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Abstract

In this paper, we show that the class of all properly 3-realizable groups is closed under amalgamated free products (and HNN-
extensions) over finite groups. We recall that G is said to be properly 3-realizable if there exists a compact 2-polyhedron K with
π1(K ) ∼= G and whose universal cover K̃ has the proper homotopy type of a 3-manifold (with boundary).
c© 2005 Elsevier B.V. All rights reserved.

MSC: primary 57M07; secondary: 57M10, 57M20

1. Introduction

We are concerned with the behavior of the property of being properly 3-realizable (for finitely presented groups)
with respect to the basic constructions in Combinatorial Group Theory; namely, amalgamated free products and
HNN-extensions. Recall that a finitely presented group G is said to be properly 3-realizable if there exists a compact
2-polyhedron K with π1(K ) ∼= G and whose universal cover K̃ has the proper homotopy type of a 3-manifold. It is
worth mentioning that the property of being properly 3-realizable has implications in the theory of cohomology of
groups, in the sense that if G is properly 3-realizable then for some (equivalently any) compact 2-polyhedron K with
π1(K ) ∼= G we have H2

c (K̃ ; Z) free abelian (by manifold duality arguments), and hence so is H2(G; ZG) (see [9]). It
is a long standing conjecture that H2(G; ZG) be free abelian for every finitely presented group G. In [1] it was shown
that the property of being properly 3-realizable is preserved under amalgamated free products (HNN-extensions) over
finite cyclic groups. See also [3,4,7] to learn more about properly 3-realizable groups and related topics. In this paper,
we continue along the lines of [1]. Our main result is :

Theorem 1.1. The class of all properly 3-realizable groups is closed under amalgamated free products (and HNN-
extensions) over finite groups.
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This generalizes to show that the fundamental group of a finite graph of groups with properly 3-realizable vertex
groups and finite edge groups is properly 3-realizable, since such a group can be expressed as a combination of
amalgamated free products and HNN-extensions of the vertex groups over the edge groups.

Recall that, given a finitely presented group G and a compact 2-polyhedron K with π1(K ) ∼= G and K̃ as universal
cover, the number of ends of G is the number of ends of K̃ which equals 0, 1, 2 or ∞ [6] (see also [8,13]). The 0-ended
groups are the finite groups and the 2-ended groups are those having an infinite cyclic subgroup of finite index, and
they are all known to be properly 3-realizable (see [1]). Note that Stallings’ Structure Theorem [12] characterizes
those groups G with more than one end as those which split as an amalgamated free product (or an HNN-extension)
over a finite group (see also [13,8]). In addition, Dunwoody [5] showed that this process of further splitting G must
terminate after finitely many steps.

Corollary 1.2. In order to show whether or not all finitely presented groups are properly 3-realizable it suffices to
look among those groups which are 1-ended.

2. Main result

The purpose of this section is to prove Theorem 1.1. We will make use of the following result:

Proposition 2.1 ([1, Proposition 3.1]). Let M be a manifold of the same proper homotopy type of a locally compact
polyhedron K with dim(K ) < dim(M). Then, any Freudenthal end ε ∈ F(M) can be represented by a sequence of
points in ∂M.

Proof of Theorem 1.1. Let G0,G1 be properly 3-realizable groups and F be a finite group with presentation
〈a1, . . . , aN ; r1, . . . , rM 〉. Consider monomorphisms ϕi : F −→ Gi (i = 0, 1), and denote by G0 ∗F G1 =

〈G0,G1;ϕ0(ai ) = ϕ1(ai ), 1 ≤ i ≤ N 〉 the corresponding amalgamated free product. Let X0, X1 be compact
2-polyhedra with π1(X i ) ∼= Gi and such that their universal covers have the proper homotopy type of 3-manifolds
M0,M1 respectively. Let L = ∨

N
i=1 S1 and fi : L −→ X i (i = 0, 1) be cellular maps such that Im fi∗ ⊆ π1(X i )

corresponds to the subgroup Im ϕi ⊆ Gi . We take the standard 2-dimensional CW-complex Y ′ associated with
the above presentation of F , i.e., Y ′ has one 1-cell ei for each generator ai (1 ≤ i ≤ N ), all of them sharing the
only vertex in Y ′, and one 2-cell d j for each relation r j (1 ≤ j ≤ M) attached via a map S1

−→ ∨
N
i=1 ei which

‘spells’ the relation r j . Consider the adjunction spaces Y = (∨N
i=1 ei ) × I ∪

(∨N
i=1 ei )×{

1
2 }

Y ′ (homotopy equivalent

to Y ′) and Z = Y ∪ f0×{0}∪ f1×{1}(X0 t X1). By van Kampen’s Theorem, Z is a compact 2-polyhedron with
π1(Z) ∼= G0 ∗F G1. Let Z̃ be the universal cover of Z with covering map p : Z̃ −→ Z . Then, p−1(X i ) consists
of a disjoint union of copies of the universal cover X̃ i of X i , since the inclusion X i ↪→ Z induces a monomorphism
Gi ↪→ G0 ∗F G1 between the fundamental groups, i = 0, 1 (see [10]). On the other hand, let Γ be a connected
component of p−1(∨N

i=1 ei ) ⊂ p−1(Y ′) and Ỹ ′ be the connected component of p−1(Y ′) containing Γ . Observe
that Ỹ ′ is a copy of the universal cover of Y ′ (which is compact), as the inclusion Y ′ ↪→ Z induces a monomorphism
F ↪→ G0 ∗F G1. Then, it is easy to see that p−1(Y ) consists of a disjoint union of copies of the compact CW-complex
K = (Γ × I )∪Γ×{

1
2 }

Ỹ ′. Thus, Z̃ comes together with the following data (see [13]):

(a) the disjoint unions
⊔

p∈N X̃0,p and
⊔

r∈N X̃1,r of copies of X̃0 and X̃1 respectively;
(b) a disjoint union

⊔
p,q∈N K p,q of copies of K ; and

(c) a bijective function ϕ : N × N −→ N × N, (p, q) 7→ (r, s) (given by the group action of G0 ∗F G1 on Z̃ ), so that
for each p, q ∈ N, Γ × {0} ⊂ K p,q is being glued to X̃0,p via a lift f̃ 0

p,q : Γ × {0} −→ X̃0,p of the map f0, and

Γ × {1} ⊂ K p,q is being glued to X̃1,r via a lift f̃ 1
r,s : Γ × {1} −→ X̃1,r of the map f1.

Next, for each copy of X̃ i , i = 0, 1, in Z̃ (written as X̃0,p or X̃1,r ), we take one of the maps f̃ i
λ,µ : Γ × {i} −→ X̃ i

and observe that this map is nullhomotopic so we can replace it (up to homotopy) with a constant map gi
λ,µ :

Γ × {i} −→ X̃ i with Im gi
λ,µ ⊂ Im f̃ i

λ,µ, and we do this equivariantly using the group action of Gi on X̃ i . Since this
action is properly discontinuous, the collection of all these homotopies gives rise to a proper homotopy equivalence
between Z̃ and a new 2-dimensional CW-complex W obtained from a collection of copies of K and a collection of
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copies of X̃0 and X̃1 by gluing each copy of Γ × {i} to the corresponding copy of X̃ i via the bijection ϕ and the new
maps gi

λ,µ, i = 0, 1.
We will now manipulate the CW-complex K as follows. First, let K ′ be the CW-complex obtained from K by

shrinking to a point v × {i} each copy T × {i} (i ∈ I ) of a maximal tree T ⊂ Ỹ ′
⊂ K . Next, we take K ′′ to be

the CW-complex obtained from K ′ by identifying the subcomplexes Γ × {i}/T × {i}, i = 0, 1, to a (different) point
which we will denote by [v × {0}] and [v × {1}]. Note that K ′′ has a copy of Ỹ ′/T as a subcomplex. Since Ỹ ′/T
is compact and simply connected, it follows from [14, Proposition 3.3] that Ỹ ′/T is homotopy equivalent to a finite
bouquet of 2-spheres ∨α∈A S2 (which we may regard as a connected 2-dimensional CW-complex with no 1-cells).
Moreover, we may assume that this homotopy equivalence is given by a cellular map Ỹ ′/T −→ ∨α∈A S2 so that
the 1-skeleton Γ/T of Ỹ ′/T is mapped to the wedge point. Finally, taking into account this homotopy equivalence,
it is not difficult to see that K ′′ is homotopy equivalent to the CW-complex K̂ obtained from the disjoint union of a
finite bouquet ∨α∈A∪B S2 (where Card(B) = 2 rank(π1(Γ )) and the unit interval I by identifying 1

2 ∈ I with the
wedge point, so that I ⊂ K̂ would correspond to the subcomplex v × I ⊂ K ′ and 0, 1 ∈ I would correspond to
[v×{0}], [v×{1}] ∈ K ′′. Notice that K̂ thickens to a 3-manifold P ↘ K̂ containing 3-dimensional 1-handles H and
H ′ (with a free end face for each of them) corresponding to the edges [0, 1

2 ], [ 1
2 , 1] ⊂ I ⊂ K̂ respectively.

According to the above, one can see that the CW-complex W (proper homotopy equivalent to Z̃ ) is in turn proper
homotopy equivalent to the quotient space obtained from the following data:

(a) a disjoint union
⊔

p∈N X̃0,p of copies of X̃0 together with a locally finite sequence of points {x p
q }q∈N ⊂ X̃0,p, for

each p ∈ N, corresponding to the images of the constant maps g0
p,q : Γ × {0} −→ X̃0,p considered above in the

construction of W ;
(b) a disjoint union

⊔
r∈N X̃1,r of copies of X̃1 together with a locally finite sequence of points {yr

s }s∈N ⊂ X̃1,r , for
each r ∈ N, corresponding to the images of the constant maps g1

r,s : Γ × {1} −→ X̃1,r from the construction of
W ;

(c) a disjoint union
⊔

p,q∈N K̂ p,q of copies of K̂ ; and

(d) the bijective function ϕ : N × N −→ N × N, (p, q) 7→ (r, s), so that 0 ∈ I ⊂ K̂ p,q is being identified with
x p

q ∈ X̃0,p and 1 ∈ I ⊂ K̂ p,q is being identified with yr
s ∈ X̃1,r ((r, s) = ϕ(p, q)), for each p, q ∈ N.

We now follow an argument similar to the proof of ([1, Lemma 3.2]). Fix proper homotopy equivalences
h : X̃0 −→ M and h′

: X̃1 −→ N , where we now denote M0 by M and M1 by N . Given the above data,
we set A = N × N and consider maps i : A −→

⊔
p∈N X̃0,p, i ′ : A −→

⊔
r∈N X̃1,r given by i(p, q) = x p

q

and i ′(p, q) = yr
s , where (r, s) = ϕ(p, q). It is easy to check that i and i ′ are proper cofibrations, as the

corresponding sequences of points are locally finite. Next, we take exhaustive sequences {Ap
m}m∈N and {Br

n}n∈N of
copies Mp and Nr of the 3-manifolds M and N respectively by compact submanifolds, and define proper cofibrations
j : A −→

⊔
p∈N Mp, j ′ : A −→

⊔
r∈N Nr as follows. Given (p, q) ∈ A and the proper homotopy equivalences

h p = h : X̃0,p −→ Mp, h′
r = h′

: X̃1,r −→ Nr (with (r, s) = ϕ(p, q)), we take m(q), n(s) ∈ N to be the least
natural numbers such that h p ◦ i(p, q) 6∈ Ap

m(q) ⊂ Mp and h′
r ◦ i ′(p, q) 6∈ Br

n(s) ⊂ Nr . Then, using Proposition 2.1,

we define j (p, q) and j ′(p, q) to be points j (p, q) = ap,q ∈ ∂Mp − Ap
m(q) and j ′(p, q) = br,s ∈ ∂Nr − Br

n(s) so
that (i) j, j ′ are one-to-one maps (note that h, h′ need not be one-to-one); and (ii) ap,q and h p ◦ i(p, q) (resp. br,s and
h′

r ◦ i ′(p, q)) are in the same path component of Mp − Ap
m(q) (resp. Nr − Br

n(s)). Notice that j and j ′ are proper maps
by construction. Consider now maps

G :

⊔
p∈N

X̃0,p

× {0} ∪ (i(A)× I ) −→

⊔
p∈N

Mp

H :

(⊔
r∈N

X̃1,r

)
× {0} ∪

(
i ′(A)× I

)
−→

⊔
r∈N

Nr

with G|X̃0,p×{0}
= h p = h and H |X̃1,r ×{0}

= h′
r = h′ (p, r ∈ N), and so that αp,q = G|i(p,q)×I (resp.

βr,s = H |i ′(p,q)×I ) is a path in Mp − Ap
m(q) from h p ◦ i(p, q) to ap,q (resp. a path in Nr − Br

n(s) from h′
r ◦ i ′(p, q) to

br,s). Observe that G and H are proper maps, since h, h′, j and j ′ are proper. By the Homotopy Extension Property,
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the maps G, H extend to proper maps

Ĝ :

⊔
p∈N

X̃0,p

× I −→

⊔
p∈N

Mp, Ĥ :

(⊔
r∈N

X̃1,r

)
× I −→

⊔
r∈N

Nr

which yield commutative diagrams

A
i

zzvvvvvvvvv
j

##GGGGGGGGG

⊔
p∈N X̃0,p

ĥ //
⊔

p∈N Mp

A
i ′

zzvvvvvvvvv
j ′

##GGGGGGGGG

⊔
r∈N X̃1,r

ĥ′ // ⊔
r∈N Nr

where ĥ = Ĝ|
(
⊔

p∈N X̃0,p)×{1}
and ĥ′ = Ĥ |

(
⊔

r∈N X̃1,r )×{1}
are proper homotopy equivalences. Moreover, ĥ and ĥ′ are

proper homotopy equivalences under A, by ([2, Proposition 4.16]) (compare with [11], Chapter 6, section 5). Hence,
they induce a proper homotopy equivalence between the quotient space described above (proper homotopy equivalent
to W ) and the following 3-manifold obtained as the quotient space given by the data:

(a) the disjoint unions
⊔

p∈N Mp and
⊔

r∈N Nr of copies of the 3-manifolds M and N respectively;

(b) a disjoint union
⊔

p,q∈N Pp,q of copies of the compact 3-manifold P ↘ K̂ ; and
(c) the bijective function ϕ : N × N −→ N × N, (p, q) 7→ (r, s), so that for each p, q ∈ N, the free

ends of the corresponding 3-dimensional 1-handles Hp,q , H ′
p,q ⊂ Pp,q considered above are being identified

homeomorphically with small disks Dp,q ⊂ ∂Mp and D′
r,s ⊂ ∂Nr about the points ap,q and br,s respectively.

In the case of an HNN-extension G ∗F = 〈G, t; t−1ψ0(ai )t = ψ1(ai ), 1 ≤ i ≤ N 〉 (with monomorphisms
ψi : F −→ G, i = 0, 1), let X be a compact 2-polyhedron with π1(X) ∼= G and whose universal cover has the proper
homotopy type of a 3-manifold, and let fi : ∨

N
i=1 S1

−→ X (i = 0, 1) be cellular maps so that Im fi∗ ⊆ π1(X)
corresponds to the subgroup Im ψi ⊆ G. Let Y be the 2-dimensional CW-complex constructed as above and consider
the adjunction space Z = Y ∪ f0×{0}∪ f1×{1} X , with π1(Z) ∼= G ∗F . Then, the proof goes just as the one given above
for the amalgamated free product. �
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