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ON THE MENGER COVERING PROPERTY AND D-SPACES

DUŠAN REPOVŠ AND LYUBOMYR ZDOMSKYY

(Communicated by Julia Knight)

Abstract. The main results of this paper are:
• It is consistent that every subparacompact space X of size ω1 is a

D-space.
• If there exists a Michael space, then all productively Lindelöf spaces have

the Menger property and, therefore, are D-spaces.
• Every locally D-space which admits a σ-locally finite cover by Lindelöf

spaces is a D-space.

1. Introduction

A neighbourhood assignment for a topological space X is a function N from X
to the topology of X such that x ∈ N(x) for all x. A topological space X is said
to be a D-space [6] if for every neighbourhood assignment N for X there exists a
closed and discrete subset A ⊂ X such that N(A) =

⋃
x∈A N(x) = X.

It is unknown whether paracompact (even Lindelöf) spaces are D-spaces. Our
first result in this note answers [7, Problem 3.8] in the affirmative and may be
thought of as a very partial solution to this problem.1

Our second result shows that the affirmative answer to [19, Problem 2.6], which
asks whether all productively Lindelöf spaces areD-spaces, is consistent. It is worth
mentioning that our premises (i.e., the existence of a Michael space) are not known
to be inconsistent.

Our third result is a common generalization of two theorems from [10].
Most of our proofs use either the recent important result of Aurichi [2] asserting

that every topological space with the Menger property is a D-space or the ideas
from its proof. We consider only regular topological spaces. For the definitions of
small cardinals d and cov(M) used in this paper we refer the reader to [22].
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2. Subparacompact spaces of size ω1

Following [4] we say that a topological space X has the property E∗
ω if for every

sequence 〈un : n ∈ ω〉 of countable open covers of X there exists a sequence 〈vn :
n ∈ ω〉 such that vn ∈ [un]

<ω and
⋃

n∈ω ∪vn = X. In the realm of Lindelöf spaces
the property E∗

ω is usually called the Menger property or
⋃

fin(O,O); see [21] and
references therein.

We say that a topological space X has property Dω if for every neighbourhood
assignment N there exists a countable collection {An : n ∈ ω} of closed discrete
subsets of X such that X =

⋃
n∈ω N(An). Observe that the property Dω is inher-

ited by all closed subsets.
The following theorem is the main result of this section.

Theorem 2.1. Suppose that a topological space X has properties Dω and E∗
ω. Then

X is a D-space.

The proof of Theorem 2.1 is analogous to the proof of [2, Proposition 2.6]. In
particular, it uses the following game of length ω on a topological space X: On
the nth move player I chooses a countable open cover un = {Un,k : k ∈ ω} such
that Un,k ⊂ Un,k+1 for all k ∈ ω, and player II responds by choosing a natural
number kn. Player II wins the game if

⋃
n∈ω Un,kn

= X. Otherwise, player I wins.
We shall call this game an E∗

ω-game. In the realm of Lindelöf spaces this game is
known under the name Menger game. It is well known that a Lindelöf space X
has the property E∗

ω if and only if the first player has no winning strategy in the
E∗

ω-game on X; see [8, 14]. The proof of [14, Theorem 13] also works without any
change for non-Lindelöf spaces.

Proposition 2.2. A topological space X has the property E∗
ω if and only if the first

player has no winning strategy in the E∗
ω-game.

A strategy of the first player in the E∗
ω-game may be thought of as a map

Υ : ω<ω → O(X), where O(X) stands for the collection of all countable open
covers of X. The strategy Υ is winning if X �=

⋃
n∈ω Uz�n,z(n) for all z ∈ ωω, where

Υ(s) = {Us,k : k ∈ ω} ∈ O(X).
We are in a position now to present the proof of Theorem 2.1.

Proof. We shall define a strategy Υ : X → O(X) of the player I in the E∗
ω-game

on X as follows. Set F∅ = X. The property Dω yields an increasing sequence
〈A∅,k : k ∈ ω〉 of closed discrete subsets of F∅ such that X =

⋃
k∈ω N(A∅,k). Set

Υ(∅) = u∅ = {N(A∅,k) : k ∈ ω}.
Suppose that for some m ∈ ω and all s ∈ ω≤m we have already defined a closed

subset Fs of X, an increasing sequence 〈As,k : k ∈ ω〉 of closed discrete subsets of
Fs, and a countable open cover Υ(s) = us of X such that us = {(X \Fs)∪N(As,k) :
k ∈ ω}.

Fix s ∈ ωm+1. Since X has the property Dω, so does its closed subspace Fs :=
X \

⋃
i<m+1 N(As�i,s(i)), and hence there exists an increasing sequence 〈As,k : k ∈

ω} of closed discrete subsets of Fs such that Fs ⊂
⋃

k∈ω N(As,k). Set Υ(s) = us =
{(X \ Fs) ∪N(As,k) : k ∈ ω}. This completes the definition of Υ.

Since X has the property E∗
ω, Υ is not winning. Thus there exists z ∈ ωω

such that X =
⋃

n∈ω(X \ Fz�n) ∪ N(Az�n,z(n)). By the inductive construction,
X \ F∅ = ∅ and X \ Fz�n =

⋃
i<n N(Az�i,z(i)) for all n > 0. It follows from above

that X =
⋃

n∈ω N(Az�n,z(n)). In addition, Az�n,z(n) ⊂ Fz�n = X \
⋃

i<nN(Az�i,z(i))
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for all n > 0, which implies that A :=
⋃

n∈ω Az�n,z(n) is a closed discrete subset of
X. It suffices to note that N(A) = X. �

We recall from [5] that a topological space X is called subparacompact if every
open cover of X has a σ-locally finite closed refinement.

Lemma 2.3. Suppose that X is a subparacompact topological space which can be
covered by ω1-many of its Lindelöf subspaces. Then X has the property Dω.

2

In particular, every subparacompact space of size ω1 has the property Dω.

Proof. Let L = {Lξ : ξ < ω1} be an increasing cover of X by Lindelöf subspaces,
let τ be the topology of X, and let N : X → τ be a neighbourhood assignment.
Construct by induction a sequence 〈Cα : α < ω1〉 of (possibly empty) countable
subsets of X such that

(i) L0 ⊂ N(C0);
(ii) Cα ∩N(

⋃
ξ<α Cξ) = ∅ for all α < ω1; and

(iii) Lα \N(
⋃

ξ<α Cξ) ⊂ N(Cα) for all α < ω1.

Set C =
⋃

α<ω1
Cα. The subparacompactness of X yields a closed cover F =⋃

n∈ω Fn of X which refines U = {N(x) : x ∈ C} and such that each Fn is locally
finite. Since every element of U contains at most countably many elements of C,
so do elements of F . Therefore for every F ∈ Fn such that C ∩ F �= ∅ we can
write this intersection in the form {xn,F,m : m ∈ ω}. Now it is easy to see that
An,m := {xn,F,m : F ∈ Fn, C ∩ F �= ∅} is a closed discrete subset of X and⋃

n,m∈ω An,m = C. �

Remark 2.4. What we have actually used in the proof of Lemma 2.3 is the following
weakening of subparacompactness: every open cover U which is closed under unions
of its countable subsets admits a σ-locally finite closed refinement. We do not know
whether this property is strictly weaker than subparacompactness.

Corollary 2.5. Let X be a countably tight paracompact topological space of density
ω1. Then X has the property Dω.

Proof. Let {xα : α < ω1} be a dense subspace of X. Since X has countable

tightness, X =
⋃

α<ω1
{xξ : ξ < α}. It suffices to note that the closure of any

countable subspace of a paracompact space is Lindelöf. �

It is well known [9, Theorem 4.4] (and it easily follows from corresponding def-
initions) that any Lindelöf space of size < d has the Menger property. The same
argument shows that every topological space of size < d has the property E∗

ω. Com-
bining this with Theorem 2.1 and Lemma 2.3, we get the following corollary, which
implies the first of the results mentioned in our abstract.

Corollary 2.6. Suppose that X is a subparacompact topological space of size |X| <
d which can be covered by ω1-many of its Lindelöf subspaces. Then X is a D-space.

3. Concerning the existence of a Michael space

A topological space X is said to be productively Lindelöf if X×Y is Lindelöf for
all Lindelöf spaces Y . It was asked in [19] whether productively Lindelöf spaces are
D-spaces. The positive answer to the above question has been proved consistent,

2By the methods of [15] the submetalindelöfness is sufficient here.
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and in a stream of recent papers (see the list of references in [19]) several sufficient
set-theoretical conditions were established. The following statement gives a uniform
proof for some of these results. In particular, it implies [16, Theorems 5 and 7] and
[1, Corollary 4.5] and answers [17, Question 15] in the affirmative.

A Lindelöf space Y is called a Michael space if ωω × Y is not Lindelöf.

Proposition 3.1. If there exists a Michael space, then every productively Lindelöf
space has the Menger property.

We refer the reader to [11], where the existence of a Michael space was refor-
mulated in a combinatorial language and a number of set-theoretical conditions
guaranteeing the existence of Michael spaces were established.

In the proof of Proposition 3.1 we shall use set-valued maps; see [13]. By a set-
valued map Φ from a set X into a set Y we understand a map from X into P(Y )
and write Φ : X ⇒ Y (here P(Y ) denotes the set of all subsets of Y ). For a subset
A of X we set Φ(A) =

⋃
x∈A Φ(x) ⊂ Y . A set-valued map Φ from a topological

spaces X to a topological space Y is said to be

• compact-valued if Φ(x) is compact for every x ∈ X;
• upper semicontinuous if for every open subset V of Y the set Φ−1

⊂ (V ) =
{x ∈ X : Φ(x) ⊂ V } is open in X.

The proof of the following claim is straightforward.

Claim 3.2. (1) Suppose that X,Y are topological spaces, X is Lindelöf, and
Φ : X ⇒ Y is a compact-valued upper semicontinuous map such that
Y = Φ(X). Then Y is Lindelöf.

(2) If Φ0 : X0 ⇒ Y0 and Φ0 : X1 ⇒ Y1 are compact-valued upper semicontin-
uous, then so is the map Φ0 × Φ1 : X0 ×X1 ⇒ Y0 × Y1 assigning to each
(x0, x1) ∈ X0 ×X1 the product Φ0(x0)× Φ1(x1).

Proof of Proposition 3.1. Suppose, contrary to our claim, that X is a productively
Lindelöf space which does not have the Menger property and Y is a Michael space.
It suffices to show that X × Y is not Lindelöf.

Indeed, by [23, Theorem 8] there exists a compact-valued upper semicontinuous
map Φ : X → ωω such that Φ(X) = ωω. By Claim 3.2(2) the product ωω × Y is
the image of X × Y under a compact-valued upper semicontinuous map. By the
definition of a Michael space, ωω × Y is not Lindelöf. By applying Claim 3.2(1) we
can conclude that X × Y is not Lindelöf either. �

By a result of Tall [16] the existence of a Michael space implies that all produc-
tively Lindelöf analytic metrizable spaces are σ-compact. Combining recent results
obtained in [1] and [12], we can consistently extend this result to all Σ1

2 definable
subsets of 2ω.

Theorem 3.3. Suppose that cov(M) > ω1 and that there exists a Michael space.
Then every productively Lindelöf Σ1

2 definable subset of 2ω is σ-compact.

Proof. Let X be a productively Lindelöf Σ1
2 definable subset of 2ω.

If X cannot be written as a union of ω1-many of its compact subspaces, then
it contains a closed copy of ωω [12], and hence the existence of the Michael space
implies that X is not productively Lindelöf, a contradiction.

Thus X can be written as a union of ω1-many of its compact subspaces, and
therefore it is σ-compact by [1, Corollary 4.15]. �
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We do not know whether the assumption cov(M) > ω1 can be dropped from
Theorem 3.3.

Question 3.4. Suppose that there exists a Michael space. Is every coanalytic
productively Lindelöf space σ-compact?

By [18, Proposition 31] the affirmative answer to the question above follows from
the Axiom of Projective Determinacy.

4. Locally finite unions

Theorem 4.1. Suppose that X is a locally D-space which admits a σ-locally finite
cover by Lindelöf spaces. Then X is a D-space.

Proof. Let F =
⋃

n∈ω Fn be a cover of X by Lindelöf subspaces such that Fn is
locally finite. Fix F ∈ Fn. For every x ∈ F there exists an open neighbourhood
Ux of x such that Ūx is a D-space. Let CF be a countable subset of F such that
F ⊂

⋃
x∈CF

Ux. Then ZF = {F ∩ Ux : x ∈ CF } is a countable cover of F consisting
of closed D-subspaces of X such that F ∩ Z is dense in Z for all Z ∈ ZF . It
follows from the above that X admits a σ-locally finite cover consisting of closed
D-subspaces. Since a union of a locally finite family of closed D-subspaces is easily
seen to be a closed D-subspace, X is a union of an increasing sequence of its closed
D-subspaces. Therefore it is a D-space by results of [3]. �
Corollary 4.2. If a topological space X admits a σ-locally finite locally countable
cover by topological spaces with the Menger property, then it is a D-space. In
particular, a locally Lindelöf space admitting a σ-locally finite cover by topological
spaces with the Menger property is a D-space.

Proof. The second part is a direct consequence of the first one since every σ-locally
countable family of subspaces of a locally Lindelöf space is locally countable.

To prove the first assertion, note that by local countability every point x ∈ X
has a closed neighbourhood which is a countable union of its subspaces with the
Menger property, and hence it has the Menger property itself. Therefore X is a
locally D-space. It now suffices to apply Theorem 4.1. �

It is known that every Lindelöf C-scattered space is C-like and that C-like spaces
have the Menger property; see [20, p. 247] and references therein. Thus Corol-
lary 4.2 implies Theorems 2.2 and 3.1 from [10].
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8. Hurewicz, W., Über die Verallgemeinerung des Borellschen Theorems, Math. Z. 24 (1925),
401–421.

9. Just, W.; Miller, A.W.; Scheepers, M.; Szeptycki, P.J., The combinatorics of open covers. II,
Topology Appl. 73 (1996), 241–266. MR1419798 (98g:03115a)

10. Mart́ınez, J.C.; Soukup, L., The D-property in unions of scattered spaces, Topology Appl.
156 (2009), 3086–3090. MR2556068 (2010k:54027)

11. Moore, J.T., Some of the combinatorics related to Michael’s problem, Proc. Amer. Math. Soc.

127 (1999), 2459–2467. MR1486743 (99j:54008)
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