σ1−qL(π1(X\Y ))

,

in which the maps p! and p!
1 are transfer maps and the right-hand horizontal maps are

induced by the horizontal maps in the square F in (1.6). The two vertical maps in (2.10)
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are obtained from the extended cofibred sequences (2.8) for the vertical maps in the
square F in (1.6). The spectrum LS(F ) is the homotopy cofibre of the map

(2.11) Σ−1(αp!
1) : ΣL(π1(Y )) → Σ−q−1L(π1(X\Y ) → π1(X)),

and the spectrum LP (F ) is the homotopy cofibre of the map

(2.12) Σ−1(βp!) : Σ−1L(π1(Y )) → Σ−qL(π1(X\Y )).

We have the isomorphisms (see [1, 3, 6, 8])

(2.13) πn(LS(F )) ∼= LSn(F ), πn(LP (F )) ∼= LPn(F ).

We denote the set of the concordance classes of s-triangulations of the manifold pair
(X, Y, ξ) by Sn+1(X, Y, ξ) (see [30]).

For a triple of closed topological manifolds Z ⊂ Y ⊂ X, we consider the square
of fundamental groups with orientation in the splitting problem for the manifold pair
Z ⊂ Y :

(2.14) Ψ =

⎛
⎝

π1(∂V ) → π1(Y \Z)
↓ ↓

π1(Z) → π1(Y )

⎞
⎠ .

We consider the commutative diagram (see [30, 34])

(2.15)

· · · → Sn+1(X, Y, ξ) → Hn(X;L•)
σ1→ LPn−q(F ) → · · ·

↓ ↓ ↓
· · · → Sn−q+1(Y ) → Hn−q(Y ;L•) → Ln−q(Y ) → · · ·

↓ ↓ ↓=

· · · → LSk(Ψ) → LPk(Ψ) → Ln−q(Y ) → · · ·

,

in which k = n − q − q′ is the dimension of Z and the rows and columns are exact
sequences. Note that the two lower rows represent (1.7) for the manifold pair (Y, Z).
Diagram (2.15) is realized at the spectrum level (see [1, 8]).

In particular, the composite

LPn−q+1(F ) → Sn+1(X, Y, ξ) → Sn−q+1(Y ) → LSn−q−q′(Ψ)

of the maps in diagram (2.15) is realized by the composite v of the maps of spectra

LP (F ) → Σ−qS(X, Y, ξ) → S(Y ) → Σq′+1LS(Ψ),

where
πn(S(X, Y, ξ)) = Sn(X, Y, ξ), πn(S(Y )) = Sn(Y ).

The spectrum LT (X, Y, Z) is the homotopy cofibre of the map

(2.16) Σ−q′−1v : Σ−q′−1LP (F ) → LS(Ψ),

and by definition LTn(X, Y, Z) = πn(LT (X, Y, Z)) (see [8]). The homotopy long exact
sequence of the cofibration (2.16) gives rise to the exact sequence

(2.17) · · · → LPn−q+1(F ) → LSn−q−q′(Ψ) → LTn−q−q′(X, Y, Z) → · · · .

The manifold triple Z ⊂ Y ⊂ X is a stratified topological manifold (see [14, 35]),
which we denote by X . Consequently, the Browder–Quinn stratified L-groups LBQ(X )
are defined. These groups are realized at the spectrum level, and we will use our notation
to recall their inductive definition, which was given in [35, p. 129]. According to Remark
2.3 the triple Z ⊂ Y ⊂ X defines the pair of manifolds with boundary

(2.18) (Y \Z, ∂(Y \Z)) ⊂ (X\Z, ∂(X\Z)),

where ∂(Y \Z) ⊂ ∂(X\Z) is the manifold pair that coincides with the natural decom-
position of the boundary of a tubular neighbourhood of Z in X. We denote by FZ the
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square of fundamental groups in the splitting problem with respect to the boundary for
the manifold pair (2.18), and by FU the analogous square for the pair of closed manifolds
∂(Y \Z) ⊂ ∂(X\Z). In fact, the geometric definition of the transfer map p! in (2.9)
and (2.10) for the pair Z ⊂ X (see [25, 26, 30, 34]) gives the map

(2.19) p# : Ln−q−q′(π1(Z)) → LPn−q−1(FU ),

which is realized at the spectrum level (see [35]) by the map

(2.20) p# : L(π1(Z)) → Σ−q′+1LP (FU ).

We consider the composite of the map p# in (2.20) with the map of spectra

b : Σ−q′+1LP (FU ) → Σ−q′+1LP (FZ)

that is induced by the embedding of the boundary in (2.18). We obtain the cofibration
of spectra [35]

(2.21) p#b : L(π1(Z)) → Σ−q′+1LP (FZ) → Σ−q−q′+1LBQ(X )

with the cofibre Σ−q−q′+1LBQ(X ). By definition (see [14, 35]),

πn(LBQ(X )) = LBQ
n (X ).

For the groups LBQ
n the index n is equal to the dimension taken mod 4 of the larger

manifold of the filtration (see [14, 35]). In the case of the surgery obstruction groups LPn,
Wall and Ranicki (see [30, 34]) used the index n that corresponds to the dimension of the
smaller manifold in the pair. Similarly to Wall and Ranicki, for the surgery obstruction
groups LTn for a manifold triple, the index n is equal to the dimension of the lower
manifold of the filtration.

Remark 2.6. For the manifold triple (X, Y, Z) the homotopy long exact sequence of the
cofibration (2.21) gives rise to the exact sequence of obstruction groups

(2.22) · · · → Ln−q−q′(π1(Z)) → LPn−q−1(FZ) → LBQ
n−1(X ) → · · · ,

where X denotes the filtration Z ⊂ Y ⊂ X.

We denote by Φ the square of fundamental groups in the splitting problem for the
pair (X, Z). The groups LP∗(Φ) occur in the exact sequence (see [30, 34])

(2.23) · · · → Ln(π1(X\Y )) → LPn−q−q′(Φ) → Ln−q−q′(π1(Z)) → · · · ,

which is realized at the spectrum level, similarly to (2.12), by the cofibration of spectra

(2.24) LP (Φ) → L(π1(Z)) → Σ−q−q′+1L(π1(X\Z)).

By [8, Theorem 2] the groups LT∗ occur in the commutative diagram of exact sequences

(2.25)

−→ Ln(C) −→ LPn−q(F ) −→ LSk−1(Ψ) −→
↗ ↘ ↗ ↘ ↗ ↘

LTk(X, Y, Z) Ln−q(π1(Y ))
↘ ↗ ↘ ↗ ↘ ↗

−→ LSk(Ψ) −→ LPk(Ψ) −→ Ln−1(C) −→

,

where k = n− q − q′ and C = π1(X\Y ). The diagram (2.25) is realized at the spectrum
level and contains the exact sequence

(2.26) · · · → Ln(π1(X\Y )) → LTn−q−q′(X, Y, Z) → LPn−q−q′(Ψ) → · · · .

The exact sequence (2.26) is realized at the spectrum level by the cofibration

(2.27) LT (X, Y, Z) → LP (Ψ) → Σ−q−q′+1L(π1(X\Z)).
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Proposition 2.7. We have the commutative diagram
(2.28)

...
...

...
↓ ↓ ↓

· · · → Ln(π1(X\Y )) → LTk(X, Y, Z) → LPk(Ψ) → · · ·
↓ ↓ ↓

· · · → Ln(π1(X\Z)) → LPk(Φ) → Lk(π1(Z)) → · · ·
↓ ↓ ↓

· · · → Ln(π1(X\Y ) → π1(X\Z)) → LSn−q−1(FZ) → Ln−q−1(π1(Y \Z)) → · · ·
↓ ↓ ↓
...

...
...

,

where k = n− q − q′. The diagram (2.28) is realized at the spectrum level. All the maps
in the square

(2.29)
LT∗(X, Y, Z) → LP∗(Ψ)

↓ ↓
LP∗(Φ) → L∗(π1(Z))

of the diagram (2.28) are natural forgetful maps. The two top horizontal rows in (2.28)
coincide with the exact sequences (2.26) and (2.23).

Proof. Forgetting the submanifold Y induces the natural maps

LT∗(X, Y, Z) → LP∗(Φ) and LP∗(Ψ) → L∗(π1(Z)),

which are induced by the map of spectra in (2.25) and (2.27). Similarly to (2.25), the
forgetful map LP∗(Ψ) → L∗(π1(Z)) is realized at the spectrum level. The forgetful map
LT∗(X, Y, Z) → LP∗(Φ) is realized at the spectrum level according to [27, Theorem 3.5].
This map is involved in the exact sequence

(2.30) · · · → LTn−q−q′(X, Y, Z) → LPn−q−q′(Φ) → LSn−q−1(FZ) → · · · .

Hence we have the homotopy commutative diagram of spectra

(2.31)
LT (X, Y, Z) → LP (Ψ)

↓ ↓
LP (Φ) → L(π1(Z))

.

We consider the infinite homotopy commutative diagram of spectra

(2.32)

...
...

...
↓ ↓ ↓

→ LT (X, Y, Z) → LP (Ψ) → Σ−q′−q+1L(π1(X\Y )) →
↓ ↓ ↓

→ LP (Φ) → L(π1(Z)) → Σ−q′−q+1L(π1(X\Z)) →
↓ ↓ ↓

→ Σ−q′+1LS(FZ) → Σ−q′+1L(π1(Y \Z)) → Σ−q′−q+1Lrel →
↓ ↓ ↓
...

...
...

,

where Lrel = L(π1(X\Y ) → π1(X\Z)). This diagram is obtained from the homotopy
commutative diagram (2.31) by considering the cofibrations defined by all the maps
in (2.31) (see [3, 33]). An application of π0 to (2.32) produces the commutative dia-
gram (2.28). �
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We now recall the following technical result in [3].

Lemma 2.8. Consider the diagram of spectra

•
↓ ↘

• → • → •
↘ ↓

•

in which the row and the column are both cofibrations. Then the cofibres of the diagonal
maps are naturally homotopy equivalent.

Proof. See [3]. �

Theorem 2.9. Let X be the filtration Z ⊂ Y ⊂ X of topological manifolds, n the
dimension of X, q the codimension of Y in X, and q′ the codimension of Z in Y . Then
there is a homotopy equivalence between the spectra

LT (X, Y, Z) � Σ−q−q′
LBQ(X ),

and, consequently, an isomorphism

LTn−q−q′(X, Y, Z) = LBQ
n (X )

between the surgery obstruction groups for n = 0, 1, 2, 3 mod 4.

Proof. It follows from Lemma 2.8 that the cofibres of the diagonal maps of spectra

(2.33)
Σ−q′

L(π1(Y \Z)) → Σ−q′−q+1L(π1(X\Y )),
LT (X, Y, Z) → L(π1(Z)),

Σ−q′−qL(π1(X\Z)) → Σ−q′+1LS(FZ)

in diagram (2.32) are naturally homotopy equivalent. The map of spectra

(2.34) ΣL(π1(Y \Z)) → Σ−qL(π1(X\Y ))

is a realization at the spectrum level of the transfer map for the manifold pair (X\Z, Y \Z)
— this follows from diagram (2.28). Consequently, the cofibre of the first map in (2.33)
coincides with the spectrum Σ1−q′

LP (FZ). Therefore it coincides with the cofibre of the
second map in (2.33). We obtain the cofibration

(2.35) LT (X, Y, Z) → L(π1(Z)) → Σ1−q′
LP (FZ).

Consequently (see [33]), the spectrum LT (X, Y, Z) is defined as the homotopy fibre of
the transfer map

(2.36) L(π1(Z)) → Σ1−q′
LP (FZ).

But, according to (2.21), the homotopy fibre of this map is the spectrum Σ−q−q′
LBQ(X ),

where X is the filtration Z ⊂ Y ⊂ X. This proves the theorem. �
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Corollary 2.10. Under the hypotheses of Theorem 2.9 we have the following three braids
of exact sequences :

−→ Ln−q(D) −→ Ln−1(C) −→ LTk−1 −→
↗ ↘ ↗ ↘ ↗ ↘

LPk(Ψ) LPm(FZ)
↘ ↗ ↘ ↗ ↘ ↗

−→ LTk −→ Lk(π1(Z)) −→ Lm(D) −→

,

(2.37)

−→ LTk −→ Lk(π1(Z)) −→ Ln−1(E) −→
↗ ↘ ↗ ↘ ↗ ↘

LPk(Φ) LPm(FZ)
↘ ↗ ↘ ↗ ↘ ↗

−→ Ln(E) −→ LSm(FZ) −→ LT k−1 −→

,

(2.38)

and
(2.39)
−→ Ln(E) −→ LSm(FZ) −→ Lm(D) −→

↗ ↘ ↗ ↘ ↗ ↘
Ln(C → E) LPm(FZ)

↘ ↗ ↘ ↗ ↘ ↗
−→ Ln−q(D) −→ Ln−1(C) −→ Ln−1(E) −→

,

where k = n − q − q′, m = n − q − 1, D = π1(Y \Z), E = π1(X\Z), and C = π1(X\Y ).
Diagrams (2.37), (2.38), and (2.39) are realized at the spectrum level.

Proof. From the infinite homotopy commutative diagram (2.32) and the cofibration
(2.35) we obtain the homotopy commutative diagram of spectra

(2.40)
LT (X, Y, Z) −→ LP (Ψ) −→ Σ−q′−q+1L(π1(X\Y ))

= ↓ ↓ ↓
LT (X, Y, Z) −→ L(π1(Z)) −→ Σ1−q′

LP (FZ)
,

in which the horizontal rows are cofibrations and the right-hand vertical map is in-
duced by the two left-hand vertical maps (see [33]). Consequently, the fibres of the two
right-hand horizontal maps in (2.40) are naturally homotopy equivalent to the spectrum
LT (X, Y, Z). Therefore the right-hand square in (2.40) is a pull-back square and the
fibres of the vertical maps of this square are also naturally homotopy equivalent. The
homotopy long exact sequences of this square give the commutative diagram (2.37). Sim-
ilarly, the commutative diagrams (2.38) and (2.39) follow from the other two cofibrations
in (2.33) and the homotopy commutative diagram (2.32). �
Remark 2.11. Diagram (2.39) is in fact diagram (1.8) constructed for the pair of manifolds
with boundary (X\Y ) ⊂ (X\Z).

Remark 2.12. We can regard the manifold pair Y n−q ⊂ Xn as a stratified manifold X ,
for which the Browder–Quinn groups LBQ(X ) are defined. It follows from the cofibration
(2.12) that Wall’s definition of the LP∗-groups and Ranicki’s results (see [30, 34]) yield
an isomorphism LPn−q(F ) ∼= LBQ(X ). This isomorphism is realized at the spectrum
level.

3. Surgery on a manifold with a filtration

In this section we introduce the surgery obstruction groups for the filtration X in (1.11)
and describe their basic properties. First we provide a motivation for our definition; then



A SPECTRAL SEQUENCE IN SURGERY THEORY 275

we prove Theorem 3.1 and describe the connection of the groups introduced here with
the Browder–Quinn groups LBQ. We use the notation of the preceding sections.

For a manifold pair (Xn, Y n−q) of codimension q the realization of diagram (1.8) at
the spectrum level gives rise to the homotopy commutative diagram of spectra

(3.1)

ΣqL(π1(Y ))
↓ ↘

L(π1(X)) → L(π1(X\Y ) → π1(X)) → ΣL(π1(X\Y ))
↘ ↓

Σq+1LS(F )

,

in which the vertical column and the horizontal row are cofibrations. The cofibres of
the diagonal maps are naturally homotopy equivalent to the spectrum Σq+1LP (F ); this
follows from (1.8) and Lemma 2.8.

We now consider the manifold triple Zn−q−q′ ⊂ Y n−q ⊂ Xn, where q is the codimen-
sion of Y in X, and q′ the codimension of Z in Y . The realization of diagram (2.25) at
the spectrum level gives rise to the homotopy commutative diagram of spectra

(3.2)

Σq′
LP (Ψ)
↓ ↘

LP (F ) → L(π1(Y )) → Σ−q+1L(π1(X\Y ))
↘ ↓

Σq′+1LS(Ψ)

,

in which the vertical column and the horizontal row are cofibrations. Recall that F is
the square of fundamental groups in the splitting problem for the pair (X, Y ), while Ψ
is the analogous square for the pair (Y, Z). Using (2.25) and Lemma 2.8, it follows that
the cofibres of the diagonal maps are naturally homotopy equivalent to the spectrum
Σq′+1LT (X, Y, Z).

We now consider the filtration X in (1.11), for which the bounded filtrations Xj are
defined for j = 0, 1, . . . , k.

For a pair of submanifolds Xj ⊂ Xj−1 in the filtration (1.11), we let Fj , 1 ≤ j ≤ k,
denote the square of fundamental groups in the splitting problem.

We also introduce a special notation for the following filtrations. Let Y be the subfil-
tration

(3.3) Xk ⊂ Xk−1 ⊂ · · · ⊂ X2 ⊂ X1

of the filtration X , and Yj−1 the bounded subfiltration

(3.4) Xj ⊂ Xj−1 ⊂ · · · ⊂ X2 ⊂ X1

of the filtration Y , where 1 ≤ j ≤ k. We have X0 = (X0) = (X), X1 = (X1 ⊂ X0),
and X2 = (X2 ⊂ X1 ⊂ X0). We set

LM0(X ) = LM0(X0) = L(π1(X0)),

LM1(X ) = LM1(X1) = LM1(X1 ⊂ X0) = LP (F1),

and

LM2(X ) = LM2(X2) = LT (X0, X1, X2).
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By definition, LM i(Xj) = LM i(X ) for the spectra LM i defined above, where 0 ≤ i ≤ 2
and j ≥ i. In our notation, diagram (3.2) has the form

(3.5)

Σq2LM1(Y)
↓ ↘

LM1(X ) → LM0(Y) → Σ−q1+1L(π1(X0\X1))
↘ ↓

Σq2+1LS(F2)

with the cofibres of the diagonal maps being naturally homotopy equivalent to

Σq2+1LM2(X ) = Σq2+1LM2(X2).

The right-hand diagonal map in (3.5) gives rise to the cofibration of spectra

(3.6) LM2(X ) → LM1(Y) → Σ−q1−q2+1L(π1(X0\X1)),

where −q1−q2 = l2−n. The left-hand diagonal map in (3.5) gives rise to the cofibration

(3.7) Σq2LM2(X ) → LM1(X ) → Σq2+1LS(F2).

For the filtration Y , the cofibration (3.7) gives the cofibration

(3.8) Σq3LM2(Y) → LM1(Y) → Σq3+1LS(F3).

From the cofibrations (3.6) and (3.8) we can form the homotopy commutative diagram

(3.9)

Σq3LM2(Y)
↓ ↘

LM2(X ) → LM1(Y) → Σl2−n+1L(π1(X0\X1)),
↘ ↓

Σq3+1LS(F3)

in which the cofibres of the diagonal maps are naturally homotopy equivalent. We denote
the homotopy cofibre of the diagonal map in (3.9) by

Σq3+1LM3(X3) = Σq3+1LM3(X ).

It follows from this definition that

LM3(Xj) = LM3(X ) for 3 ≤ j ≤ k.

We can extend these constructions so as to give an inductive definition of the spectrum

LM i(X ) = LM i(Xi) for 4 ≤ i ≤ k.

Suppose that the spectrum LM j(X ) = LM j(Xj) is already defined for k ≥ j ≥ 2 so
that the spectrum Σqj+1LM j(X ) (for j ≥ 2) is the homotopy cofibre of the diagonal
maps in the diagram

(3.10)

Σqj LM j−1(Y)
↓ ↘

LM j−1(X ) → LM j−2(Y) → Σlj−1−n+1L(π1(X0\X1))
↘ ↓

Σqj+1LS(Fj)

.

The right-hand diagonal map in (3.10) gives rise to the cofibration of spectra

(3.11) LM j(X ) → LM j−1(Y) → Σlj−1−n−qj+1L(π1(X0\X1)),

where lj−1 − n − qj + 1 = lj − n + 1. The left-hand diagonal map in (3.10) gives rise to
the cofibration

(3.12) Σqj LM j(X ) → LM j−1(X ) → Σqj+1LS(Fj).
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For the filtrations Y and Yj , (3.12) gives the cofibration

(3.13) Σqj+1LM j(Y) → LM j−1(Y) → Σqj+1+1LS(Fj+1).

We can combine (3.11) and (3.13) to obtain the homotopy commutative diagram

(3.14)

Σqj+1LM j(Y)
↓ ↘

LM j(X ) → LM j−1(Y) → Σlj−n+1L(π1(X0\X1))
↘ ↓

Σqj+1+1LS(Fj+1)

,

in which the cofibres of the diagonal maps are naturally homotopy equivalent. We denote
the homotopy cofibre of the diagonal map in (3.14) by

Σqj+1+1LM j+1(X ) = Σqj+1+1LM j(Xj).

Thus the spectra LM j(X ) are defined for 0 ≤ j ≤ k. It follows from the definition
that

LM j(X ) = LM j(Xi) for k ≥ i ≥ j.

We define the groups LM i
j(X ) to be the homotopy groups πj(LM j(X )). It follows from

the definition that j is defined mod 4.

Proposition 3.1. Let X be the filtration (1.11). For 0 ≤ j ≤ k−2 the groups LM occur
in the braid of exact sequences
(3.15)
−→ LSlj (Fj) −→ LM j−1

lj
(Y) −→ Ln−1(π1(X0\X1)) −→

↗ ↘ ↗ ↘ ↗ ↘
LM j

lj
(X ) LM j−2

lj−1
(Y)

↘ ↗ ↘ ↗ ↘ ↗
−→ Ln(π1(X0\X1)) −→ LM j−1

lj−1
(X ) −→ LSlj−1(Fj) −→

,

where lj is the dimension of the smallest manifold of the filtration. This diagram is
realized at the spectrum level.

Proof. From the definition of LM -groups we obtain the homotopy commutative square
of spectra

(3.16)
LM j−2(Y) → Σlj−1−n+1L(π1(X0\X1))

↓ ↓
Σqj+1LS(Fj) → Σqj+1LM j(X )

.

The fibres of the parallel maps in (3.16) are naturally homotopy equivalent—this follows
from diagram (3.10). Consequently, the square (3.16) is a pull-back square and the
consideration of the homotopy long exact sequences of maps in this square completes the
proof of the proposition. �

Corollary 3.2. For 2 ≤ j ≤ k the spectrum LM j(X ) occurs in the pull-back square of
spectra

(3.17)
Σqj LM j(X ) → Σqj LM j−1(Y)

↓ ↓
LM j−1(X ) → LM j−2(Y)

.

We can now define the spectra for the structure sets of the filtration X . According to
Ranicki’s definition [30] we define the spectrum S0(X ) = S(X) for the manifold Xn to
be the homotopy cofibre of the map (1.4).
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For the filtration X that is defined by the manifold pair (Xn, Y n−q), the map

Hn(X;L•) → LPn−q(F )

in (1.15) is realized at the spectrum level by the map

(3.18) X+ ∧ L• → ΣqLP (F )

(see [1, 8, 29, 30]). We denote the cofibre of the map in (3.18) by S1(X ) = S(X, Y, ξ)
with the homotopy groups

πn(S1(X )) = Sn(X, Y, ξ)
occurring in the exact sequence (1.15).

For the filtration X = (Z ⊂ Y ⊂ X) we define the spectrum S2(X ) = S(X, Y, Z)
(see [8]) as the homotopy cofibre of the map

(3.19) X+ ∧ L• → Σq+q′
LT (X, Y, Z).

Every t-triangulation of the filtration X in (1.11) gives a t-triangulation of the bounded
filtrations Xk, Y , and Yk−1. Thus we obtain the commutative diagram

(3.20)
T (X ) → T (Y)
↓ ↓

T (Xk) → T (Yk)
,

which is realized at the spectrum level (see [8, 29, 30]). By Proposition 2.4 (see [30]), at
the spectrum level diagram (3.20) has the form

(3.21) F =

⎛
⎝

(X0)+ ∧ L• → Σq1 [(X1)+ ∧ L•]
↓ ↓

(X0)+ ∧ L• → Σq1 [(X1)+ ∧ L•]

⎞
⎠ .

It follows from the definition of LM j(X ), together with (1.4), (3.18) and (3.19), that
for k ≥ j ≥ 0 we have the maps

(3.22) (X0)+ ∧ L• → Σn−lj LM j(X ),

whose cofibres we denote by Sj(X ). Thus, S0(X ) = S(X0). Using the maps in (3.22) we
obtain the map of squares

(3.23) Λ2 : F −→ G2,

where

(3.24) G2 =

⎛
⎝

Σn−l2LM2(X ) → Σn−l2LM1(Y)
↓ ↓

Σn−l1LM1(X ) → Σn−l1LM0(Y)

⎞
⎠ ,

which gives rise to a homotopy commutative diagram of spectra in the form of a cube.
We note here that the square in (3.24) follows from (3.17).

The cofibres of the four maps that form the map Λ2 give the pull-back square

(3.25)
S2(X ) → Σq1S1(Y)

↓ ↓
S1(X ) → Σq1S0(Y)

,

since the squares (3.17) and (3.21) are pull-back squares.
Let Gi, k ≥ i ≥ 2, be the homotopy commutative square of spectra

(3.26) Gi =

⎛
⎝

Σn−liLM i(X ) → Σn−liLM i−1(Y)
↓ ↓

Σn−li−1LM i−1(X ) → Σn−li−1LM i−2(Y)

⎞
⎠ ,

which follows from (3.17).
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Proposition 3.3. For k ≥ i ≥ 2 there exist maps of squares

(3.27) Λi : F −→ Gi

that are defined by four maps so that the resulting diagram in the form of a cube is
homotopy commutative.

Proof. Using induction on i it is sufficient to define the left-hand upper map in Λi when
the other three maps have already been defined. This is possible, since the homotopy
commutative square (3.26) is a pull-back square. �

Definition. Let X be the filtration (1.11). For k ≥ j ≥ 0, Sj(X ) denotes the homotopy
cofibre of the map

(3.28) (X0)+ ∧ L• → Σn−lj LM j(X )

that is defined by the map Λi in (3.27). The homotopy groups πn(Sj(X )) are denoted
by Sj

n(X ).

The structure sets Sj
n(X ) are natural generalizations of the structure set Sn(X) of

homotopy triangulations of the manifold X and of the set Sn(X, Y, ξ) of homotopy tri-
angulations of the manifold pair. We now describe the basic properties of these sets.

Remark 3.4. Let X be the filtration (1.11). For k ≥ j ≥ 0 it follows from the definition
that we have the exact sequence

(3.29) · · · → Sj
n+1(X ) → Hn(X;L•) → LM j

lj
(X ) → · · · .

For j = 0 and X = X0 the exact sequence (3.29) coincides with (1.2), for j = 1 it
coincides with (1.15) for the pair X1 ⊂ X0, and for j = 2 it coincides with the homotopy
long exact sequence of the cofibration (3.19) for the triple X2 ⊂ X1 ⊂ X0.

Proposition 3.5. For k ≥ i ≥ 2 there exists the following homotopy commutative pull-
back square of spectra:

(3.30)
Si(X ) → Σq1Si−1(Y)

↓ ↓
Si−1(X ) → Σq1Si−2(Y)

.

Proof. The square (3.30) is obtained as the square of the homotopy cofibres of the maps
that constitute the map Λi. The squares (3.21) and (3.27) are pull-back squares. Con-
sequently, the square (3.30) is a pull-back square. �

Corollary 3.6. For k ≥ i ≥ 2 there exists the following braid of exact sequences :

(3.31)

−→ Sn(X0\X1) −→ Si−1
n (X ) −→ LSli−1(Fi) −→

↗ ↘ ↗ ↘ ↗ ↘
Si

n(X ) Si−2
n−q1

(Y)
↘ ↗ ↘ ↗ ↘ ↗

−→ LSli(Fi) −→ Si−1
n−q1

(Y) −→ Sn−1(X0\X1) −→

,

where Sn(X0\X1) is the structure set occurring in (1.2), the algebraic exact sequence of
surgery theory for X0\X1.

Proof. The homotopy long exact sequences of the maps in the pull-back square (3.30)
give the diagram (3.31). �

In the case of manifold triples, diagram (3.31) was obtained in [8]. In fact, this diagram
is a natural generalization of the diagram in [30, Proposition 7.2.6 ii)], which holds for
manifold pairs.
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Proposition 3.7. For k ≥ i ≥ 1 we have the following homotopy commutative pull-back
square of spectra:

(3.32)
Σ−1Si−1(X ) → (X0)+ ∧ L•

↓ ↓
Σn−liLS(Fi) → Σn−liLM i(X )

.

Proof. We have the homotopy commutative diagram

(3.33)
Σ−1Si−1(X ) → (X0)+ ∧ L• → Σn−li−1LM i−1(X )

↓ ↓ ↓=

Σn−liLS(Fi) → Σn−liLM i(X ) → Σn−li−1LM i−1(X )
,

where the right-hand square follows from Proposition 3.3, and the left-hand map is
obtained as the natural map of the fibres of the horizontal maps of the right-hand
square [33]. Using the definition of the spectrum Si(X ) and Corollary 3.6, the fibres
have this property. Now the cofibres of the horizontal maps of the left-hand square
in (3.33) are naturally homotopy equivalent, and this square is a push-out square and
therefore also a pull-back square. �

Corollary 3.8. For k ≥ i ≥ 1 we have the following braid of exact sequences:
(3.34)

−→ Si
n+1(X ) −→ Hn(X0;L•) −→ LM i−1

li−1
(X ) −→

↗ ↘ ↗ ↘Θi ↗ ↘
Si−1

n+1(X ) LM i
li
(X )

↘ ↗ ↘ ↗ ↘ ↗
−→ LM i−1

li−1+1(X ) −→ LSli(Fi) −→ Si
n(X ) −→

.

Proof. The homotopy long exact sequence of the maps in the pull-back square (3.32)
gives the commutative diagram of exact sequences (3.31). �

The diagram (3.34) for the case of a manifold pair was obtained in [30, Proposition
7.2.6 iv)]. For the case of a manifold triple this diagram was obtained in [8, Theorem 4].

Theorem 3.9. Let X be the filtration (1.11), where the dimension of the submanifold
Xk is equal to lk ≥ 5, and let

x = (f, b) ∈ [X0, G/TOP ] = Hn(X;L•)

be some t-triangulation of X with a given map f : M → X = X0. Then the map (f, b) is
normally bordant to an s-triangulation of the filtration X if and only if Θk(x) = 0. The
set Si

n+1(X ) can be identified with the set of the concordance classes of s-triangulations
of Xi.

Proof. We use induction on k, the number of submanifolds. For k = 1, 2 the result was
obtained in [8, 30], respectively.

Let x = [(f, b)] ∈ Hn(X0;L•) be an s-triangulation of the filtration Xk. It follows
from the definition that x is an s-triangulation of the subfiltration Xk−1 such that the
restriction to Xk−1 is already split along the submanifold Xk ⊂ Xk−1. Consequently,
Θi−1(x) = 0 by the induction hypothesis, and it follows from (3.34) that x represents an
element y ∈ Sk−1

n+1(Xk−1). It follows from diagram (3.31) that the map

σ : Sk−1
n+1(X ) = Sk−1(Xk−1) → LSlk(Fk)

in (3.34) is defined by the composite

(3.35) Sk−1
n+1(Xk−1) → Slk−1+1(Xk−1) → LSlk(Fk).
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The right-hand map in (3.35) is the map in diagram (1.7) for the pair (Xk−1, Xk). Since
the restriction of x to Xk−1 splits along Xk, according to the geometric definition of the
map Slk−1+1(Xk−1) → LSlk(Fk) we obtain σ(y) = 0. It now follows from (3.34) that
Θi(x) = 0.

We now prove the converse implication. Suppose that Θk(x) = 0. It follows from
diagram (3.34) that Θk−1(x) = 0. Consequently, there exists an element y ∈ Sk−1

n+1(X )
that is mapped to x. The set Sk−1

n+1(X ) can be identified with the concordance classes of
s-triangulations of the filtration Xk−1. Therefore a representative of y gives rise to an
s-triangulation (f ′, b′) from Xk−1. Since Θk(x) = 0 and (3.34) is commutative, thus y
belongs to the image of the map

Sk
n+1(X ) → Sk−1

n+1(X )

in (3.34). This means that σ(x) = 0 and, according to the factorization (3.35), the
restriction of the map f ′ to Xk−1 splits along the submanifold Xk. We can extend the
homotopy to obtain an s-triangulation of Xk−1 whose restriction to Xk−1 is an s-trian-
gulation of the pair (Xk, Xk−1). An application of Proposition 2.5 completes the proof
of the theorem. �

We now describe the relations between the surgery obstruction groups LM i
∗(X ) =

LM i(Xi) for the filtration (1.11) introduced above and the Browder–Quinn stratified
L-groups LBQ

∗ (Xi) (see [14, 35]).
The Browder–Quinn groups of the filtration X are realized at the spectrum level, and

we recall here the inductive definition of these groups given in [35, p. 129], using our
notation. In accordance with Theorem 2.9 we have the homotopy equivalence

LM2(X ) � Σl2−nLBQ(X2).

It should be pointed out that in a similar fashion the homotopy equivalence of spectra

(3.36) LM1(X ) = LP (F1) � Σl1−nLBQ(X1)

immediately follows from (2.10), (2.12), and the definition in [14, p. 129].
According to Remark 2.3 the filtration X gives rise to the filtration of manifolds with

boundary X . The boundaries of the latter filtration give the filtration of closed manifolds

(3.37) ∂(Xk−1\Xk) ⊂ ∂(Xk−2\Xk) ⊂ · · · ⊂ ∂(X1\Xk) ⊂ ∂(X0\Xk),

which we denote by ∂X . Note that the filtrations ∂X and X contain k spaces each, and
the filtration X contains k + 1 spaces.

We consider the homotopy commutative diagram of spectra

(3.38)
LM j(X ) → LM j−1(Y) → Σlj−n+1L(C) → ΣLM j(X )

↓ ↓ ↓= ↓
LM j(X ) → LM j−1(Y) → Σlj−n+1L(C) → ΣLM j(X )

,

where j = k−1 ≥ 1, C = π1(X0\X1), and the horizontal rows are cofibrations according
to (3.14). The vertical maps in (3.38) are induced by the natural embeddings of the
filtrations Xk ⊂ Xk−1. For k − 1 = j = 1 the central square in (3.38) is involved in the
homotopy commutative diagram of spectra

(3.39)

LM0(Y) → Σl1−n+1L(C)
↓ ↓=

Σl1−l2LM1(Y) → Σl1−n+1L(C)
↓ ↓=

LM0(Y) → Σl1−n+1L(C)

,

which follows from diagrams (3.14) and (1.8) at the spectrum level for the pair (X1, X2).
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Proposition 3.10. Let X be the filtration (1.11) with k ≥ 2. We have the following
commutative diagram of spectra:

(3.40)

LMk−2(Y) → Σlk−1−n+1L(C) → ΣLMk−1(X )
↓ ↓= ↓

ΣqkLMk−1(Y) → Σlk−1−n+1L(C) → Σqk+1LMk(X )
↓ ↓= ↓

LMk−2(Y) → Σlk−1−n+1L(C) → ΣLMk−1(X )

,

where lk−1 − lk = qk and C = π1(X0\X1). The right-hand vertical composite coincides
with the right-hand vertical map in diagram (3.38) for j = k − 1.

Proof. For k = 2 the result follows from (3.39) and (3.38) if we define the right-hand
vertical maps in (3.40) to be the natural maps of the homotopy cofibres of the corre-
sponding horizontal maps in (3.39) (see [33]). Induction on k now completes the proof
of the proposition. �

Corollary 3.11. Let X be the filtration (1.11) with k ≥ 1. Then the homotopy fibre of
the map

(3.41) LMk−1(X ) → ΣqkLMk(X )

is naturally homotopy equivalent to Σqk−1L(π1(Xk)).

Proof. For k = 1 the result follows from the definition of the spectra LM0, LM1 =
LP (F1) and the cofibration (2.12). For k ≥ 2 the result follows by induction from the
homotopy commutative diagram

(3.42)
Σlk−1−nL(C) → LMk−1(X ) → LMk−2(Y)

↓= ↓ ↓
Σlk−1−nL(C) → ΣqkLMk(X ) → ΣqkLMk−1(Y)

,

which follows from (3.40). The right-hand square in (3.42) is a pull-back square, since the
fibres of the horizontal maps are naturally homotopy equivalent. Consequently, the fibres
of the vertical maps are also naturally homotopy equivalent. By the induction hypothesis
the fibre of the right-hand vertical map is homotopy equivalent to Σqk−1L(π1(Xk)). This
proves the corollary. �

We now recall that in [35, p. 129] an inductive definition of the spectrum LBQ(X ) was
given, with homotopy groups

πn(LBQ(X )) = LBQ
n (X ),

which are Browder–Quinn L-groups [14].

Proposition 3.12. Let X be the filtration (1.11), where the smallest manifold Xk has
dimension lk. Then there is a natural homotopy equivalence

(3.43) LMk(X ) � Σlk−nLBQ(X ).

Proof. For k ≥ 1, the cofibration (3.41) gives the cofibration

L(π1(Xk)) → Σ1−qkLMk−1(X ) → Σ1LMk(X ),

which coincides with the cofibration in the inductive definition of the spectrum LBQ(X )
[35, p. 129] up to a shift in the numbering of the spaces of the spectrum. �
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Proposition 3.13. Let X be the filtration (1.11) with k ≥ 2. We have the braid of exact
sequences
(3.44)
−→ Llk+1(Xk) −→ LMk−2

lk−1
(Y) −→ Ln−1(C) →

↗ ↘ ↗ ↘ ↗ ↘
LMk−1

lk−1
(X ) LMk−1

lk
(Y)

↘ ↗ ↘ ↗ ↘ ↗
−→ Ln(C) −→ LMk

lk
(X ) −→ Llk(Xk) −→

,

where C = π1(X0\X1).

Proof. The homotopy long exact sequence of the maps in the right-hand pull-back square
in diagram (3.42) gives rise to the commutative braid of exact sequences (3.44). �

4. Application to the Browder–Livesay invariants

The filtration X given by (1.11) is called a Browder–Livesay filtration if for each
k ≥ j ≥ 1 the manifold pair Xj ⊂ Xj−1 is a Browder–Livesay pair. Note that Fj , 1 ≤
j ≤ k, is the square of fundamental groups in the splitting problem for the manifold pair
Xj ⊂ Xj−1 in the filtration (1.11). For a Browder–Livesay filtration each submanifold
Xj is a one-sided submanifold of codimension 1 in Xj−1, the horizontal maps in the
squares Fj are isomorphisms, and the vertical maps are embeddings of index 2.

Theorem 4.1. Let X be a Browder–Livesay filtration (1.11) in which all the squares Fj

for 1 ≤ j ≤ k are the same. Then the filtration of spectra (1.14) has the form

(4.1) ΣkLMk → Σk−1LMk−1 → · · · → Σ1LM1 → LM0

and coincides with the left-hand side, starting from X0,0, of the filtration (1.10) for the
Hambleton–Kharshiladze spectral sequence.

Proof. An inductive definition of the spectrum LM j(X ) follows from Corollary 3.2. This
spectrum is constructed by using the three other spectra in diagram (3.17) so as to obtain
a pull-back square. But the spectrum Xj,0 of the filtration (1.10) is defined inductively
by using the same construction (see [8, 12]). �

Let i+ : A → B+ be an embedding of groups of index 2 defining the square (1.9). For
such an embedding Ranicki [31] constructed an algebraic version of diagram (1.8):

(4.2)

−→ Ln+1(A) −→ Ln+1(B+) ∂−→ LNn−1(A → B+) −→
↗ ↘ s ↗ ↘ ↗ ↘

Ln+1(i∗−) Ln+1(A → B+)
↘ ↗ ↘ ↗ ↘ ↗

−→ LNn(A → B+) −→ Ln(B+) −→ Ln(A) −→

.

For a Browder–Livesay pair Y ⊂ X with the square (1.9) of fundamental groups,
diagram (1.8) coincides with (4.2). The map ∂ defines the Browder–Livesay invariant. If
∂(x) �= 0, then the element x ∈ Ln+1(B) cannot be realized by a normal map of closed
manifolds (see [20]).

Diagram (4.2) is realized at the spectrum level, and we can write down the pull-back
square of spectra

(4.3)

L(B)
↗ ↘

L(i∗) L(A → B) ,
↘ ↗

ΣL(Bε)
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where i∗ denotes i∗−, while Bε means that the orientation on the lower group B differs
from the orientation on the upper group B outside the image of the map i : A → B. We
consider the sequence A of embeddings of subgroups of index 2 into the group B with
orientation

(4.4) i1 : A1 → B; i2 : A2 → Bε1 ; . . . ; ik : Ak → Bεk−1 ; . . . ,

in which the orientation of the group Bεi coincides with the orientation of Bεi−1 on
the image of Ai → B, and differs from it outside this image. Each embedding in (4.4)
gives rise to a pull-back square analogous to (4.3) and we can write down the column of
pull-back squares

(4.5)

L(B)
↗ ↘

L(i∗1) L(A1 → B)
↘ ↗

ΣL(Bε1)
↗ ↘

ΣL(i∗2) ΣL(A2 → B)
↘ ↗

Σ2L(Bε2)
↗ ↘

Σ2L(i∗3) Σ2L(A3 → B)
↘ ↗

Σ3L(Bε3)
...

Σk−1L(Bεk−1)
↗ ↘

Σk−1L(i∗k) Σk−1L(Ak → B)
↘ ↗

ΣkL(Bεk)
...

,

which is subject to the same convention on the orientations as the square (4.3).
Let LM0(A) = L(B) and ΣLM1(A) = L(i∗1). Using the construction of a pull-back

square we can, similarly to [12], extend the diagram (4.5) to the left. In particular, we
obtain the filtration of spectra

(4.6) · · · → ΣkLMk(A) → Σk−1LMk−1(A) → · · · → Σ1LM1(A) → LM0(A),

which is the left-hand oblique row in the extended diagram.
We use the filtration (4.6) to construct the spectral sequence

Ep,q
r = Ep,q

r (A)

for the sequence of embeddings A, similarly to [12]. We define the first term

(4.7) Ep,q
1 = πq−p(ΣpLMp(A), Σp+1LMp+1(A)) ∼= LNq−2p−2(Ap → Bεp)

and the first differential
dp,q
1 : Ep,q

1 → Ep+1,q
1

that coincides with the composite

(4.8) LNq−2p−2(Ap+1 → Bεp) → Lq−2p−2(Bεp+1) → LNq−2p(Ap+2 → Bεp+1).

The first map of the composite (4.8) occurs in diagram (4.3) for the embedding

Ap+1 → Bεp ,
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and the second map occurs in the same diagram for the embedding

Ap+2 → Bεp+1

(see [12]). Note that the sequence thus obtained is a trivial generalization of the spectral
sequence constructed in [12]. The general results in [12] on the spectral sequence in
surgery theory can be applied to the spectral sequence obtained above.

Remark 4.2. Suppose that in (4.4) all the embeddings Ai → B coincide with A → B.
Then the spectral sequence constructed above coincides with the spectral sequence in [12]
for the embedding A → B of index 2.

We observe that a finite sequence A of embeddings ij , 1 ≤ j ≤ k, as in (4.4), gives
rise to the finite filtration of spectra

(4.9) ΣkLMk(A) → Σk−1LMk−1(A) → · · · → Σ1LM1(A) → LM0(A).

The Browder–Livesay filtration X in (1.11) gives the finite sequence of squares

(4.10) Fj =

⎛
⎜⎝

Aj

∼=→ Aj

↓i− ↓i+

Bεj
∼=→ Bεj−1

⎞
⎟⎠

of fundamental groups for 1 ≤ j ≤ k, which is analogous to (1.9). The right-hand
vertical embeddings in (4.10) give a finite sequence A(X ) of embeddings of index 2 into
the group B.

Proposition 4.3. Under these assumptions we have

LM j(X ) = LM j(A(X ))

for 1 ≤ j ≤ k.

Proof. The proof is the same as the proof of Theorem 4.1. �

For the sequence of embeddings A in (4.4) we can construct the filtration of spec-
tra (4.6). We denote the homotopy groups of the spectra in the filtration as follows:

πn(LMk(A)) = LMk
n(A).

Thus the filtration (4.6) gives rise to the tower of groups

(4.11) · · · → LM j
n−j(A) → LM j−1

n−j+1(A) → · · · → LM1
n−1(A) → LM0

n(A) = Ln(B).

We denote by φj the map

(4.12) LM j
n−j(A) → LM0

n(A) = Ln(B),

which is the composite of the maps in (4.11). The map φ1 is the map s in diagram (4.2).

Theorem 4.4. Suppose that an element x ∈ Ln(B), where n is given mod 4, does not
belong to the image of φj for some sequence of embeddings A and some positive integer j.
Then x cannot be realized by a normal map of closed manifolds.

Proof. Suppose that an element x ∈ Ln(B) is realized by a normal map of closed mani-
folds (f, b) : Mn → Xn. According to [34, § 9] multiplication by the complex projective
space P2(C) of dimension 4 gives rise to the problem of surgery theory

f × Id : Mn × P2(C) → Xn × P2(C)

in dimension n + 4 with surgery obstruction x ∈ Ln(B). Iterating this construction we
obtain a normal map of closed manifolds

g = f × Id : M × (P2(C))k → X × (P2(C))k = X0
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in dimension m = n + 4k ≥ j + 5 with surgery obstruction Θ0(g, b′) = x ∈ Ln(B). Let
A denote the sequence of embeddings

(4.13) i1 : A1 → B; i2 : A2 → B; . . . ; ij : Aj → B

that defines the map φj . We consider a map

ψ1 : X0 → PN (R)

that induces an epimorphism of the fundamental groups with kernel A1. Here PN (R) is
a real projective space of high dimension. Varying the map ψ1 in its homotopy class we
can assume that ψ1 is transversal to PN−1(R) ⊂ PN (R) with

ψ−1
1 (PN−1(R)) = X1

and that X1 ⊂ X0 is a Browder–Livesay pair (see [10, 12, 16, 21]). In similar fashion we
can now consider a map

ψ2 : X1 → PN (R)
that induces an epimorphism of the fundamental groups with kernel A2 and with

ψ−1
2 (PN−1(R)) = X2,

where X2 ⊂ X1 is a Browder–Livesay pair. Iterating this construction we obtain a
Browder–Livesay filtration X
(4.14) Xj ⊂ Xj−1 ⊂ · · · ⊂ X1 ⊂ X0

with A(X ) = A. From Corollary 3.8 we obtain the commutative diagram

(4.15)
Hm(X0;L•)

Θ0−→ Lm(B)
↘Θj φj ↗

LM j
n−j

.

It follows from (4.15) that

φjΘj(g, b′) = Θ0(g, b′) = x ∈ Lm(B),

and therefore the element x belongs to the image of φj . We have obtained a contradiction.
Thus, the theorem is proved. �

An element x ∈ Ln(B) does not belong to the image of φ1 if and only if its Browder–
Livesay invariant ∂(x) is non-trivial, where ∂ is the map in (4.2). An element x ∈ Ln(B)
does not belong to the image of φ2 if and only if either the first or the second Browder–
Livesay invariant is non-trivial. The second Browder–Livesay invariant was introduced
by Hambleton in [21]. This invariant is defined only if the Browder–Livesay invariant is
trivial. The iterated Browder–Livesay invariants were introduced by Kharshiladze (see
[4, 9, 10]). The elements of Ln(B) that do not belong to the image of φj for some j
(and only these elements) are detected by the iterated Browder–Livesay invariants, as
immediately follows from [9, 10, 12]. The fact that such elements cannot be realized by
normal maps of closed manifolds was proved by Kharshiladze (see [9, 10]) by geometric
methods. The proof of Theorem 4.4 actually uses the idea of the proof in [9].
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