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Abstract

In this paper, we show that the class of all properly 3-realizable groups is closed under amalgamated free products (and HNN-
extensions) over finite groups. We recall that G is said to be properly 3-realizable if there exists a compact 2-polyhedron K with
71(K) = G and whose universal cover K has the proper homotopy type of a 3-manifold (with boundary).
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

We are concerned with the behavior of the property of being properly 3-realizable (for finitely presented groups)
with respect to the basic constructions in Combinatorial Group Theory; namely, amalgamated free products and
HNN-extensions. Recall that a finitely presented group G is said to be properly 3-realizable if there exists a compact
2-polyhedron K with 11 (K) = G and whose universal cover K has the proper homotopy type of a 3-manifold. It is
worth mentioning that the property of being properly 3-realizable has implications in the theory of cohomology of
groups, in the sense that if G is properly 3-realizable then for some (equivalently any) compact 2-polyhedron K with
m1(K) = G we have HCZ(IZ ; Z) free abelian (by manifold duality arguments), and hence so is H 2(G; ZG) (see [9]). It
is a long standing conjecture that H2(G; ZG) be free abelian for every finitely presented group G. In [1] it was shown
that the property of being properly 3-realizable is preserved under amalgamated free products (HNN-extensions) over
finite cyclic groups. See also [3.,4,7] to learn more about properly 3-realizable groups and related topics. In this paper,
we continue along the lines of [1]. Our main result is :

Theorem 1.1. The class of all properly 3-realizable groups is closed under amalgamated free products (and HNN-
extensions) over finite groups.
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This generalizes to show that the fundamental group of a finite graph of groups with properly 3-realizable vertex
groups and finite edge groups is properly 3-realizable, since such a group can be expressed as a combination of
amalgamated free products and HNN-extensions of the vertex groups over the edge groups.

Recall that, given a finitely presented group G and a compact 2-polyhedron K with 771 (K) = G and K as universal
cover, the number of ends of G is the number of ends of K which equals 0, 1, 2 or oo [6] (see also [8,13]). The 0-ended
groups are the finite groups and the 2-ended groups are those having an infinite cyclic subgroup of finite index, and
they are all known to be properly 3-realizable (see [1]). Note that Stallings’ Structure Theorem [12] characterizes
those groups G with more than one end as those which split as an amalgamated free product (or an HNN-extension)
over a finite group (see also [13,8]). In addition, Dunwoody [5] showed that this process of further splitting G must
terminate after finitely many steps.

Corollary 1.2. In order to show whether or not all finitely presented groups are properly 3-realizable it suffices to
look among those groups which are 1-ended.

2. Main result

The purpose of this section is to prove Theorem 1.1. We will make use of the following result:

Proposition 2.1 ([1, Proposition 3.1]). Let M be a manifold of the same proper homotopy type of a locally compact
polyhedron K with dim(K) < dim(M). Then, any Freudenthal end € € F (M) can be represented by a sequence of
points in oM.

Proof of Theorem 1.1. Let Go, G| be properly 3-realizable groups and F be a finite group with presentation
(a1, ...,an;r1,...,ry). Consider monomorphisms ¢; : F —> G; (i = 0,1), and denote by Go*xr G1 =
(Go, G1;90(ai) = ¢1(a;),1 < i < N) the corresponding amalgamated free product. Let X, X; be compact
2-polyhedra with 1 (X;) = G; and such that their universal covers have the proper homotopy type of 3-manifolds
My, M respectively. Let L = VlNzl S! and fi : L — X; (i = 0, 1) be cellular maps such that Im f;, < 7{(X;)
corresponds to the subgroup Im ¢; C G;. We take the standard 2-dimensional CW-complex Y’ associated with
the above presentation of F, i.e., Y’ has one 1-cell ¢; for each generator ¢; (1 < i < N), all of them sharing the
only vertex in ¥’, and one 2-cell d; for each relation r; (1 < j < M) attached via a map S' — VI ¢; which
‘spells’ the relation r;. Consider the adjunction spaces ¥ = (\/N ej) x 1 U(vN enx(} 1Y " (homotopy equivalent

to Y)and Z = YU)‘OX{O}UJ‘|><{1}(XO U X1). By van Kampen’s Theorem, Z is a compact 2-polyhedron with
m1(Z) = Goxp Gq. Let Z be the universal cover of Z with covering map p : 7Z —> Z. Then, p_l(X ) consists
of a disjoint union of copies of the universal cover X, of X, since the inclusion X; <> Z induces a monomorphism
G; — Go*f G| between the fundamental groups, i = 0, 1 (see [10]). On the other hand, let I be a connected
component of p‘l(le=1 e;) C p Y’ and Y’ be the connected component of p~ (Y containing I'. Observe
that ¥’ is a copy of the universal cover of Y’ (which is compact), as the inclusion ¥’ < Z induces a monomorphism
F — Goxfr G1. Then 1t is easy to see that p~1(Y) consists of a disjoint union of copies of the compact CW-complex
=I"xDHVUp, x(d } ’. Thus, Z comes together with the following data (see [13]):

(a) the disjoint unions |_| pEN 5(0, p and LI, eN X 1, of copies of f(o and X 1 respectively;

(b) a disjoint union | |, .y Kp,q of copies of K and
(c) abijective functiong : Nx N — N x N, (p,q) — (r s) (given by the group action of Go *r G1on Z) so that
foreach p,q € N, I' x {0} C K, 4 is being glued to Xo p via a lift f[7 g I x {0} — XO p of the map fo, and

I' x {1} C K 4 is being glued to ler via a lift frfs I x {1} — ler of the map f7.

Next, for each copy of f(,-, i=0,1,in 7 (written as f(o,p or )~(1,r), we take one of the maps f;‘ Wt I'x{i} — f(i
and observe that this map is nullhomotopic so we can replace it (up to homotopy) with a constant map gi P
I' x {i} — X; with Im gi , CIm f)f w and we do this equivariantly using the group action of G; on X;. Since this
action is properly discontinuous, the collection of all these homotopies gives rise to a proper homotopy equivalence
between Z and a new 2-dimensional CW-complex W obtained from a collection of copies of K and a collection of
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copies of X and X by gluing each copy of I x {i} to the corresponding copy of X; via the bijection ¢ and the new
maps gi’ﬂ,i =0,1.

We will now manipulate the CW-complex K as follows. First, let K’ be the CW-complex obtained from K by
shrinking to a point v x {i} each copy T x {i} (i € I) of a maximal tree T C Y' C K. Next, we take K" to be
the CW-complex obtained from K’ by identifying the subcomplexes I x {i}/T x {i},i = 0, 1, to a (different) point
which we will denote by [v x {0}] and [v x {1}]. Note that K” has a copy of Y’/T as a subcomplex. Since Y’/ T
is compact and simply connected, it follows from [14, Proposition 3.3] that Y’ /T is homotopy equivalent to a finite
bouquet of 2-spheres Vye4 S* (which we may regard as a connected 2-dimensional CW-complex with no 1-cells).
Moreover, we may assume that this homotopy equivalence is given by a cellular map Y’ /T —> Vgea S? so that
the 1-skeleton I/ T of Y/ T is mapped to the wedge point. Finally, taking into account this homotopy equivalence,
it is not difficult to see that K” is homotopy equivalent to the CW-complex K obtained from the disjoint union of a
finite bouquet Vge 4B S2 (where Card(B) = 2 rank(;r{ (")) and the unit interval I by identifying 5 € I with the
wedge point, so that I C K would correspond to the subcomplex v x I C K "and 0, 1 € I would correspond to
[v x {0}], [v x {1}] € K”. Notice that K thickens to a 3-manifold P AV K containing 3-dimensional 1-handles H and
H'’ (with a free end face for each of them) corresponding to the edges [0, 2] [ lcIckK respectively.

According to the above, one can see that the CW-complex W (proper homotopy equivalent to Z)is in turn proper
homotopy equivalent to the quotient space obtained from the following data:

(a) a disjoint union |_| peN }?0, p of copies of X together with a locally finite sequence of points {x,f Jgen C Xo, p» for
each p € N, corresponding to the images of the constant maps gg’ g - L' x {0} — Xo,, considered above in the
construction of W; y 3 ~

(b) a disjoint union | |,y X1, of copies of X together with a locally finite sequence of points {y};eny C X1, for
each r € N, corresponding to the images of the constant maps grl,s T x {1} — X 1, from the construction of
W

(c) adisjoint union | |, .oy Kp,q of copies of K; and R

(d) the bijactive function ¢ /:\N XN — NxN,(p,q) — (~r, s),sothat 0 € I C K, 4 is being identified with
x,f € Xopand 1 € I C K, , is being identified with y; € X1, ((r, s) = ¢(p, q)), foreach p,q € N.

We now follow an argument similar to the proof of ([1, Lemma 3.2]). Fix proper homotopy equivalences
h: Xg — Mandh : X | —> N, where we now denote Mo by M and M, by N. Given the above data
we set A = N x N and consider maps i : A — ||,y Xop,i' 1 A —> |_|reN X1, given by i(p,q) = xJ
and i"(p,q) = yl, where (r,s) = @(p,q). It is easy to check that i and i’ are proper cofibrations, as the
corresponding sequences of points are locally finite. Next, we take exhaustive sequences {A}},,cn and {B’},en of
copies M, and N, of the 3-manifolds M and N respectively by compact submanifolds, and define proper cofibrations
j:A— |_|peN My, j : A — | |.cn N» as follows. Given (p, g) € A and the proper homotopy equivalences
hy, =h: Xo, p —> M, h. =h: X1, — N, (with (r,s) = ¢(p, q)), we take m(q), n(s) € N to be the least
natural numbers such that h, o i(p, q) & A? y C Mp and h.oi'(p,q) & B}, C N;. Then, using Proposition 2.1,
we define j(p, g) and j'(p, q) to be points j(p, q) = apg € OM), — Af:l(q) and j'(p,q) = bys € AN, — BZ(S) SO
that (i) j, j’ are one-to-one maps (note that &, 4’ need not be one-to-one); and (ii) ap 4 and h, 0 i(p, q) (resp. b, s and
h,. oi’(p, q)) are in the same path component of M, — ) (resp. N, — Z( s)). Notice that j and j’ are proper maps
by construction. Consider now maps

m(q

m(q

|_| Xo.p | x {0} U (i(A) x I) — |_| M,

peN peN
H : <|_| 5(1,,> x {0}U (iI"(A) x I) — | | N,
reN reN

with G|X’O_,,x{0} = h, = h and H|)~( <o) = h, = k' (p,r € N), and so that a; = Gli(p,q)x1 (resp.
Br.s = Hli(p,q)x1) is apathin M), — (q) from h, 0 i(p, q) toapq (resp. a path in N, — r’l(s) from A} oi’(p, q) to
bys). Observe that G and H are proper maps, since i, k', j and j’ are proper. By the Homotopy Extension Property,
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the maps G, H extend to proper maps

6: |_|)~(o,p ><I—>|_|Mp, H: |_|)~(1,r ><I—>|_|N,
peN peN reN reN

which yield commutative diagrams

A A
~ hA - ],:/
I_IpeN XO,[’ |—|[JEN MP I_IreN Xl,r LlrEN Nr

where h = G |(|_| w Kopxll) and i’ = H |(LI « X1,)x(1) &re proper homotopy equivalences. Moreover, h and i’ are
PE s re ST

proper homotopy equivalences under A, by ([2, Proposition 4.16]) (compare with [11], Chapter 6, section 5). Hence,
they induce a proper homotopy equivalence between the quotient space described above (proper homotopy equivalent
to W) and the following 3-manifold obtained as the quotient space given by the data:

(a) the disjoint unions | |,y M) and ||, oy Ny of copies of the 3-manifolds ’A\/I and N respectively;

(b) a disjoint union |_| p.geN Pr.g of copies of the compact 3-manifold P \( K; and

(c) the bijective function ¢ : N x N — N x N, (p,q) +— (r,s), so that for each p,q € N, the free
ends of the corresponding 3-dimensional 1-handles H, ,, H, , C P, 4 considered above are being identified

P
homeomorphically with small disks D, C M, and D; ; C 3N, about the points a, , and b, 5 respectively.

In the case of an HNN-extension G xr = (G, t;t "Wo(ai)t = ¥i(a;),1 < i < N) (with monomorphisms
Yi: F— G,i =0,1),let X be acompact 2-polyhedron with 1 (X) = G and whose universal cover has the proper
homotopy type of a 3-manifold, and let f; : le: S!' — X (i = 0, 1) be cellular maps so that Im fi, € m(X)
corresponds to the subgroup Im y; € G. Let Y be the 2-dimensional CW-complex constructed as above and consider
the adjunction space Z = Y Uy x(ojuf; x{1) X, with 71 (Z) = G *r. Then, the proof goes just as the one given above
for the amalgamated free product. O
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