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1 Preliminaries

A selection of a given multivalued mapping F : X → Y with nonempty values
F(x) �= ∅, for every x ∈ X, is a mapping Φ : X → Y (in general, also multivalued)
which for every x ∈ X, selects a nonempty subset Φ(x) ⊂ F(x). When all Φ(x) are
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singletons, a selection is called singlevalued and is identified with the usual single-
valued mapping f : X → Y, { f (x)} = Φ(x). As a rule, we shall use small letters
f, g, h, φ, ψ, . . . for singlevalued mappings and capital letters F, G, H, Φ,Ψ, . . .

for multivalued mappings.
There exist a great number of theorems on existence of selections in the category

of topological spaces and their continuous (in various senses) mappings. However,
the citation index of one of them is by an order of magnitude higher than for any
other one: this is the Michael selection theorem for convex-valued mappings [67,
Theorem 3.2′′, (a) ⇒ (b)]:

Theorem 1.1 A multivalued mapping F : X → B admits a continuous singlevalued
selection, provided that the following conditions are satisfied:

(1) X is a paracompact space;
(2) B is a Banach space;
(3) F is a lower semicontinuous (LSC) mapping;
(4) For every x ∈ X, F(x) is a nonempty convex subset of B; and
(5) For every x ∈ X, F(x) is a closed subset of B.

Moreover, the reverse implication (b) ⇒ (a) in [67, Theorem3.2′′] states that a
T1-space X is paracompact whenever each multivalued mapping F : X → B with
properties (2)–(5) above, admits a continuous singlevalued selection.

If one identifies a multivalued mapping F : X → Y with its graph ΓF ⊂ X × Y
then the lower semicontinuity (LSC) of F means exactly the openness of the
restriction π1|ΓF : ΓF → X of the projection π1 : X × Y → X onto the
first factor. In more direct terms, lower semicontinuity of a multivalued mapping
F : X → Y between topological spaces X and Y means that the (large) preimage
F−1(U ) = {x ∈ X : F(x) ∩ U �= ∅} of any open set U ⊂ Y is an open subset of
the domain X . Applying the Axiom of Choice, we obtain:

Lemma 1.2 The following statements are equivalent:

(1) F : X → Y is a lower semicontinuous mapping;
(2) For each (x; y) ∈ ΓF and each open neighborhood U (y) there exists a local

singlevalued (not necessarily continuous) selection of F, say s : x ′ 
→ s(x ′) ∈
F(x ′) ∩ U (y), defined on some open neighborhood V (x).

Therefore, the notion of lower semicontinuity is by definition related to the notion
of selection. Symmetrically, if the (large) preimage F−1(A) = {x ∈ X : F(x)∩
A �= ∅} of any closed set A ⊂ Y is a closed subset of the domain X , then the
mapping F : X → Y is said to be upper semicontinuous (USC). Note that a more
useful definition of upper semicontinuity of F is that the (small) preimageF−1(U ) =
{x ∈ X : F(x) ⊂ U } of any open U ⊂ Y is an open subset of the domain X .

Let us now reformulate the other three principalMichael’s theorems on selections.

Theorem 1.3 [68] A multivalued mapping F : X → Y admits a continuous singl-
evalued selection, provided that the following conditions are satisfied:
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(1) X is a zero-dimensional (in dim-sense) paracompact space;
(2) Y is a completely metrizable space;
(3) F is a LSC mapping; and
(4) For every x ∈ X, F(x) is a closed subset of Y .

Theorem 1.4 [72] A multivalued mapping F : X → Y admits a compact-valued
USC selection H : X → Y , which in turn, admits a compact-valued LSC selection
G : X → Y (i.e. G(x) ⊂ H(x) ⊂ F(x), x ∈ X), provided that the following
conditions are satisfied:

(1) X is a paracompact space;
(2) Y is a completely metrizable space;
(3) F is a LSC mapping; and
(4) For every x ∈ X, F(x) is a closed subset of Y .

Theorem 1.5 [68] Let n ∈ N. A multivalued mapping F : X → Y admits a
continuous singlevalued selection provided that the following conditions are satis-
fied:

(1) X is a paracompact space with dimX ≤ n + 1;
(2) Y is a completely metrizable space;
(3) F is a LSC mapping;
(4) For every x ∈ X, F(x) is an n-connected subset of Y ; and
(5) The family of values {F(x)}x∈X is equi-locally n-connected.

A resulting selection of a given multivalued mapping F is practically always
constructed as a uniform limit of some sequence of approximate selections. A typical
difficult situation arises with the limit point (or the limit subset). Such a limit point
(or a subset) can easily end up in the boundary of the set F(x), rather than in the
set F(x), if one does not pay attention to a more careful construction of the uniform
Cauchy sequence of approximate selections.

In general, for an arbitrary Banach space B, there exists a LSC mapping
F :[0; 1] → B with convex (nonclosed) values and without any continuous sin-
glevalued selections (cf. [67, Example6.2] or [85, Theorem 6.1]). On the other hand,
every convex-valued LSC mapping of a metrizable domain into a separable Banach
space admits a singlevalued selection, provided that all values are finite-dimensional
[67, Theorem 3.1′′′]. Another kind of omission of closedness was suggested in [16,
73]. It turns out that such omission can be made over a σ -discrete subset of the
domain.

An alternative to pointwise omission of closedness is to consider some uniform
versions of such omission. Namely, one can consider closedness in a fixed subset
Y ⊂ B instead of closedness in the entire Banach space B. Due to a deep result of
van Mill, Pelant and Pol [79], existence of selections under such assumption implies
that Y must be completely metrizable, or in other words, a Gδ-subset of B.

Due to the Aleksandrov Theorem, each of Theorems 1.3, 1.4 and 1.5 remains
valid under a replacement of the entire completely metrizable range space by any of
its Gδ-subsets. However, what happens with Theorem 1.1 under such a substitution?
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What can one (informally) say concerning the links between the metric structure and
the convex structure induced on a Gδ-subset from the entire Banach space?

Thus, during the last two decades one of the most intriguing questions in the
selection theory was the following problem:

Problem 1.6 [74] Let Y be a convex Gδ-subset of a Banach space B. Does then
every LSC mapping F : X → Y of a paracompact space X with nonempty convex
closed values into Y have a continuous singlevalued selection?

In the next section we shall present some (partial) affirmative answers, as well as
the counterexample of Filippov [30, 31].

2 Solution of the Gδ-Problem

Summarizing the results below, the answer to the Gδ-problem is affirmative for
domains which are “almost” finite-dimensional, whereas the answer is negative for
domains which are essentially infinite-dimensional, for example, for domains which
contain a copy of the Hilbert cube.

For finite-dimensional domains X , the Gδ-problem has an affirmative solution
simply because the family of convex closed subsets of a Banach space is ELCn and
every convex set is Cn for every n ∈ N. Hence Theorem 1.5 can be applied. For a
finite-dimensional range B and moreover, for all finite-dimensional values closed in
Y ⊂ B , the problem is also trivial, because one can use the compact-valued selection
Theorem 1.4 and the fact that the closed convex hull of a finite-dimensional compact
space coincides with its convex hull.

As for ways of uniform omission of closedness in the range space let us first
consider the simplest case when Y = G is a unique open subset of a Banach space B.
Separately we extract the following well-known folklore result (it probably first
appeared in an implicit form in Corson and Lindenstrauss [20]).

Lemma 2.1 (Localization Principle) Suppose that a convex-valued mapping
F :X → Y of a paracompact domain X into a topological vector space Y admits a
singlevalued continuous selection over each member of some open covering ω of the
domain. Then F admits a global singlevalued continuous selection.

Taking for any x ∈ X and y ∈ F(x) ⊂ G, an arbitrary open ball D, centered
at y, such that the closure Clos(D) is a subset of G, and invoking the Localization
Principle we obtain:

Lemma 2.2 Given any paracompact space X and any open subset G of a Banach
space B, every LSC mapping F : X → G with nonempty convex values admits a
singlevalued continuous selection, whenever all values F(x) are closed in G.

Somewhat different approach can be obtained using the following:
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Lemma 2.3 For any compact subset K of a convex closed (in G) subset C of an
open subset G of a Banach space B, the closed (in B) convex hull Clos(conv(K ))

also lies in C.

Thus, as it was pointed out in [74, 88], one can affirmatively resolve the Gδ-
problem for an arbitrary intersection of countably many open convex subsets of B.

Lemma 2.4 Let {Gn}, n ∈ N, be a sequence of open convex subsets of a Banach
space and F : X → Y = ⋂

n Gn a LSC mapping of a paracompact space X
with nonempty convex values. Then F admits a singlevalued continuous selection,
whenever all values F(x) are closed in Y .

In fact, it suffices to pick a compact-valued LSC selection H : X → Y of the
mapping F (cf. Theorem 1.4). Then the multivalued mapping Clos(conv(H)) : x 
→
Clos(conv(H(x))) is a selection of the given mapping F and it remains to apply
Theorem 1.1 to the LSC mapping Clos(conv(H)).

Michael and Namioka [77] characterized those convex Gδ-subsets Y ⊂ B which
are stable with respect to taking closed convex hulls of compact subsets. Note that
they essentially used the construction of Filippov’s counterexample [30, 31].

Theorem 2.5 [77] Let Y ⊂ B be a convex Gδ-subset of a Banach space B. Then
the following statements are equivalent:

(1) If K ⊂ Y is compact then so is the closed (in Y ) convex hull of K ;
(2) For any paracompact space X, each LSC mapping F : X → Y with convex

closed (in Y ) values admits a continuous singlevalued selection;
(3) Same as (2) but with X assumed to be compact and metrizable.

Moreover, they observed that Theorem 2.5 remains valid for non-convex Y , pro-
vided that (1) is modified by also requiring that K ⊂ C for some closed (in Y )
convex subset C ⊂ Y . Hence, the equivalence (2) ⇔ (3) of Theorem 2.5 holds for
any Gδ-subset Y of a Banach space.

Returning to the restrictions for domains, recall that Gutev [35] affirmatively
resolved the Gδ-problem for domains X which are either a countably dimensional
metric space or a strongly countably dimensional paracompact space. In fact, he
proved that in both cases under the hypotheses of the problem, the existence of a
singlevalued continuous selection is equivalent to the existence of a compact-valued
USC selection. The latter statement is true, because each domain of such type can be
represented as the image of some zero-dimensional paracompact space under some
closed surjection with all preimages of points being finite.

In 2002, Gutev and Valov [43] obtained a positive answer for domains with the
so-called C-property. They introduced a certain enlargement of the original map-
ping F . Roughly speaking, they defined Wn(x) as the set of all y ∈ Y = ⋂

n∈N Gn

which are closer to F(x) than to B\Gn . It turns out that each of the mappings Wn

has an open graph and all of its values are contractible.
Applying the selection theorem of Uspenskii [110] for C-domains, one can first

find selections for each Wn and then for the pointwise intersections
⋂

Wn(x) (for
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details cf. [43]). Their technique properly works even for arbitrary (non-convex)
Gδ-subsets Y ⊂ B. Unfortunately, such a method does not work outside the class of
C-domains, because Uspenskii’s theorem gives a characterization of theC-property.

This was the reason why we stated the following problem in our previous survey:

Problem 2.6 [88] Are the following statements equivalent:

(1) X is a C-space.
(2) Each LSC mapping F : X → Y to a Gδ-subset of Y of a Banach space B with

convex closed (in Y ) values admits a continuous singlevalued selection.

Karassev has resolved this problem for weakly infinite-dimensional compact
domains.

Theorem 2.7 [53] Let X be a compact Hausdorff space and suppose that property
(2) above holds. Then X is weakly infinite-dimensional.

Observe that the (non)coincidence of the classes of C-spaces and weakly infinite-
dimensional spaces is one of the oldest and still unsolved problems in dimension
theory. The advantage of compact spaces is that in this case there is a set of various
criteria for weak infinite-dimensionality. In particular, Karassev [53] used the fact
that a compact space X is weakly infinite-dimensional if and only if for any mapping
f :X → Q to the Hilbert cube there exists a mapping g:X → Q such that f (x) �=
g(x), for all x ∈ X .

Ending with the affirmative answers, let us recall that in our previous survey
we directly suggested (cf. p. 427 in [88]) the area for finding a counterexample.
In fact, having Lemma 2.4, one needs to find a convex Gδ-subset Y of a Banach
space B, such that Y is not an intersection of countably many open convex sets. Such
a situation in fact, appeared inmeasure theory: for example in the compactum P[0, 1]
of probability measures on the segment [0, 1] such is the convex complement of any
absolutely continuous measure. To extract the main idea of Filippov’s construction
we introduce a temporary notion.

Definition 2.8 A convex compact subset K of a Fréchet space B has theWeizsäcker-
Filippov property (WF-property) if there exists:

(1) Aproper convexGδ-subsetY ⊂ K which contains the set extr(K ) of all extreme
points of K ; and

(2) A LSC convex-valued mapping R : K → K such that R(x) ∩ extr(K ) �= ∅,
x ∈ K and R(convA) = convA, for any finite subset A ⊂ extr(K ).

Lemma 2.9 If K ⊂ B has the WF-property then the mapping F : K → Y defined
by F(x) = ClosY (R(x) ∩ Y ), x ∈ K , is a counterexample to the Gδ-problem.

Proof All values F(x) are nonempty because R(x)∩extr(K ) �= ∅ and extr(K ) ⊂ Y .
Clearly, F(x) are convex closed (in Y ) sets. The mapping x 
→ R(x) ∩ Y is LSC
because R is LSC and Y is dense in K . Hence F : K → Y is LSC because pointwise-
closure operator preserves lower semicontinuity.
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Suppose to the contrary, that f : K → Y is a singlevalued continuous
selection of F . Then f (x) = x, provided that x is an extreme point. More-
over, if x, y ∈ extr(K ) then f ([x, y]) ⊂ F([x; y]) = [x, y] and f ([x, y]) ⊃
[x, y], since f (x) = x , f (y) = y, and because of the continuity of f . Similarly,
f (conv{x, y, z}) = conv{x, y, z} for each extreme points x, y, z, and so on. Hence,
f (conv(extr(K ))) = conv(extr(K )) ⊂ K is a dense subset of K and f (K ) is also
dense in K . However, f (K ) is compact since it is the image of a compact set K under
the continuous mapping f . Therefore f (K ) = K which contradicts with f (K ) ⊂ Y
and Y �= K . ��
Theorem 2.10 (1) The space P[0; 1] of all probability measures on [0; 1] has the

WF-property.
(2) In any Banach space there exists a convex compact subset K with the

WF-property.

Proof By the Keller theorem, the convex compact space P[0; 1] can be affinely
embedded into the Hilbert space, hence into every Banach space with a Schauder
basis (hence into every Banach space). Hence (1) implies (2).

In order to check (1), pick an arbitrary absolutely continuous measure μ ∈ K =
P[0; 1], for example the Lebesgue measure. For every m ∈ K\{μ}, denote by lm,μ

the infinite ray from the point m through the point μ. Define the convex complement
of μ by setting

Y = {m ∈ K\{μ} : lm,μ ∩ K = [m;μ]}.

Clearly Y is convex. For every point x ∈ [0; 1], the Dirac measure δx belongs to Y
because (1 − t)δx + tμ, t > 1 is not a probability measure. Hence extr(K ) ⊂ Y .
Next,

Y =
∞⋂

n=1

{m ∈ K : (1 − n−1) · δx + n−1 · μ /∈ K }

and this is why Y is a proper convex Gδ-subset of K .
Finally, define R : K → K by setting R(m) = {m′ ∈ K : supp(m′) ⊂ supp(m)},

where supp denotes the support of the probability measure, i.e. the set of all points
x ∈ [0; 1] with the property that the value of the measure is positive over each
neighborhood of the point. It is a straightforward verification that R : K → K is a
LSC convex-valued mapping and that the equality

R
(∑

λi · δxi

)
= conv{δx1, . . . , δxn }, xi ∈ [0; 1], λi ≥ 0,

∑
λi = 1,

is true. ��
A version of the construction was proposed in [91] which (formally) avoids any

probability measures and works directly in the Hilbert cube Q = [0; 1]N. Here is a
sketch:

• X = {x ∈ Q : x1 = 1, xn = x2n + x2n+1, n ∈ N};
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• Y = {x ∈ X : sup{xnz−1
n : n ∈ N} = ∞}, where z ∈ X is arbitrarily chosen so

that limn→∞ z(n) = 0 and z(n) > 0 for all n; and
• F(x) = Φ(x) ∩ Y , where Φ : X → X is defined by

Φ(x) = {y ∈ X : yn = 0 whenever xn = 0}.

Let us temporarily say that natural numbers 2n and 2n+1 are sons of the number n,
which in turn, we shall call the father of such twins. Thus each natural number has
exactly 2 sons, 4 grandsons, etc. and the natural partial order, say ≺, immediately
arises on the setN. With respect to ≺, the setN can be represented as a binary tree T
and every x ∈ X is amapping x : T → [0; 1]with x1 = 1, xn = x2n+x2n+1, n ∈ N.
In other words, each x ∈ X defines some probability distribution on each nth level
of the binary tree T .

Hence even though all proofs in this construction can be performed directly in
the Hilbert cube, the set X is in fact, a “visualization” of the set of all probability
measures of the Cantor set and details of the proof look similar to those above.

In conclusion, we mention the paper [32] which demonstrated the essentiality of
the Gδ-assumption for Y in Theorem 2.5 of Michael and Namioka. Briefly, it was
proved that for every countable A ⊂ [0; 1], the set Y = PA = {μ ∈ P[0; 1] :
supp(μ) ⊂ A} has the property (1) from Theorem 2.5. Then by using sets of prob-
ability measures with various countable supports, the authors constructed a convex
subset Y ⊂ R

2 × l2 with property (1) and without property (2) from Theorem 2.5.
Note that, as it was proved by V. Kadets, the property (1) from Theorem 2.5 is
equivalent to the closedness of Y ⊂ B being not only a convex set, but also a linear
subspace (cf. [75, Proposition 5.1]).

3 Selections and Extensions

There are intimate relations between selections and extensions and typically they
appear together: if A ⊂ X and f : A → Y then f̂ : X → Y is an extension of
f if and only if f̂ is a selection of multivalued mapping FA : X → Y defined by
setting FA(x) = { f (x)}, x ∈ A, and FA(x) = Y otherwise. Thus as a rule, each fact
concerning existence of singlevalued selections implies some result on extensions.
In the other direction, many basic theorems (or some of their special cases) about
extensions are special cases of some appropriate selection theorems.

However, extension theory is certainly not simply a subtheory of selection the-
ory: specific questions and problems need specific ideas and methods. For example,
selection Theorem 1.1 implies that every continuous map f : A → Y from a closed
subset A of a paracompact domain X into a Banach space B has a continuous exten-
sion f̂ : X → B with f (X) ⊂ Clos(conv( f (A))). However, the Dugundji extension
theorem states somewhat different: every continuous map f : A → Y from a closed
subset A of ametric (or stratifiable) domain X into a locally convex topological vector
space B has a continuous extension f̂ : X → B with f (X) ⊂ conv( f (A)). Besides
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the differences in assumptions and conclusions, these two “similar” theorems are
proved by almost disjoint techniques: a sequential procedure of some approxima-
tions in the Michael selection theorem and a straightforward answer by a formula in
Dugundji extension theorem. It seems that the only common point are continuous
partitions of unity.

To emphasize the difference on a more nontrivial level, let us recall that for a wide
class of non-locally convex, completely metrizable, topological vector spaces it was
proved in [26] that all such spaces are absolute retracts (with respect to all metrizable
spaces), abbreviated as AR′s. At the same time, at present there is no known example
of a non-locally convex, completely metrizable, topological vector space E which
can be successfully substituted instead of Banach (or Fréchet) spaces B into the
assumption of the Michael selection Theorem 1.1. In particular, Dobrowolski stated
(private communication) the following:

Problem 3.1 Is the space l p, 0 < p < 1, of all p-summable sequences of reals
an absolute selector, i.e. is it true that for every paracompact space (metric space,
compact space) and every LSC mapping F : X → l p with convex closed values,
there exists a continuous singlevalued selection of F?

During the last decade one of the most interesting facts concerning relations
between selections and extensions was obtained by Dobrowolski and van Mill [27].
To explain their main results recall that g : X → Y is said to be an ε-selection of a
multivalued mapping F : X → Y into a metric space (Y ; d) if dist(g(x), F(x)) < ε.
Dobrowolski and vanMill used the term ε-near selection for the case when the strong
inequality dist(g(x), F(x)) < ε is replaced by dist(g(x), F(x)) ≤ ε. Clearly, for
closed-valued mappings 0-near selections are exactly selections.

Definition 3.2 A convex subset Y of a vector metric space (E; d) has the finite-
dimensional selection property (resp. finite-dimensional near selection property) if
for every metrizable domain X and every LSC mapping F : X → Y with all
compact convex and finite-dimensional values F(x) ⊂ Y, x ∈ X , there exists
a continuous singlevalued selection of F (resp., for every ε > 0 there exists a
continuous singlevalued ε-near selection of F).

Combining 3.3, 4.1, 5.4 and 6.1 from [27] we formulate the following:

Theorem 3.3 [27] For any convex subset Y of a vector metric (not necessarily,
locally convex) space (E; d) the following statements are equivalent:

(1) Y is an AR;
(2) Y has the finite-dimensional near selection property.

As for a specific selection theorem we cite:

Theorem 3.4 [27]Let Y be a convex subset of a vector metric (not necessarily locally
convex) space (E; d). Then for every metrizable domain X and every compact-valued
and convex-valued LSC mapping F : X → Y with max{dimF(x) : x ∈ X} < ∞,
there exists a continuous singlevalued selection f of F.
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Continuous singlevalued selections f of a given multivalued mapping F are usu-
ally constructed as uniform limits of sequences of certain approximations { fε}, ε → 0,
of F . Practically all known selection results are obtained by using one of the following
two approaches for a construction of { fn = fεn }, εn → 0. In the first (and the most
popular) one, the method of outside approximations, mappings fn are continuous
εn-selections of F , i.e. fn(x) all lie near the set F(x) and all mappings fn are contin-
uous. In the second one, the method of inside approximations, fn are δn-continuous
selections of F , i.e. fn(x) all lie in the set F(x), however fn are discontinuous.

We emphasize that Theorem 3.4 is proved by using the method of inside approx-
imation. This is a rare situation: all previously known to us examples are [10, 70,
78, 85]. However, for non-locally convex range spaces it is an adequate approach
since for such spaces Y the intersections of convex subsets with balls are in gen-
eral, non-convex. Also, compactness is not preserved under the convex closed hull
operation.

It is very natural to try to substitute dimF(x) < ∞, x ∈ X, in Theorem 3.4
instead of max{dimF(x) : x ∈ X} < ∞. It turns out that this is a futile attempt.
Namely, 5.6 in [27] implies that Theorem 3.4 becomes false with such a change of
the dimensional restriction.

Theorem 3.5 [27] There exist a linear metric vector space E and a LSC mapping
F : Q → E from the Hilbert cube Q such that E contains the tower {En} of closed
subsets with the following properties:

(1) Q = ⋃
Qn, where Qn = F−1(En);

(2) The restrictions F |Qn satisfy all assumptions of Theorem 3.4; and
(3) For arbitrary choices of continuous selections fn : Qn → E of F |Qn their

pointwise limit f = limn fn is not a continuous mapping, whenever such a
pointwise limit exists.

Note that due to the Localization principle (Lemma 1.2) the global assumption
max{dimF(x) : x ∈ X} < ∞ in Theorem 3.4 can be replaced by its local version
max{dimF(x) : x ∈ U (x)} < ∞ for some neighborhood U (x) of x . Two slight
generalizations of Theorem 3.4were presented in [91]: in the first one Y was replaced
by a Gδ-subset and in the second the closedness restriction for values F(x) was
omitted.

Theorem 3.6 [91]

(1) Let F : X → Y be a LSC convex-valued mapping of a paracompact domain X
into a Gδ-subset Y of a completely metrizable linear space E. Then F admits
a singlevalued continuous selection provided that the values F(x) are closed
in Y and that for every x ∈ X there exists a neighborhood U (x) such that
max{dimF(x ′) : x ′ ∈ U (x)} < ∞.

(2) Let F : X → E be a LSC convex-valued mapping of a metrizable domain
X into a completely metrizable linear space E. Then F admits a singlevalued
continuous selection provided that for every x ∈ X there exists a neighborhood
U (x) such that max{dimF(x ′) : x ′ ∈ U (x)} < ∞.
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It is interesting to note that the metrizability of the domain in Theorem 3.6 (2) (in
comparison with the paracompactness in (1)) is an essential restriction because the
proof is based on the density selection theorem of Michael [69] which works exactly
for metrizable spaces.

Under dimensional restrictions for the domain, not for the values of the mapping,
van Mill [78, Corollary 5.2] obtained the following:

Theorem 3.7 [78] Let X be a locally finite-dimensional paracompact space and Y
a convex subset of a vector metric space. Then each LSC mapping F : X → Y with
complete convex values admits a singlevalued continuous selection.

On the other hand, Example5.3 [27] shows that in general, Theorem 3.7 does not
hold for domains which are unions of countably many finite-dimensional compacta.
However, if in the assumptions of Theorem 3.7 one passes toC-domains (which look
as approximately finite-dimensional spaces) then exact selections can be replaced by
ε-selections [27, Theorem 6.3].

Theorem 3.8 [27] Let X be a C-space and Y a convex subset of a vector metric
space. Then each LSC mapping F : X → Y with convex values admits a singlevalued
continuous ε-selections for any ε > 0.

In a voluminous paper, Gutev, Ohta and Yamazaki [42] systematically used selec-
tions and extensions for obtaining the criteria for various kinds of displacement of
a subset in the entire space. Recall that A ⊂ X is C-embedded in X (resp., C∗-
embedded in X ) if every continuous (resp., every bounded continuous) function
f : A → R has a continuous extension to entire X . Below are some of their typical
results, Theorems 4.3, 4.6, and 6.1.

Theorem 3.9 [42] For a subset A of X the following statements are equivalent:

(1) A is C∗-embedded in X;
(2) For every Banach space B, every continuous mapping F : X → B with

compact convex values F(x) and every continuous selection g : A → B of the
restriction F |A, there is a continuous extension f : X → B of g which is also
a selection of F;

(3) The same as (2), but without convexity of F(x) and without f being a selection
of F;

(4) For every cardinal λ, every continuous maps g, h : X → c0(λ) with g(a) ≤
h(a), a ∈ A, and every f : A → c0(λ) which separates g|A and h|A, there
exists a continuous extension f̂ : X → c0(λ) of f .

Here c0(λ) denotes the Banach space of all mappings x from λ to the reals such
that the sets {τ < λ : |x(τ )| ≥ ε} are finite for all ε > 0. Note that c0(1) = R and
c0(ℵ0) = c0.

Theorem 3.10 [42] For a subset A of X the following statements are equivalent:

(1) A is C-embedded in X;
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(2) For every Banach space B, every lower σ -continuous mapping F : X → B
with closed convex values F(x) and every continuous selection g : A → B of
the restriction F |A, there is a continuous extension f : X → B of g which is
also the selection of F;

(3) The same as (2), but without convexity of F(x) and without f being a selection
of F;

(4) For every cardinal λ, every continuous gn, hn : X → c0(λ), n ∈ N, with
lim inf gn(a) ≤ lim sup hn(a), a ∈ A, and every f : A → c0(λ) which
separates lim inf gn(a) and lim sup hn(a), there exists a continuous extension
f̂ : X → c0(λ) of f .

Here lower σ -continuity of a multivalued map means that it is the pointwise
closure of a union of countably many continuous compact-valued mappings. Yet
another characterization of C-embeddability can be formulated via mappings into
open convex subsets of a Banach spaces.

Theorem 3.11 [42] For a subset A of X the following statements are equivalent:

(1) A is C-embedded in X;
(2) For every Banach space B, every open convex Y ⊂ B, every lower σ -continuous

mapping F : X → Clos(Y ) with closed convex values F(x) and every con-
tinuous selection g : A → B of F |A with g−1(Y ) = A ∩ F−1(Y ), there is a
continuous extension f : X → B of g which is also the selection of F and
f −1(Y ) = F−1(Y );

(3) The same as (2), but with continuous compact-valued mapping F.

One more recent paper in which selections and extensions are simultaneously
studied is due to Michael [76]. Below we unify 3.1 and 4.1 from [76].

Theorem 3.12 [76] For a metrizable space Y the following statements are equiva-
lent:

(1) Y is completely metrizable;
(2) For every paracompact domain X and every LSC mapping F : X → Y with

closed values, there exists a LSC selection G : X → Y with compact values;
(3) For every closed subset A of a paracompact domain X and every continuous

g : A → Y , there exists a LSC mapping G : X → Y with compact values
which extends g;

(4) Similar to (2) but for USC selection H : X → Y with compact values;
(5) Similar to (3) but for USC extension H : X → Y with compact values.

The implication (5) ⇒ (1) is true in a more general case, namely when Y is
Čech-complete and X is a paracompact p-space [81, 83].

To finish the section we return once again to comparison of the Dugundji exten-
sion theorem and theMichael selection theorem. Arvanitakis [2] proposed a uniform
approach to proving both of these theorems.Heworkedwith paracompact k-domains.
Recall that a Hausdorff space X is called a k-space if closedness of A ⊂ X coincides
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with closedness of A ∩ K for all compact K ⊂ X . Below, completeness of a locally
convex vector space E means that the closed convex hull operation preserves the
compactness of subsets in E . Next, C(T ; E) denotes the vector space of all con-
tinuous mappings from a topological space T into E , endowed by the topology of
uniform convergence on compact subsets.

Theorem 3.13 [2] Let X be a paracompact k-space, Y a complete metric space, E
a locally convex complete vector space, and F : X → Y a LSC mapping. Then there
exists a linear continuous operator S : C(Y ; E) → C(X; E) such that

S( f )(x) ∈ Clos(conv( f (F(x)))), f ∈ C(Y ; E), x ∈ X.

The proof is based on study of regular exaves (extensions/averagings) opera-
tors but without any explicit use of probability measures and Milyutin mappings.
Recently, Valov [111] suggested a generalization of this theorem to the case of an
arbitrary paracompact domain. He extensively exploited in its full force the tech-
nique of functors Pβ and P̂ , averaging operators, Milyutin mappings, and so on. He
also used the universality of the zero-dimensional selection Theorem 1.3, i.e. the fact
obtained in [94] that Theorem 1.3 implies both Theorems 1.1 and 1.4.

Theorem 3.14 [111] Let X be a paracompact space, Y a complete metric space
and F : X → Y a LSC mapping. Then:

(1) For every locally convex complete vector space E there exists a linear operator
Sb : Cb(Y ; E) → Cb(X; E) such that

S( f )(x) ∈ Clos(conv( f (F(x)))), f ∈ C(Y ; E), x ∈ X,

and such that Sb is continuous with respect to the uniform topology and the
topology of uniform convergence on compact subsets;

(2) If X is a k-space and E is a Banach space then Sb can be continuously extended
(with respect to both topologies) to a linear operator S : C(Y ; E) → C(X; E)

with the property that S( f )(x) ∈ Clos(conv( f (F(x)))).

Therefore by taking Y = E = B to be a Banach space, F a mapping with
closed convex values and f = id|Y , one can see that S( f ) is a selection of
F : S(id)(x) ∈ Clos(conv(F(x))), x ∈ X.

Next, if A is a completely metrizable closed subspace of X , E a locally convex
complete vector space, and F = FA a mapping defined by F(x) = {x}, x ∈ A, and
F(x) = A, x ∈ X\A, then we see that Sb( f )(x) ∈ Clos(conv( f (F(x)))), for any
f ∈ Cb(A; E) and hence Sb( f )(x) = f (x), whenever x ∈ A. Therefore Sb( f ) is an
extension of f . Thus the result is on the one hand stronger than the Dugundji theorem
because X can be nonmetrizable, but on the other hand it is weaker because A should
be completely metrizable and the result relates to Cb(A; E), not to C(A; E).

As a corollary, the Banach-valued version of the celebrated Milyutin theorem can
be obtained:
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Theorem 3.15 [111] Let X be an uncountable compact metric space, K the Cantor
set and B a Banach space. Then C(X; B) is isomorphic to C(K ; B).

4 Selection Characterizations of Domains

Theorem 1.1 states that assumptions (1)–(5) imply the existence of selections of a
multivalued mapping F . Conversely, assumptions (2)–(5) together with existence
of selections imply the condition (1) that a domain X is a paracompact space. In
other words, Theorem 1.1 gives a selection characterization of paracompactness. By
varying the types of the range Banach spaces B, types of families of convex subsets
of B, types of continuity of F , etc. one can try to find a selection characterization of
some other topological types of domains. Originally, Michael [67] found such types
of characterization for normality, collectionwise normality, normality and countable
paracompactness, and perfect normality. Below we concentrate on recent results in
this direction.

Gutev, Ohta and Yamazaki [41] obtained selection characterizations for three
classes of domains inside the class of all λ-collectionwise normal spaces. Recall that
this property means that for each discrete family {Fγ }γ∈Γ of closed subsets with
|Γ | ≤ λ there is a discrete family {Gγ }γ∈Γ of open sets such that Fγ ⊂ Gγ . Note
that the equivalence of (1) and (2) in Theorem 4.1 was proposed by Michael [67]
(cf. the discussion concerning the proofs in Chap. II of [85]). We also observe that
(4) in Theorems 4.1, 4.2 and 4.3 resembles the classical Dowker separation theorem.

Theorem 4.1 [41] Let λ be an infinite cardinal. Then for any T1-space X the fol-
lowing statements are equivalent:

(1) X is λ−collectionwise normal;
(2) For every Banach space B of the weight less than or equal to λ and every LSC

mapping F : X → B whose values F(x) are convex compacta, or F(x) = B,
there exists a continuous singlevalued selection of F;

(3) Same as (2) but for the Banach space B = c0(λ);
(4) For every closed A ⊂ X and every singlevalued g, h : A → c0(λ) such that

g ≤ h, g is upper semicontinuous, and h is lower semicontinuous, there exists
a singlevalued continuous f : X → c0(λ) such that f |A separates g and h,
i.e. g ≤ f |A ≤ h.

Theorem 4.2 [41] Let λ be an infinite cardinal. Then for any T1-space X the fol-
lowing statements are equivalent:

(1) X is countably paracompact and λ-collectionwise normal;
(2) For every generalized c0(λ)-space B and every LSC mapping F : X → B with

values F(x) being convex compacta, or F(x) = B, and with |F(x)| > 1, x ∈
X, there exists a continuous singlevalued selection f of F such that f (x) is not
an extreme point of F(x), x ∈ X;
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(3) Same as (2) but for the Banach space B = c0(λ);
(4) Same as (4) in Theorem 4.1 but with strong inequalities g < h and g < f |A < h.

Theorem 4.3 [41] Let λ be an infinite cardinal. Then for any T1-space X the fol-
lowing statements are equivalent:

(1) X is perfectly normal and λ-collectionwise normal;
(2) For every generalized c0(λ)-space B and every LSC mapping F : X → B with

values F(x) being convex compacta, or F(x) = B, there exists a continuous
singlevalued selection f of F such that f (x) is not an extreme point of F(x),
whenever |F(x)| > 1;

(3) Same as (2) but for the Banach space B = c0(λ);
(4) Same as (4) in Theorem 4.1 but with strong inequalities g(x) < f (x) < h(x)

for all x ∈ A with g(x) < h(x).

One of the key ingredients of the proofs is the fact that for a closed-valued and
convex-valued mapping F, a selection avoiding all extreme points exists provided
that F admits two families of local disjoint selections. Certainly Theorems 4.1, 4.2
and 4.3 constitute a base for Theorems 3.9, 3.10 and 3.11 above.

In [41] authors stated the following question: Do Theorems 4.2 and 4.3 remain
valid if in (2) one replaces c0(λ)-space by an arbitrary Banach space B of weight
less than or equal to λ? Yamauchi answered this question in the affirmative.

Theorem 4.4 [117] Let λ be an infinite cardinal. Then for any T1-space X the
following statements are equivalent:

(1) X is countably paracompact and λ-collectionwise normal;
(2) For every Banach space B of weight less than or equal to λ, every LSC mapping

F : X → B with values F(x) being convex compacta, or F(x) = B and with
|F(x)| > 1, x ∈ X, there exists a continuous singlevalued selection f of F
such that f (x) is not an extreme point of F(x), x ∈ X.

Passing to λ-paracompactness, the following was proved in [117, Theorem 8]:

Theorem 4.5 Let λ be an infinite cardinal. Then for any T1-space X the following
statements are equivalent:

(1) X is normal and λ-paracompact;
(2) The same as (2) in Theorem 4.4 but with closed values F(x).

Considering λ = ℵ0 one observes that in the Michael selection criteria for X
being normal and countably paracompact one can assume that a selection f always
avoids extreme points of values of multivalued mapping F with |F(x)| > 1, x ∈ X .

Analogously, a domain X is perfectly normal and λ-paracompact if and only if
for every Banach space B with w(B) ≤ λ and every LSC mapping F : X → B with
convex closed values F(x) (not necessarily with |F(x)| > 1, x ∈ X ) there exists a
continuous singlevalued selection f of F such that f (x) is not an extreme point of
F(x), whenever |F(x)| > 1 (cf. [117]).
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Before stating one more result recall that normality of a covering ω means an
existence of a sequence ω1 = ω,ω2, ω3, . . . of coverings such that each ωn+1 is a
strong star refinement of ωn and that a space is called a λ− PF-normal space if each
its point-finite open coverings is normal. Yamauchi [115] characterized the class of
λ − PF-normal spaces.

Theorem 4.6 [115] Let λ be an infinite cardinal. Then for any T1-space X the
following statements are equivalent:

(1) X is λ − PF-normal;
(2) For every simplicial complex K with cardinality less than or equal to λ, every

simplex-valued LSC mapping F : X → |K | has a continuous singlevalued
selection.

An analogue of Theorem 4.6 for dimensional-like properties was also given in
[115].

Here |K | stands for a geometric realization of K , for example in the Banach space
l1(VertK ), where VertK is the set of vertices of K , and |K | is endowed with the metric
topology, induced by this embedding. In fact, the initial result here was a theorem of
Ivanšić and Rubin [51] that every simplex-valued mapping F : X → |K |w admits a
selection provided that F : X → |K |w is locally selectionable, where |K |w denotes
|K | endowed with the weak topology.

Yamauchi [114] proposed selection criteria for classes of realcompact spaces,
Dieudonné complete spaces and Lindelöf spaces. The starting point was the result
of Blum and Swaminatham [12] on selection characterization of realcompactness
in terms of the so-called S -fixed LSC mapping into a locally convex topological
vector space. To avoid specific notations we collect here only the results for Lindelöf
spaces.

Theorem 4.7 [114] For any regular space X the following statements are equiva-
lent:

(1) X is Lindelöf;
(2) For every completely metrizable space Y and every closed-valued LSC mapping

F : X → Y there exist compact-valued USC mapping H : X → Y and
compact-valued LSC mapping G : X → Y such that G(x) ⊂ H(x) ⊂ F(x),
x ∈ X and H(X) = ⋃{H(x) : x ∈ X} is separable;

(3) For every Banach space B and every LSC mapping F : X → B with closed
convex values there exists a continuous singlevalued selection f of F with
separable image f (X).

Next, we refer to our previous survey on selections to cite the Choban-Gutev-
Nedev conjecture.

Problem 4.8 [88] For every T1 space X the following statements are equivalent:

(1) X is countably paracompact and collectionwise normal;
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(2) For every Hilbert space H and every LSC mapping F : X → H with closed
convex values there exists a continuous singlevalued selection f of F .

The implication (2) ⇒ (1) is a standard exercise, while (1) ⇒ (2) was a hard
problem. During the last decade, in a series of papers, Shishkov successfully resolved
the problem step by step. Here is a short list of his results. First, he reduced the
situation to the case of bounded mappings F : X → Y , i.e. mappings with the
bounded in Y image F(X) = ⋃{F(x) : x ∈ X}.
Theorem 4.9 [102] For every countably paracompact space X and every normed
space Y the following statements are equivalent:

(1) For every LSC mapping from X to Y with closed convex values there exists a
continuous singlevalued selection;

(2) Same as (1) but for bounded LSC mappings.

Next, he solved the problem in the case of the domain X a σ -product of metric
spaces [103] and extended LSC mappings with normal and countably paracompact
domains over the Dieudonné completions of the domains [104]. Then he proved the
conjecture for domains which are hereditarily “nice” [105]:

Theorem 4.10 [105] Let X be a countably paracompact and hereditarily collec-
tionwise normal space, B a reflexive Banach space and F : X → B a LSC mapping
with convex closed values. Then there exists a continuous singlevalued selection f
of F.

In [106] Shishkov worked with a paracompactness-like restriction on domain.

Theorem 4.11 [106] Let X be a c-paracompact and collectionwise normal space,
B a reflexive Banach space, and F : X → B a LSC mapping with convex closed
values. Then there exists a continuous singlevalued selection f of F.

Note that X from the last theorem can be a nonparacompact space, and that
collectionwise normality plus (c)-paracompactness of domain is not in general, a
necessary restriction for existence of selections (cf. Nedev’s theorem for mappings
over ω1 [80]).

Then Shishkov [107] proved the following fact which, together with Theorem 4.9,
finally resolved Choban-Gutev-Nedev problem.

Theorem 4.12 [107] Let X be a collectionwise normal space, H a Hilbert space
and F : X → H a LSC mapping with convex closed and bounded values. Then there
exists a continuous singlevalued selection f of F.

We note that the proof essentially uses the geometric and analytical structure of a
Hilbert space. Thus for reflexive range spaces the problem is still open.

We end the section by recent results of Gutev andMakala [40]who have suggested
a characterization for classes of domains by using a controlled local improvement of
ε-selections up to a genuine selection.
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Theorem 4.13 [40] Let λ be an infinite cardinal. For any T1-space X the following
statements are equivalent:

(1) X is countably paracompact and λ-collectionwise normal;
(2) For every Banach space B with w(B) ≤ λ, every LSC mapping F : X → B with

values F(x) being convex compacta, or F(x) = B, every continuous ε : X →
(0;+∞) and every ε-selection fε : X → B of F, there exists a continuous
singlevalued selection f of F such that dist( f (x), fε(x) < ε(x), x ∈ X.

Similarly we have for normality:

Theorem 4.14 [40] For any T1-space X the following statements are equivalent:

(1) X is countably paracompact and normal;
(2) Same as (2) in Theorem 4.13 but for separable Banach spaces.

Note that the starting point of proofs in [40] was the following:

Theorem 4.15 [40] For any Banach space B the following statements are equiva-
lent:

(1) For every collectionwise normal domain X and every LSC F : X → B with
values F(x) being convex compacta, or F(x) = B there exists a continuous
selection f of F;

(2) Same as (1) but without possibility of F(x) = B.

5 Generalized Convexities

5.1. Roughly speaking, there exists an entire mathematical “universe” devoted to
various generalizations and versions of convexity. In our opinion, even if one simply
lists the titles of “generalized convexities” one will find as a minimum, nearly 20
different notions.

As for the specific situation with continuous selections perhaps two principal
approaches are really used here. With the inner point of view, one starts by intro-
ducing some type of “convex hull” operation and defines a convex set as a set which
is preserved by such an operation. Typical examples are Menger’s metric convex-
ity [66], Michael’s convex and geodesic structures [70], Mägerl’s paved spaces [62],
Bielawski’s simplicial convexity [11], Horvath’s structures [47], Saveliev’s convex-
ity [98], etc.

With respect to outer constructions, convex sets are introduced by some list of
axioms and then the convex hull convA of a set A is defined as the intersection

⋂{C :
A ⊂ C and C is convex}. Among examples are: Levy’s abstract convexity [58],
Jamison’s convexity [52], van de Vel’s topological convexity [112], decomposable
sets [33, 85], and many others. The following notion was introduced by van de Vel
in [112].
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Definition 5.1 A family C of subsets of a set Y is called a convexity on Y if it
contains ∅ and Y , is closed with respect to intersections of arbitrary subfamilies and
is closed with respect to unions of an arbitrary up-directed subfamilies.

van de Vel [112] proved a Michael’s selection type theorem for LSC mappings
into completely metrizable spaces Y endowed with a convexity C which satisfies a
set of assumptions such as compatibility with metric uniformity, compactness and
connectedness of polytopes (i.e. convex hulls of finite sets), etc. One of the crucial
restriction was the so-called Kakutani S4-property which means that every pair of
disjoint convex sets admits extensions up to two complementary convex sets (i.e.
half-spaces). In the special issue of “Topology and Applications” entirely dedicated
to 50th anniversary of selection theory and to the 80th anniversary of ErnestMichael,
Horvath [48] proposed an approach which gives a selection theorem for convexities
with the relative S4-property.

Theorem 5.2 [48]Let (Y ;C ) be a completely metrizable space with convexity, let all
polytopes be compact and connected, and let Kakutani S4-property hold on polytopes
with respect to the induced convexities. Then every LSC mapping F : X → Y
from a paracompact domain and with closed convex values admits a continuous
singlevalued selection.

He also added facts on selections with results on extensions, approximations and
fixed points. In fact, compactness and connectedness of polytopes together with the
Kakutani S4-property imply homotopical triviality of polytopes and moreover, of
all completely metrizable convex sets. Therefore the following Horvath’s theorem
generalizes the previous one.

Theorem 5.3 [48] Let (Y ;C ) be a completely metrizable space with convexity for
which all polytopes are homotopically trivial. Then every LSC mapping F : X → Y
with paracompact domain and with closed convex values admits a continuous singl-
evalued selection.

The key technical ingredient proposed in [48] was the van de Vel property, which
roughly speaking, fixes the existence of enough reflexive relations (entourages)
R ⊂ Y × Y such that for every subset Z ⊂ Y all simplicial complexes

SR(Z) = {A is a finite subset of Z : Z ∩ (∩a∈A R(a)) �= ∅}

are homotopically trivial.
In the same issue of Topology and its Applications, Gutev [38] presented results

on a somewhat similar matter. Briefly, he proposed another approach to proving the
van de Vel selection theorem. He incorporated the proof into the technique of the
so-called c-structures which was suggested around 1990 by Horvath [47].
A c-structure χ on a space Y associates to every finite subset A ⊂ Y some con-
tractible subset χ(A) ⊂ Y such that A ⊂ B implies χ(A) ⊂ χ(B). In the case of
the finite subsets A of some prescribed S ⊂ Y Gutev use the term c-system on S.
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Of course, as usual χ({y}) = {y}). Perhaps the typical statements in [38] are, for
example:

Theorem 5.4 [38] Let X be a paracompact space, Y a space, χ : Fin(S) → Y a
c-system on S ⊂ Y , and G : X → S a Browder mapping (i.e. a multivalued map-
ping with all point-preimages open). Then convχ (G) has a continuous singlevalued
selection.

Theorem 5.5 [38] Let X be a paracompact space, (Y, μ,C ) a uniform space
endowed with a S4 convexity for which all polytopes are compact and all convex sets
are connected. Let V ∈ μ be an open convex cover of X and F : X → Y a convex-
valued LSC mapping. Then F admits a LSC convex-valued selection Φ : X → Y
such that the family {Φ(x)}x∈X of its values refines V .

By using the latter fact, under the assumptions of the van de Vel theorem, one can
construct a decreasing sequence Φn : X → Y of convex-valued LSC mappings
with supx∈X diam(Φn(x)) → 0, n → ∞. Therefore the pointwise passing to
∩n{Clos(Φn(x))} gives the desired selection of F = Φ0.

5.2.Some results on selections appeared forhyperconvex range spaces.Recall, that
a metric space is hyperconvex if and only if it is injective with respect to extensions
which preserves the modulus of continuity. In more direct terms, a metric space
(Y, d) is hyperconvex if and only if for every family {(yα; rα) ∈ Y × (0;+∞)}α∈I

the inequalities d(yα, yβ) ≤ rα + rβ for all α, β ∈ I imply the nonemptiness of the
intersection ∩α D[yα; rα] of closed balls D[yα; rα] = Clos(D(yα; rα)).

Each hyperconvex space admits the natural ball convexity in which polytopes are
exactly the sets ∩{D[y, r ] : A ⊂ D[y, r ]} with finite A ⊂ Y . Some authors [64,
121] also use the term sub-admissible for sets which are convex with respect to the
ball convexity. For example, Wu [121, Theorem 2.4] proved a selection theorem for
the so-called locally uniform weak LSC mappings into hyperconvex spaces. Note
that hyperconvex space equipped with the ball convexity is a uniform convex space
with homotopically trivial polytopes, [48]. This is why a selection theorem for LSC
mappings [121, Theorem 2.3] is a special case of selection theorems for generalized
convexities. Markin [64] generalized Wu’s result to a wider class of multivalued
mappings which he named quasi LSC although this is exactly the class of almost
LSC mappings introduced by Deutsch and Kenderov [24].

Another type of selection theorems for hyperconvex range spaces deals with var-
ious Lipschitz-type restrictions on a mappings and selections. A subset Z ⊂ (Y ; d)

is said to be externally hyperconvex if for any points xα ∈ Z and any reals rα with
d(xα, Z) ≤ rα and d(xα, xβ) ≤ rα + rβ, the intersection

⋂
α D[xα, rα] ∩ Z is

nonempty. Khamsi, Kirk and Yanez [54] proved the following:

Theorem 5.6 [54] Let (Y ; d) be any hyperconvex space, S any set, and F : S → Y
any mapping with externally hyperconvex values. Then there exists a singlevalued
selection f of F such that

d( f (x), f (y)) ≤ Hausdd(F(x), F(y)) x, y ∈ S.
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In particular, for a metric domain S = (M; ρ) and for a nonexpansive F : S → Y,

one can assume a selection f of F to be also nonexpansive, provided that all values
F(x) are bounded externally hyperconvex sets.

These results were applied by Askoy and Khamsi [3] for range spaces which are
metric trees. Briefly, a metric tree is a metric space (Y, d) such that for any x, y ∈ Y
there exists a unique arc joining x and y and such that the arc is isometric to a segment
on the real line.

Theorem 5.7 [3] Let (Y ; d) be a metric tree and F : Y → Y a mapping all of
whose values all are bounded closed convex sets. Then there exists a singlevalued
selection f of F such that

d( f (x), f (y)) ≤ Hausdd(F(x), F(y)) x, y ∈ Y.

A somewhat similar result was proved by Markin [65, Theorem 4.3]:

Theorem 5.8 [65] Let X be a paracompact space, (Y ; d) a complete metric tree
and F : X → Y an almost LSC mapping all of whose values are bounded closed
convex sets. Then there exists a singlevalued continuous selection f of F.

Selection theorems with respect to various types of convexities, L-structures, and
G-structures, were obtained in [25, 59, 118], etc. As a rule, all results here are special
cases or versions of van de Vel’s convexities, or Horvath’s convexities.

5.3.As for some other “inner convexities”, in a series of papers de Blasi and Piani-
giani studied multivalued mappings into so-called α-convex metric spaces (Y ; d).
This means the existence a continuous mapping α : Y ×Y ×[0; 1] → Y with natural
restrictions

α(y, y, t) = y, α(y, z, 0) = y, α(y, z, 1) = z

and with assumption that for some suitable r = r(α) > 0 and for every ε < r there
exists 0 < δ ≤ ε such that the inequality

Hausd({α(y, z, t) : t ∈ [0; 1]}, {α(y′, z′, t) : t ∈ [0; 1]}) < ε

for Hausdorff distance between curvilinear segments holds for each (y, y′) and (z, z′)
in Y 2 with d(y, y′) < ε and d(z, z′) < δ. Clearly, the last assumption reminds
one of the estimate for d(α(y, z, t), α(y′, z′, t)) from Michael’s geodesic structure
[70]. As usual, C ⊂ Y is convex (with respect to α : Y × Y × [0; 1] → Y ) if
{α(y, z, t) : t ∈ [0; 1]} ⊂ C provided that y ∈ C and z ∈ C .

Theorem 5.9 [23] Let X be a paracompact space and Y an α-convex complete
metric space. Then every LSC mapping F : X → Y with closed convex values
admits a continuous singlevalued selection.

As it was shown earlier in [22] for the case of compact X and Y , and dimX < ∞,

Theorem 5.11 is true for every α : Y × Y × [0; 1] → Y with α(y, y, t) = y,
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α(y, z, 0) = y, α(y, z, 1) = z. A set of applications in fixed point theory and
in degree theory are also presented in [21, 23]. Kowalska [57] proved a theorem
which unifies selection Theorem 5.9 with a graph-approximation theorems in the
spirit of Ben-El-Mechaiekh and Kryszewski [9] who considered the case of classical
convexity of a Banach space.

Among others results let us mention the paper of Kisielewicz [55] in which he
used a convexity structures in functional Banach spaces C(S, Rn) and L∞(T, Rn)

of all continuous mappings over a compact Hausdorff domain S and all equivalence
classes of almost everywhere bounded mappings over a measure space (T, μ). Both
of these convexities remind of the notion of decomposable set of functions [33, 85].

Definition 5.10 (1) A subset E ⊂ L∞(T, Rn) is said to be decomposable ifχA f +
χT \g belongs to E provided that f ∈ E, g ∈ E and A is a measurable subset
of T .

(2) A subset E ⊂ L∞(T, Rn) is said to be L-convex if p f + (1 − p)g belongs to
E provided that f ∈ E, g ∈ E and p : T → [0; 1] is a measurable function.

(3) A subset E ⊂ C(S, Rn) is said to be C-convex if h f + (1 − h)g belongs to E
provided that f ∈ E, g ∈ E and h : T → [0; 1] is a continuous function.

Theorem 5.11 [55]

(1) Let X be a paracompact space and F : X → C(S, Rn) a LSC mapping with
closed C-convex values. Then F admits a continuous singlevalued selection if
and only if its nth derived mapping F (n) has nonempty values.

(2) Same as (1) but for F : X → L∞(T, Rn) with closed L-convex values.

Note that for closed subsets of L∞(T, Rn) their L-convexity coincides with
decomposability plus usual convexity [55, Proposition 4]. Recall that the derived
mapping F (1)(x) of a multivalued mapping F : X → Y is defined by setting

F (1)(x) = {y ∈ F(x) : (x ′ → x) ⇒ dist(y, F(x ′)) → 0} ⊂ F(x), x ∈ X

and F (k+1)(x) = (F (k))(1)(x). Also, a well-known result of Brown [14] states that
for a convex-valued map F : X → Rn, the nonemptiness of all F (n)(x), x ∈ X,

implies that F (n) : X → Rn is a LSC selection of F . Hence the standard selection
techniques can be applied to F (n). Rather simple examples show the essentiality of
the finite-dimensionality of the range space.

5.4. Based on the ingenious idea of Michael who proposed in [71] the notion of a
paraconvex set, the authors in [84, 86, 87, 89, 99, 100] systematically studied another
approach to weakening (or, controlled omission) of convexity. Roughly speaking, to
each closed subset P ⊂ B of a Banach space one associates a numerical function, say
αP : (0,+ı) → [0, 2), the so-called function of non-convexity of P . The identity
αP ≡ 0 is equivalent to the convexity of P and the more αP differs from zero the
“less convex” the set P is.

Definition 5.12 The function of non-convexity αP (·) of the set P associates to each
number r > 0 the supremum of the set
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{sup{dist(q, P)/r : q ∈ conv(P ∩ Dr )}}

over all open balls Dr of the radius r .

For a function α : (0;+∞) → (0;+∞) a nonempty closed subset P of a Banach
space is said to be α-paraconvex provided that function α(·) pointwisely majorates
the function of non-convexity αP (·). Then P is said to be paraconvex provided that
supαP (·) < 1.

In [89] we proved a paraconvex version of the Ky Fan-Sion minimax theorem.

Theorem 5.13 [89] Let α : (0,∞) → (0, 1) be a function with the right upper
limits less than 1 over the closed ray [0,∞). Let f : X × Y → R be a real valued
function on Cartesian product of two AR-subcompacta X and Y of a Banach spaces
and suppose that:

(1) For each c ∈ R and each x0 ∈ X the set {y ∈ Y : f (x0, y) ≤ c} is
α-paraconvex compact; and

(2) For each d ∈ R and each y0 ∈ Y the set {x ∈ X : f (x, y0) ≥ d} is
α-paraconvex compact for a fixed α : (0,∞) → [0, 1). Then

max
X

(min
Y

f (x, y)) = min
Y

(max
X

f (x, y)).

It is interesting to note that our minimax theorem includes cases when finite
intersections

n⋂

i=1

{{x ∈ X : f (x, yi ) ≥ c} : yi ∈ Y },
k⋂

j=1

{{y ∈ Y : f (x j , y) ≤ d} : x j ∈ X}

of sublevel and uplevel sets are possibly nonconnected: intersection of two paracon-
vex sets can be nonconnected.

Usually a proof of a minimax theorem for generalized convexities exploits the
intersection property of convex sets and reduces minimax theorem to some kind of
KKM-principle. In our case we used the fact that the closure of unions of directly
ordered family of arbitrary paraconvex sets are also paraconvex. Therefore as a base
for obtaining minimax theorem we have used the selection theory of multivalued
mappings instead of versions of the KKM-principle.

In [93] we examined the following natural question: Does paraconvexity of a
set with respect to the classical convexity structure coincide with convexity under
some generalized convexity structure? In other words, is paraconvexity a real non-
convexity, or is it maybe a kind of some generalized convexity? It turns out that
sometimes the answer is affirmative.

Theorem 5.14 [93] Let 0 ≤ α < 0, 5 and F : X → B be a continuous multivalued
mapping of a paracompact space X into a Banach space B such that all values
F(x) are bounded α-paraconvex sets. Then there exists a continuous singlevalued
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mapping F : X → Cb(B, B) such that for every x ∈ X the mapping Fx : B → B is
a continuous retraction of B onto the value F(x) of F.

Here Cb(B, B) denotes the Banach space of all continuous bounded mappings of
a Banach space B into itself. The key point of the proof is that the set URetrP ⊂
Cb(B, B) of all uniform retractions onto an α-paraconvex set P ⊂ B is a α

1−α
-

paraconvex subset of Cb(B, B).
As a corollary, by continuously choosing a retraction onto a paraconvex sets, we

showed that if in addition all values F(x), x ∈ X , are pairwise disjoint then the
metric subspace Y = ⋃

x∈X F(x) ⊂ B admits a convex metric structure σ such that
each value F(x) is convex with respect to σ .

Finally, let us mentioned the result of Makala [63, Theorem 3.1] who obtained
the selection theorem for LSC mappings F : X → Y from a collectionwise normal
domains X such that each value F(x) equals to Y or, is a compact paraconvex subsets
of Y . The main difficulty here was that the class of such values in general, is not
closed with respect to intersections with balls.

5.5. Yet another type of a controlled “non-convexity” which is in some sense
intermediate between paraconvexity and Menger’s metric convexity goes back to
Vial [113] and during the last decade was intensively studied in [5, 49, 50].

For every two points x and y of a normed space (Y ; ‖ · ‖) and for every
R ≥ 0, 5‖x − y‖ denote by DR[x; y] the intersection of all closed R-balls con-
taining x and y. Clearly, when R → +∞, such set DR[x; y] tends (with respect to
the Hausdorff distance) to the usual segment [x; y].
Definition 5.15 [113] A subset A of a normed space (Y ; ‖ · ‖) is said to be weakly
convex w.r.t R > 0 if for every x, y ∈ A, with 0 < ‖x − y‖ < 2R, there exists a
point z ∈ A ∩ DR[x; y] that differs from x and y.

In a Hilbert space H the metric projection PA of an R-neighborhood of a weakly
convex w.r.t. R set A is singlevalued. The set {(x; y) ∈ R

2 : x ≥ 0 or y ≥ 0} is
(
√
2/2−)paraconvex but is not weakly convex with respect to arbitrary R > 0. The

set {x ∈ R
n : ‖x‖ ≥ R} is not paraconvex and is weakly convex w.r.t R. However,

sometimesweak convexity implies paraconvexity. For example, in aHilbert space H ,
if z ∈ H and 0 < r < R, then every weakly convex (w.r.t. R) subset A ⊂ D(z; r) is
(r/R)-paraconvex [49].

Theorem 5.16 [50] Let X be a paracompact space and 0 < ε < R. Then for every
continuous singlevalued ε-selection fε : X → H of a LSC mapping F : X → H
with closed and weakly convex (w.r.t. R) values there exists a continuous singlevalued
selection.

Theorem 5.17 [50] Let X be a paracompact subset of a topological vector space Z
and a uniformly functional contractible subset of Z. Then for every R > 0, each
Hausdorff uniformly continuous mapping F : X → H with closed and weakly
convex (w.r.t. R) values admits a continuous singlevalued selection.
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Both contractibility and uniform continuity restrictions are essential as Exam-
ples1–3 from [50] show.

5.6. To complete this section we mention one more nontrivial convexity structure.
Namely, the so called tropical (or, max-plus) convexity in (R ∪ {−∞}n . It is very
intensively studied area with many various applications in abstract convex analy-
sis, algebraic geometry, combinatorics, phylogenetic analysis, etc. For a survey and
details cf. [120].

Definition 5.18 For an ordered N -tuple t = (t j ) of “numbers” t j ∈ [−∞; 0] with
max{t j } = 0 and for a points A1(x11 , x12 , . . . ., x1n), . . . , AN (x N

1 , x N
2 , . . . ., x N

n ) from
(R ∪ {−∞})n their max-plus t-combination is defined as the point

(

max
j

{x j
1 + t j },max

j
{x j

2 + t j } . . . ,max
j

{x j
n + t j }

)

.

A subset C ⊂ (R∪ {−∞})n is said to be max-plus convex if it contains all max-plus
t-combinations of all of its points.

Zarichnyi proved a selection theorem for max-plus convex-valued mappings.

Theorem 5.19 [122] Let X and Y be compact metrizable spaces and Y ⊂ R
n. Then

every LSC mapping F : X → Y with max-plus convex values admits a continuous
singlevalued selection.

It is interesting to observe that the proof never uses any sequential procedure
of approximation. Instead, Zarichnyi constructs a version of Milyutin surjection
M : Z → X of a zero-dimensional compact space Z onto X and associating map
m : X → I (Z) with values in idempotent probability measures. Next, exactly
as in [94], the desired selection f of F is defined as the idempotent barycenter
f (x) = ∫

M−1(x)
s(t)dm(x) for a suitable selection s of the composition F ◦ M (such

a selection exists due to Theorem 1.3).

6 Multivalued Selections

The foundation for results of this section is the compact-valued selection Theo-
rem 1.4. Historically there were various ways to prove this result or its variants: the
original Michael’s approach [72] via pointwise closures of limit point sets of cer-
tain “tree” of 2−n-singlevalued selections, Choban’s method of coverings [16] which
axiomatized and transformed Michael’s construction into a maximally possible gen-
eral form, approach based on the notion of (complete) sieves [18], and a proof via
the 0-dimensional selection theorem [85].

In a series of papers Gutev recently proposed a more advanced point of view
for sieves on a set X . Recall that a tree is a partially ordered set (T ;�) with all
well-ordered sublevel sets {a : a � b, a �= b}b∈T . Roughly speaking, in [37] a
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sieve on X is defined as some kind of multivalued mapping (T ;�) → X which
is order-preserving with respect to inverse inclusion. In particular, as a corollary of
his techniques, Gutev [37, Corollary 7.3] obtained the following generalization of
compact-valued selection Theorem 1.4, which was proposed earlier in [1].

Theorem 6.1 [37] A multivalued mapping F : X → Y admits a compact-valued
USC selection H : X → Y , which, in turn, admits a compact-valued LSC selection
G : X → Y , provided that the following conditions are satisfied:

(1) X is a paracompact space;
(2) Y is a monotonically developable and sieve-complete space;
(3) F is a LSC mapping; and
(4) For every x ∈ X, F(x) is a closed subset of Y .

Here, in comparison with compact-valued selection Theorem 1.4, only the
restriction (2) is changed.Monotonically developable spaces are a natural generaliza-
tion of Moore spaces. Note that Y is monotonically developable and sieve-complete
space if and only if Y is the image of a completely metrizable non-Archimedean
space under some open surjection [119]. If one omits in (2) the assumption that Y is
a monotonically developable then by [37, Corollary 7.2] it is possible to guarantee
only the existence an USC compact-valued selection H : X → Y .

If we equip a paracompact domain X in Theorem 6.1 by a sequence {Xn} of its
finite-dimensional subspaces dimXn ≤ n, then by [36, Corollary 7.7], we always
obtain anUSC compact-valued selection H : X → Y with |H(x)| ≤ n+1, x ∈ Xn .
If we equip a paracompact domain X by a sequence {Xn} of its finite-dimensional
subspaces, dimXn ≤ n, then we always obtain an USC compact-valued selection
H : X → Y with |H(x)| ≤ n + 1, x ∈ Xn .

As a rule, all selections in [37] are constructed as a composition of two suitable
multivalued mappings. The first one is related to completeness and the other one
arises from a system (tree) of various coverings of the domain and their refinements.

Applying the same “trees-sieves” technique in [39] upper semicontinuity of a
selection was replaced by closedness of its graph. Below are two typical examples.

Theorem 6.2 [39] For a T1-space X the following statements are equivalent:

(1) X is normal;
(2) If Y is a metrizable space and F : X → Y is a compact-valued LSC mapping

then there are compact-valued mappings G : X → Y and H : X → Y such
that G(x) ⊂ H(x) ⊂ F(x), x ∈ X, G is LSC and the graph of H is a closed
subset of X × Y ;

(3) If Y is a metrizable space and F : X → Y is a compact-valued LSC mapping
then there exists a compact-valued selection of F with a closed graph.

Theorem 6.3 [39] For a T1-space X the following statements are equivalent:

(1) X is countably paracompact and normal;
(2) Same as (2) in theorem above, but for closed-valued mappings into a separable

range space.
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Choban,Mihaylova andNedev [19] collected various types of selection characteri-
zations of classes of topological spaces formulated in terms ofmultivalued selections.
Recall that the nth image of a set is defined inductively by setting F1(A) = F(A),
Fn+1(A) = F(F−1(Fn(A))), and that the largest image is defined as the union of
all nth images, n ∈ N.

Theorem 6.4 [19] For a T1-space X the following statements are equivalent:

(1) X is strongly paracompact (i.e. Hausdorff and each open cover admits a star-
finite refinement);

(2) For every LSC mapping F : X → Y into a discrete space Y there exists
a discrete space Z, a singlevalued map g : Z → Y , a LSC mapping
G : X → Z, and an USC finite-valued mapping H : X → Z such that
g(G(x)) ⊂ g(H(x)) ⊂ F(x), x ∈ X, and all sets H∞(x) are countable;

(3) Same as (2) but without L SC mapping G and without finiteness of the values
H(x);

(4) Same as (2) but with a regular X, without U SC mapping H, and with a count-
able G∞(x).

For a space X , let cω(X) denote the cozero dimensional kernel of X , i.e. the
complement of the union of all open zero-dimensional subsets of X .

Theorem 6.5 [19] For a T1-space X the following statements are equivalent:

(1) X is strongly paracompact and cω(X) is Lindelöf ;
(2) See (2) in previous theorem with Y = Z and g = id|Z ;
(3) Same as (2) but without L SC mapping G and without finiteness of values H(x);
(4) Same as (2) but with a regular X, without U SC mapping H and with a countable

G∞(x).

In the next theorem l(X) denotes the Lindelöf number of the space X and singl-
evalued selections are not assumed to be continuous.

Theorem 6.6 [19]For any regular space X and any cardinal number τ the following
statements are equivalent:

(1) l(X) ≤ τ ;
(2) For every LSC closed-valued mapping F : X → Y into a complete metriz-

able space Y there exists a LSC closed-valued selection G of F such that
l(G(X)) ≤ τ ;

(3) For every LSC mapping F : X → Y into a complete metrizable space Y there
exists a singlevalued selection g of Clos(F) such that l(g(X)) ≤ τ ;

(4) For every LSC mapping F : X → Y into a discrete space Y there exists a
singlevalued selection g of Clos(F) such that |g(X)| ≤ τ ;

(5) Every open cover of X admits a refinement of cardinality ≤ τ .

Similar characterization was obtained in [19] for the degree of compactness of a
space. Gutev and Yamauchi in [46], using once again the “trees-sieves” technique,
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presented a generalizations of results [19] to arbitrary complete metric range spaces.
For example, in comparison with Theorem 6.4 they proved the following:

Theorem 6.7 [46] For a T1-space X the following statements are equivalent:

(1) X is strongly paracompact;
(2) For every LSC closed-valued mapping F : X → Y into a complete metric space

(Y ; ρ) there exist a complete ultrametric space (Z; d), a uniformly continuous
map g : Z → Y , and a USC compact-valued mapping H : X → Z such
that g(H(x)) ⊂ F(x), x ∈ X, and the set H(H−1(S)) is totally ε-bounded
whenever ε > 0 and S ⊂ Z is totally ε-bounded;

(3) For every LSC closed-valued mapping F : X → Y into a discrete space Y
there exist a discrete space Z, a singlevalued map g : Z → Y , and a USC
compact-valued mapping H : X → Z such that g(H(x)) ⊂ F(x), x ∈ X and
the set H(H−1(S)) is finite whenever S ⊂ Z is finite.

Similarly, [46, Corollaries 6.2 and 6.3] a space X is strongly paracompact and
cω(X) is Lindelöf (resp., compact) if and only if for every LSC closed-valued map-
ping F : X → Y into a completely metrizable space Y there exists a USC compact-
valued selection H of F such that set H(H−1(S)) is separable (resp., compact),
whenever S ⊂ Z is separable (resp., compact).

Yamauchi [116] gave a selection characterization of the class which unifies com-
pact spaces and finite-dimensional paracompact spaces. A topological space is said
to be finitistic (another term is boundedly metacompact) if any of its open covers
admits an open refinement of finite order, or equivalently for paracompact spaces,
if and only if it contains a compact subset K such that each closed subset of the
complement of K is finite-dimensional. Below is a typical statement.

Theorem 6.8 [116] For a T1-space X the following statements are equivalent:

(1) X is paracompact and finitistic;
(2) Each LSC closed-valued mapping F : X → Y into a completely metrizable

space Y admits a USC compact-valued selection H : X → Y of F with the
property that for every open cover ν of Y the exists a natural number N such that
every value H(x), x ∈ X, can be covered by some ν0 ⊂ ν with Card(ν0) ≤ N.

Finally, let us mentioned the survey paper by Choban [17] on reduction principles
in selection theory. Briefly, he discussed questions concerning extensions of LSC
mappings F with nonparacompact domains onto paracompact ones and a notion of
(complete) metrizability of family {F(x)} of values rather than (complete) metriz-
ability of a range space.

7 Miscellaneous Results

7.1. Tymchatyn and Zarichnyi [109] applied the selection theorem of Fryszkowski
[33] to decomposable-valued mappings F : X → L1([0; 1], B) in order to construct
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a continuous linear regular operator which extends partially defined pseudometrics to
pseudometrics defined on the whole domain. Denote byPM (X) the set of all con-
tinuous pseudometrics over metrizable compact X andPM the subset ofPM (X)

of all continuous pseudometrics ρ with compact domains dom(ρ) ⊂ X . Identifying
a pseudometric with its graph we can consider both of these sets endowed with the
topology induced from the compact exponent exp(X × X × [0;∞)).

Theorem 7.1 [109] There exists a continuous linear regular extension operator
u : PM → PM (X), u(ρ)|dom(ρ)×dom(ρ) ≡ ρ.

Here, regularity of an operator means that it preserves the norm of pseudometrics,
i.e. their maximal values. As it typically arises for extensions, the answer is given
by some formula. Namely, under some isometric embedding X into a separable
Banach B, the desired operator u can be defined as

u(ρ)(x, y) =
∫ 1

0
ρ( f (dom(ρ), x)(t), f (dom(ρ), y)(t)) dt,

where f : expX × X → L1([0; 1], B) is a continuous singlevalued selection of the
decomposable-valued LSC mapping F : expX × X → L1([0; 1], B) defined by

F(A, x) = L1([0; 1], {x}) = {x}, x ∈ A; F(A, x) = L1([0; 1], A), x /∈ A.

Metrizability of a compact space X is a strongly essential assumption [109, The-
orem 6.1].

Theorem 7.2 [109] For a compact Hausdorff space X the following statements are
equivalent:

(1) X is metrizable;
(2) There exists a continuous extension operator u : PM → PM (X).

7.2. Gutev and Valov [45] applied selection theory to obtain a new proof of
Prokhorov’s theorem and its generalization outside the class of Polish spaces. Recall
that a probability measure μ on a T3,5-space X is a countably additive mapping
μ : B (X) → [0, 1] with μ(X) = 1 and with regularity (or, the Radon) property
that

μ(B) = sup{μ(K ) : K ⊂ B, K is compact}

for every Borel set B ∈ B (X). Roughly speaking, values of measure are realized
over subcompacta with any precision.

The set P(X) of all probability measures can naturally be considered as the subset
of the conjugate space C∗(X) of the Banach space C(X) and is endowed with the
induced topology. Thus Prokhorov’s theorem states that for a Polish space X, the
Radon property holds not for a unique measure but for an arbitrary compact set of
measures. Namely, for a compact M ⊂ P(X) and for any ε > 0, there exists a
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compact K ⊂ X such that μ(X\K ) < ε, for all μ ∈ M . For more general domains
the following result holds [45]:

Theorem 7.3 [45] For a sieve-complete space X, a paracompact space S ⊂ P(X)

and any ε > 0 there exists a USC compact-valued mapping H : S → P(X) such
that μ(X\H(μ)) < ε, for every μ ∈ S.

Note that for a paracompact space X, its sieve-completeness coincides with its
Čech-completeness. Returning to the original case of Polish space X, the outline of
the proof looks as follows. First, for eachμ ∈ P(X) the set Gε(μ) = {K −compact :
μ(X\K ) < 0, 5ε} ⊂ P(X) is nonempty simply due to the Radon property. Denote
by exp(X) the completelymetrizable space of all subcompacta of X endowedwith the
Vietoris topology, or with Hausdorff distance metric. It turns out that the multivalued
mapping Gε : P(X) → exp(X) is a LSC mapping. Hence its pointwise closure
Fε is also LSC and moreover, μ(X\K ) ≤ 0, 5ε, for every μ ∈ P(X) and every
K ∈ Fε(μ). By the compact-valued selection Theorem 1.4, the mapping Fε admits
an USC compact-valued selection, say H : P(X) → exp(X). Finally, the union
∪{K ′ : K ′ ∈ H(μ)} yields the desired compact subset K ⊂ X .

7.3. Zippin [123] considered the convex-valued selection Theorem 1.1 as the base
for resolving the extension problem for operators from a linear subspaces E of c0
into the spaces C(K ), where K is a compact Hausdorff space. For any ε > 0, he
considered the multivalued mapping F : Ball(E∗) → (1 + ε)Ball(c∗

0) by setting
F(e∗) equal to {0} if e∗ = 0 and

F(e∗) = {x∗ ∈ (1 + ε)Ball(c∗
0) : x∗ extends e∗ and ‖x∗‖ < (1 + ε)‖e∗‖}

otherwise. Under the weak-star topology, all values of F are convex metrizable com-
pacta.After (a nontrivial) verification of lower semicontinuity of F and applyingThe-
orem 1.4, one finds a singlevalued weak-star continuous mapping f : Ball(E∗) →
(1 + ε)Ball(c∗

0) such that f (e∗) extends e∗ and ‖ f (e∗)‖ ≤ (1 + ε)‖e∗‖.
Hence for an operator T : E → C(K ) with the norm ‖T ‖ = 1, let fT : K →

Ball(E∗) be defined by fT (k)(e) = T (e)(k), for k ∈ K . Then fT is weak-star
continuous and hence the composition f ◦ fT : K → (1 + ε)Ball(c∗

0) with the
above selection f is also continuous. Defining T̂ : c0 → C(K ) by T̂ (x)(k) =
( f ◦ fT )(k)(x), x ∈ c0,we see that T̂ extends T because f (e∗) extends e∗, T̂ is linear
and well-defined, since ( f ◦ fT )(k) is a linear functional and ‖T̂ ‖ = sup{T̂ (x)(k) :
‖x‖ ≤ 1, k ∈ K } ≤ sup{‖( f ◦ fT )(k)‖ ‖x‖ : ‖x‖ ≤ 1, k ∈ K } ≤ 1 + ε.

7.4.For twomultivaluedmappings F1 : X → Y1, F2 : X → Y2 and a singlevalued
mapping L : Y1 × Y2 → Y denote by L(F1; F2) the composite mapping, which
associates to each x ∈ X the set

{y ∈ Y : y = L(y1; y2), y1 ∈ F1(x), y2 ∈ F2(x)}.
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Definition 7.4 Let f be a selection of the composite mapping L(F1; F2). Then pair
( f1, f2) is said to be a splitting of f if f1 is a selection of F1, f2 is a selection of F2
and f = L( f1; f2).

Therefore the splitting problem [90] for the triple (F1, F2, L) is the problem
of finding continuous selections f1 and f2 which split a continuous selection f
of the composite mapping L(F1; F2). As a special case of a constant mappings
F1 ≡ A ⊂ Y, F2 ≡ B ⊂ Y and L(x1, x2) = x1 + x2 we have the following:

Problem 7.5 [90] Let A and B be closed convex subsets of a Banach space Y and
C = A + B their Minkowski sum. Is it possible to find continuous singlevalued
mappings a : C → A and b : C → B such that c = a(c) + b(c) for all c ∈ C?

The answer is positive for strictly convex and finite-dimensional A and B (cf.
[92, Corollary 3.6]), and for finite-dimensional A and B with C = A + B being of
a special kind, the so-called P-set (cf. [6, Theorem 2.6]). A collection of various
examples and affirmative results on approximative splittings, uniformly continuous
(or Lipschitz) splittings can be found in [4, 6, 7]. Note that under the replacement of
the sum-operator L(x1, x2) = x1 + x2 by an arbitrary linear operator L , the problem
has a negative solution even in a rather low-dimensional situation [92, Example 3.2].

Theorem 7.6 [92] For any 2-dimensional cell D there exist:

(a) Constant multivalued mappings F1 : D → R3 and F2 : D → R with convex
compact values;

(b) A linear surjection L : R3 ⊕ R → R2; and
(c) A continuous selection f of the composite mapping F = L(F1, F2), such that

f �= L( f1, f2) for any continuous selections fi of Fi , i=1,2.

The construction uses the convex hull C of one full rotation of the spiral K =
{(cos t, sin t, t) : 0 ≤ t ≤ 2π} and the fact that its projection onto the xy-plane
admits no continuous singlevalued selections.

7.5. As for the finite-dimensional selection Theorem 1.5, during the discussed
period three voluminous papers were devoted to its versions, generalizations or
applications. In [44] Gutev and Valov proved the following result on the density
of selections.

Theorem 7.7 [44] Let for a mapping F : X → Y all assumptions of Theorem 1.5
be true. Let in addition Ψ : X → Y be a mapping with an Fσ -graph such that for
each x ∈ X the intersection F(x) ∩ Ψ (x) is a σ Zn+1-subset of the value F(x).
Then in the set Sel(F) of all continuous singlevalued selections of F endowed with
the fine topology the subset of those selections of F which pointwisely avoid values
Ψ (x) constitutes a dense Gδ-subspace.

Recall that for a metric range space (Y ; d) the fine topology in C(X, Y ) is defined
by its local base

V ( f, ε(·)) = {g ∈ C(X, Y ) : d(g(x), f (x)) < ε(x), x ∈ X},
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when ε(·) runs over the set of all positive continuous functions on X . Also, for
metric space (B; ρ), a subset A ⊂ B is said to be a σ Zn+1-subset if it is the union of
countably many sets Ai ⊂ B such that each continuous mapping from the (n + 1)-
cell to B can be approximated (with respect to the uniform topology) by a sequence
of continuous mappings to B\Ai . The sequential process of proving this theorem is
based on the following result.

Theorem 7.8 [44] Let all assumptions of Theorem 7.7 be true with exception that Ψ
is a closed-graph mapping. Let f be a continuous singlevalued selection of F, ε(·)
a positive continuous function on X and ρ a compatible metric on Y . Then F admits
a continuous singlevalued selection g such that g(x) /∈ Ψ (x) and ρ(g(x), f (x)) <

ε(x), for every x ∈ X.

Next, recall that Shchepin and Brodsky [101] proved that for any paracompact
space X with dimX ≤ n+1, a completelymetrizable spaceY , and for any L-filtration
{Fi }n+1

i=0 of maps Fi : X → Y, the ending mapping Fn+1 admits a continuous
singlevalued selection. One of the points in the definition of L-filtration (cf. [88]), is
the property that graph-values {x} × Fi (x) are closed in some prescribed Gδ-subset
of the product X × Y . In [36, Corollary 7.10] Gutev proved a generalization of this
result to the case when the graph of mapping Fn+1 is a Gδ-subset of X ×Y . Roughly
speaking, Gutev proposed his own version of the Shchepin-Brodsky L-filtrations
technique. In particular, he generalized the previous theorem [36, Corollary 7.12].

Theorem 7.9 [36] Theorem 7.7 is true under the change of the assumption “the
family {F(x)}x∈X is ELCn” with the restriction that F be an ELCn-mapping, i.e.
{x} × {F(x)}x∈X is ELCn in the product X × Y .

As an example of a result on improvement of near-selections in [36, Corollary
7.15] we quote the following:

Theorem 7.10 [36] Let X be a countably paracompact and normal space, (Y ; d)

a complete metric space and F : X → Y a Hausdorff continuous closed-valued
mapping all of whose values F(x) are uniformly LCn-subsets of Y . Then for every
positive lower semicontinuous numerical function ε(·) on X there exists a positive
lower semicontinuous numerical function δ(·) on X with the following property:

If g : X → Y is a continuous singlevalued δ-selection of F then there exists a
continuous singlevalued selection f of F such that d(g(x), f (x)) < ε(x), x ∈ X.

Moreover, if all values F(x) are n-connected then F admits a continuous single-
valued selection.

During preparation of the previous survey [88], Brodsky, Shchepin and Chi-
gogidze announced results on problem of local triviality of Serre fibrations with
two-dimensional fibers. Their paper [13] appeared in 2008.

Theorem 7.11 Let p : E → B be a Serre fibration of a locally connected compact
space E onto a compact AN R-space B. Let all fibers p−1(x) be homeomorphic to a
fixed two-dimensional manifold M which differs from the sphere and the projective
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plane. Then p admits a continuous section (i.e. p−1 : B → E admits a continuous
singlevalued selection) provided that one of the following restrictions holds:

(1) π1(M) is Abelian and H2(B;π1(M)) = 0;
(2) π1(M) is nonabelian, M is not the Klein bottle and π1(B) = 0;
(3) M is the Klein bottle and π1(B) = π2(B) = 0.

The proof follows the strategy of [101] and is based on selection results for
L-filtrations which, roughly speaking, are realized by the interplay between L-theory
and U -theory of multivalued mappings (cf. [88]).

7.6. Various results exist in continuous selection theory with some additional
restriction of algebraic nature. For example, a multivalued mapping F : X → Y
between (as a rule, locally convex topological) vector spaces is called additive
if F(x1 + x2) = F(x1) + F(x2), x1, x2 ∈ X , i.e. the image of the sum of
two points coincides with the Minkowski sum of the images of these points.
Next, F : X → Y is called subadditive (resp., superadditive, resp., convex) if
F(x1 + x2) ⊂ F(x1) + F(x2), (resp., if F(x1 + x2) ⊃ F(x1) + F(x2), resp., if
F(t x1 + (1 − t)x2) ⊂ t F(x1) + (1 − t)F(x2), t ∈ [0, 1]). The existence of lin-
ear selections was proved for several such types of mappings with compact convex
values in locally convex spaces. In particular, additive mappings always have linear
selections [34], and every superadditive mapping possesses a linear selection [108].
Recently, Protasov [82] obtained criteria on X and Y for the affirmative answer on
existence of linear selections for arbitrary subadditive mappings.

Theorem 7.12 (1) Any subadditive mapping F : X → Y with compact convex
values has a continuous linear selection if and only if dimX = 1 or dimY = 1.

(2) Any convex mapping F : X → Y with compact convex values has a continuous
affine selection if and only if dimY = 1.

Moreover, in “only if” parts of (1) and (2) one can omit the continuity restriction: if
dimY ≥ 2 then there exists a convex mapping F : X → Y without affine selections.
Applications in Lipschitz stability problem for linear operators in Banach spaces are
presented in [82] as well.

7.7. We end our survey by some selected results from metric projection theory.
For more detailed information cf. [15, 29].

Let us recall that the operator of almost best approximation, or ε-projection, of a
real Banach space (X, ‖ · ‖X ) to a set M ⊂ X is defined as the multivalued map

x 
→ PM,ε(x) = {z ∈ M : ‖z − x‖X ≤ ρ(x, M) + ε},

where ρ(x, M) = inf y∈M ‖x − y‖X is the distance from x to M . If ε = 0, then
PM = PM,0 is the metric projection operator. Clearly, all sets PM,ε(x) are nonempty,
whereas the equality PM (x) = ∅ is in general, possible.

If ‖z − x‖X ≤ ρ(x, M)+ ε is replaced by ‖z − x‖X ≤ (1+ ε)ρ(x, M) then such
multivalued mapping is called a multiplicative ε-projection onto M .
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Recall the Konyagin theorem [56] which states that the metric ε-projection oper-
ator admits a continuous singlevalued selection in the case X = C[0; 1] with the
standard norm and where M = R = { f

g : f ∈ U, g ∈ W } is the set of all gener-
alized fractions with U and W linear closed subspaces of X . Note that this result is
not true for X = L p[0; 1].

Ryutin [95, 96] considered the set

RU,W = Clos

{
f

g
: f ∈ U, g ∈ W and g > 0

}

of generalized fractions in the space X = C(K ), where K is connected metric
compact, or in the the space X = L1[0; 1], and with finite-dimensional U and W .

Theorem 7.13 [96] Let the intersection of the set RU,W with the closed unit ball
D ⊂ C(K ) be compact. Then for every ε > 0 the multiplicative ε-projection of D
onto RU,W admits a uniformly continuous singlevalued selection.

In the space X = L1[0; 1] the situation is more complicated. Namely, in [95] a
wide class of pairs (U, W ) of finite-dimensional subspaces in L1[0; 1] were found
with the property that there exists ε0 = ε0(U, W ) > 0 such that the multiplicative
ε-projection onto RU,W admits a singlevalued continuous selection only if ε ≥ ε0.

Livshits [60, 61] considered X = C[0; 1] with the standard norm and continuous
selections of themetric ε-projection operator onto the set of all splines (i.e. piecewise
polynomials) with non-fixed nodes. Namely, for a fixed n, d ∈ N, denote by Sd

n [0, 1]
the set of all functions f ∈ C[0; 1] such that for some (depending on f ) nodes
0 = x0 < x1 < · · · < xn−1 < xn = 1, each restriction f |[xk−1,xk ] is a polynomial of
degree ≤ d.

Theorem 7.14 [60, 61]

(1) A continuous singlevalued selection of the metric projection onto the set S1
n [0, 1]

exists if and only if n ≤ 2;
(2) For any ε > 0 and any n ∈ N, there exists a continuous singlevalued selection

of the metric ε-projection onto the set S1
n [0, 1];

(3) For any n > 1 and any d > 1 there exists ε = ε(n, d) such that there is
no continuous singlevalued selection of the metric ε-projection onto the set
Sd

n [0, 1].
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