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In this paper we have collected a selection of recent results of theory of continuous
selections of multivalued mappings. We have also considered some important applications
of these results to other areas of mathematics. The first three parts of the paper are devoted
to convex-valued mappings, to selectors on hyperspaces, and to links between selection
theory for LSC mappings and approximation theory for USC mappings, respectively. The
fourth part includes various other results.

Since our recent book REPOVS and SEMENOV [1998a] comprehensively covers most
important work in this area approximately until the mid 1990’s, we have therefore decided
to focus in this survey on results which have appeared since then. As is often the case
with surveys, due to the limitations of space, one has to make a selection. Therefore we
apologize to all those authors whose results could not be included in this paper.

1. Solution of Michael’s problem for C-domains

A singlevalued mapping f : X — Y between sets is said to be a selection of a given
multivalued mapping F' : X — Y if f(x) € F(z), for each z € X. Note that by
the Axiom of Choice selections always exist. We shall be working in the category of
topological spaces and continuous singlevalued mappings. There exist many selection
theorems in this category. However, the citation index of one of them is by an order of
magnitude higher than for any other. This is the Michael selection theorem for convex-
valued mappings:

1.1. THEOREM (MICHAEL [1956a]). A multivalued mapping F' : X — Y admits a con-
tinuous singlevalued selection, provided that the following conditions are satisfied:

(1) X is a paracompact space;

(2) Y is a Banach space;

(3) F'is a lower semicontinuous (LSC) mapping;

(4) For every x € X, F(x) is a nonempty convex subset of Y ; and
(5) For every x € X, F(x) is a closed subset of Y.

A natural question arises concerning the necessity (essentiality) of any of the conditions
(1)-(5). Here is a summary of known results:

Ad 1. With fixed conditions (2)-(5), condition (1) turned out to be necessary. This is
a characterization of paracompactness in MICHAEL [1956a].

Ad 2. With fixed conditions (1), (3)-(5), condition (2) can easily be weakened to the
following condition:

(2°) Y is a Fréchet space.

However, the question about the necessity of condition (2°) is in general still open. In
many special cases (which cover the most important situations), the problem of complete
metrizability of the space Y in which the images lie has already been solved in the affir-
mative.

MAGERL [1978] has provided an affirmative answer in the case when Y is a compact
subset of a topological linear space F, by proving that Y must be metrizable if every
closed- and convex-valued LSC mapping from a paracompact domain X to Y admits
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a continuous singlevalued selection. Moreover, it suffices to take for the domain X only
zero-dimensional compact spaces (in the sense of the Lebesgue covering dimension dim).

Nedev and Valov have shown that in Mégerl’s theorem it suffices to require instead of
a singlevalued continuous selection that there exists a multivalued USC selection. They
also proved that Y must be completely metrizable if Y is a normal space (see NEDEV and
VALOV [1984]).

VAN MILL, PELANT and POL [1996] have proved, without the convexity condition (4),
that a metrizable range Y must be completely metrizable if for every 0-dimensional do-
main X, each closed-valued LSC mapping F' : X — Y admits a singlevalued continuous
selection.

Ad 3. Recall, that lower semicontinuity of a multivalued mapping F' : X — Y between
topological spaces X and Y means that for each z € X and y € F(x), and each open
neighborhood U (y), there exists an open neighborhood V' (z) such that F(z")NU (y) # 0,
whenever 2’ € V' (z). Applying the Axiom of Choice to the family of nonempty intersec-
tions F(z")NU(y), ' € V(z), we see that LSC mappings are exactly those, which admit
local (noncontinuous) selections. In other words, the notion of lower semicontinuity is by
definition very close to the notion of a selection.

Clearly, one can consider a mapping F' which has an LSC selection G and then ap-
ply Theorem 1.1 to the mapping conv G C F. For a metric space X, one of the the
largest classes of such mappings was introduced by GUTEV [1993] under the name quasi
lower semicontinuous maps (for more details see §3 of Part B in REPOVS and SEMENOV
[1998a]).

Ad 4. This is essentially the only nontopological and nonmetric condition in (1)—(5).
For dimX = n+ 1 < oo and Y completely metrizable it is possible (by MICHAEL
[1956b]) to weaken the convexity restriction to the following purely topological condition:

4) F(xz) € C™ and {F(x)}rex € ELC".

In the infinite-dimensional case, it follows from the work PIXLEY [1974] and MICHAEL
[1992] that there does not exist any purely topological analogue of condition (4) which
would be sufficient for a selection theorem for an arbitrary paracompact domain.

In REPOVS and SEMENOV [1995, 1998b, 1998c¢, 1999] various possibilities were inves-
tigated to avoid convexity in metric terms. We exploited Michael’s idea of paraconvexity
in MICHAEL [1959a]. To every closed nonempty subset P of the Banach space B, a nu-
merical function ap : (0,00) — [0, 00) was associated. The identity ap = 0 is equivalent
to convexity of P. Then all main selection theorems for convex-valued mappings remain
valid if one replaces the condition ap(,) = 0 with the condition of the type ap(,) < 1,
uniformly for all x € X.

Ad 5. In general, one cannot entirely omit the condition of closedness of values of
F(z). However, if it is strongly needed then it can be done. For example, by MICHAEL
[1989], in the finite-dimensional selection theorem, the closedness of F'(x) in Y can be
replaced by the closedness of all {z} x F(z) in some Gs-subset of the product X x Y.
Or, by MICHAEL [1956a], if X is perfectly normal and Y is separable, then it suffices to
assume in Theorem 1.1 that the convex set F'(x) contains all interior (in the convex sense)
points of its closure.

Around 1970 Michael and Choban independently showed that one can drop the closed-
ness of F'(x) on any countable subset of the domain (for more details see Part B in RE-
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POVS and SEMENOV [1998a]). Michael proposed the following way of uniform omission
of closedness:

1.2. PROPOSITION (MICHAEL [1990]). Let Y be any completely metrizable subset of
a Banach space B, with the following property:

K CC CY = ¢conv K C C, where K is a compactum and C' is convex and
closed (in'Y).

Then every LSC mapping F' : X — Y defined on a paracompact space X with closed
(in'Y') and convex images has a continuous selection.

O The compact-valued selection theorem guarantees, due to complete metrizability of Y,
the existence of a compact-valued LSC selection H : X — Y of the mapping F'. It
remains to apply Theorem 1.1 to the multivalued selection conv H of the given map-
ping F. ad

By the Aleksandrov theorem, such an Y must be a G5-subset of B. Property (*) is
satisfied by any intersection of a countable number of open convex sets: it suffices to
consider the corresponding Minkowski functionals.

However, there exist convex (G 5-sets which are not intersection of any countable number
of open convex sets. For example, in the compactum P[0, 1] of all probability measures on
the segment [0, 1] such is the convex complement of any absolutely continuous measure.

Hence at present, one of the central problems of selection theory is the following prob-
lem No. 396 from VAN MILL and REED [1990]:

1.3. PROBLEM (MICHAEL [1990]). Let Y be a G5-subset of a Banach space B. Does then
every LSC mapping F' : X — Y of a paracompact space X with convex closed values
in Y have a continuous selection?

GUTEV [1994] proved that the answer is affirmative when X is a countably dimensional
metric spaces or a strongly countably dimensional paracompact space. Problem 1.3 has
recently been answered in the affirmative for domains having the so-called C-property:

1.4. THEOREM (GUTEV and VALOV [2002]). The answer to Problem 1.3 above is affir-
mative for C-spaces X.

O We present an adaptation of the original Gutev-Valov argument. Of the C-property
we shall need only the part of a theorem of USPENSKII [1998], to the effect that every
mapping of such an X into a Banach space with open graph and aspherical values has
a selection.

Hence let A,, be closed subsets of a Banach space B and

F:X Y =B\( fjAn)

a convex-valued LSC mapping with values that are closed in Y. Let &(z) = Clp(F(z)),
x € X. Apply Theorem 1.1 to the mapping ® : X — B. Let Sg be the set of all selections
of @, endowed with the topology defined by the following local basis (fine topology):

O(f,e()) ={g: If () — g(@)l| <e(x)},
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where € : X — (0, 00) runs through the set of all continuous mappings.

It is well-known that the space C'(X, B) of all singlevalued continuous mappings from
X to B, endowed with such fine topology is a Baire space. Moreover, it contains the
uniform topology. Clearly, S¢ is a uniformly closed subset of C'(X, B). Hence S¢ is also
a Baire space.

With each closed A,, C B one can naturally associate the set of selections, which avoid
the set A,,. Namely, let A, = {f € S¢ : f(z) € Ay, forallz € X}.If f € N, A, then
f:X—=>B\(U,A4n =Y, ieforeveryz € X,

f) eYN®(z) =Y NClp(F(z)) = F(z),

because F'(x) is closed in Y.

It remains to verify that for every n € N, the families A,, of functions are open,
nonempty and dense in S, and then apply the Baire property of Sg. Since we are dealing
with a unique A, it is possible to simply delete the index n.

That A = {f € S¢ : f(z) € A, forall z € X} isopeninSg foraclosed A C B, is
clear: if f(X) C B\ A, then fore(z) = § dist(f(z), A), the inclusion g € O(f,e(-))NSq
implies g(X) C B\ A.

So far all proofs have been a repetition of the argument from MICHAEL [1988]. For-
mally speaking, that A is nonempty follows from density of A in S¢. However, we shall
proceed in reverse order since it is more convenient to begin with the nonemptiness of A.

Let us define a mapping [® < A] : X — B as follows:

[® < A] (r) ={y€ B : y is closer to ®(z) than to A}.

Clearly F'(z) C [® < A](x). Hence our new mapping assumes nonempty values. Since
the set A is closed and the mapping ® is LSC, it follows that the graph Gr[® < A] is open.

Let us prove asphericity of each set [® < A] (z), © € X. To this end we first deform
[® < A] (z) into ®(z) \ A, and then we check the asphericity of the latter difference. For
y € [® < A] (x) we choose r(y) > 0 such that the closed ball D(y,r(y)) intersects ®(z)
but does not intersect A. A simple selection (or separation in Dowker’s spirit) arguments
show that one can assume that r(+) is continuous. We apply Theorem 1.1 to the mapping
y — ®(x) N D(y,r(y)), i.e. we pick one of its continuous selections, say z(-).

It is geometrically evident that the entire segment [z(y), y] lies in [® < A] (x) and it
thus simply linear homotopy deforms [® < A] () into ®(x) \ A (see Fig. 1).

Let us now verify that ®(z) N A is a Z-subset of ®(x) with respect to finite-dimensional
domains. To this end, let us consider any mapping v : K — ®(z) of a finite-dimensional K
and for any 0 > 0 we associate to it the multivalued mapping I': K =Y =B\ (U, 4n)
given by:

[(k) = Cly (F(z) N D(y(k), 0))-
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Figure 1

The finite-dimensional selection theorem applies to mapping I', due to complete metriz-
ability of Y, convexity of F'(z) and continuity of v. Hence the resulting selection 7' is
d-close to 7y and avoids A. The asphericity of the difference ®(z) \ A now follows by
a standard argument (see USPENSKII [1998]).

Thus we can apply the Uspenskii selection theorem to the mapping [ < 4] : X —» YV
defined on the C-space X. Let g be a selection of [® < A]. We repeat the previous proof,
choosing closed balls D(g(z),r(x)) intersecting ®(z) but avoiding the set A, such that
r(-) + X — (0,00) is a continuous mapping. Then a selection (one more application of
Theorem 1.1) of the mapping = — ® N D(g(z),r(x)) is the desired selection of the map-
ping @, avoiding A. Therefore we have proved the nonemptiness of the set A C C'(X, B).

In order to prove the density of A C S we pick ¢ € Sg and a continuous mapping
€ : X — (0,00). Then one can repeat the above argument on nonemptiness of the set of
selections avoiding A for the mapping

¥(x) = B(x) N Dl((x), ).

In other words, there is an element in A which is e-close to ¢. This proves the density of
Ain Seg. O

For the sake of completeness we reproduce here the complete statement of the result of
Gutev and Valov.
1.5. THEOREM (GUTEV and VALOV [2002]). For any paracompact space X the following
conditions are equivalent:
(a) X is a C-space;

(b) Let Y be a Banach space and F' : X — Y an LSC mapping with closed convex
values. Then, for every sequence of closed-valued mappings ¥, : X — Y such
that each U, has a closed graph and U, (x) N F(x) is a Zso-set in F(x) for every
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x € X andn € N, there exists a singlevalued continuous mapping f : X — Y with
f(z) € F(z) \U{¥.(x) : n € N}, for each z € X; and

(c) Let Y be a Banach space and F' : X — Y be an LSC mapping with closed convex
values. Then, for every closed A C Y there exists a singlevalued continuous se-
lection for F' avoiding A, provided that A N F(x) is a Zs-set in F(x), for each
reX.

At present it is reasonable to expect that an affirmative solution of Problem 1.3 would
yield a characterization of C'-property of the domain X.

1.6. PROBLEM. Are the conditions (a) — (¢) from Theorem 1.5 equivalent to the following
condition:

(d) Let Y be any Gs-subset of a Banach space and F' : X — Y an LSC mapping with
convex values which are closed in Y. Then F' admits a singlevalued continuous
selection.

As a continuation of the above technique, Valov has given a selectional characteriza-
tion of paracompact spaces, having the so-called finite C-property. To introduce it we
do not use the original definition given by BORST [2007?], but its characterization via
the C-property. Namely, a paracompact space X has finite C-property if there exists
a C-subcompact K C X such that dim A < oo, for each closed A C X \ K.

1.7. THEOREM (VALOV [2002]). For any paracompact space X the following conditions
are equivalent:

(a) X has finite C-property;

(b) For any space Y and any infinite aspherical filtration {F,, : X — Y}, of strongly
LSC mappings there exists m € N such that F,, admits a singlevalued continuous
selection; and

(c) For any space Y and any infinite aspherical filtration {F,, : X — Y}22, of open-
graph mappings there exists m € N such that F,, admits a singlevalued continuous
selection.

Here, strong lower semicontinuity of a mapping F' : X — Y means that the set {z € X :
K C F(xz)} is open for each subcompactum K C X. As for a filtration of mappings, we
have that for each z € X and for each natural n € N,

Fl({L') C FQ(QZ‘) C Fg((L‘) C ...

and the inclusion F},(z) C Fy,+1(z) is homotopically trivial up to dimension n (compare
with SHCHEPIN and BRODSKY [1996]).

The coincidence of the class of spaces having finite C'-property with the class of weakly
infinitely dimensional spaces (in the sense of Smirnov) is a necessary condition for the
affirmative solution of one of the main problems of infinite dimensional theory: Does
every weakly infinite-dimensional compact metric space have the C-property?
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2. Selectors for hyperspaces

2.A. Given a Hausdorff space X and the family F(X) of all nonempty closed subsets
of X, we say that a singlevalued mapping s : F(X) — X is a selector on F(X), provided
that s(A) € A, forevery A € F(X). From the formal point of view, a selector is simply
a selection of the multivalued evaluation mapping, which associates to each A € F(X)
the same A, but as a subset of X. However, historically the situation was converse. Fifty
years ago, in his fundamental paper MICHAEL [1951] proposed a splitting of the problem
about existence of a selection g : ¥ — 2% into two separate problems: first, to check
that ¢ is continuous and second, to prove that there exists a selector on 2¥X. Hence, the
selection problem was originally reduced to a certain selector problem.

Subsequently, the situation has stabilized to the present state. Namely, selectors are
a special case of selections, but with an important exception: as a rule, no general se-
lection theorem can be directly applied for resolving a specific problem on selectors.
Specific tasks require specific techniques. Well-known papers ENGELKING, HEATH and
MICHAEL [1968], CHOBAN [1970], and NADLER and WARD [1970] illustrate the point.

From early 1970’s to mid 1990’s the best result on continuous selectors was due to VAN
MILL and WATTEL [1981], who characterized the orderable Hausdorff compacta as the
compacta having a continuous selector for the family of at most two-points subsets (hence
it was the extension of the similar result for the class of continua MICHAEL [1951]).

In the last five years the interest in theory of selectors has sharply increased — perhaps
the monograph of BEER [1993] was one of the reasons. Over thirty papers have been
published or are currently in print. We have chosen the results of HATTORI and NOGURA
[1995] and VAN MILL, PELANT and POL [1996] as the starting point of this part of the
survey.

2.B. For a subset S C F(X) a selector is a mapping s : S — X which selects a point
s(A) € A foreach A € S. Here, hyperspaces F(X) and their subsets are endowed with
the Vietoris topology 7 which is generated by all families of the type

{Aef(X):ACLnJVi, ANV #0 },

i=1

over all finite collections of open subsets V; of X. It is well-known that for metric spaces
the Vietoris topology and the Hausdorff distance topology coincide if and only if the
space X is compact.

By HUREWICZ [1928], for each metrizable space X the absence of a closed subspace
of X homeomorphic to the rationals QQ is equivalent to X being a hereditarily Baire space,
i.e. every nonempty closed subspace of X is a Baire space. Due to the absence of contin-
uous selectors for 7(Q) ( see ENGELKING, HEATH and MICHAEL [1968]), every metriz-
able space admitting a continuous selector is hereditarily Baire. This implication holds in
the class of all regular spaces.

2.1. THEOREM (HATTORI and NOGURA [1995]). Let X be a regular space having a con-
tinuous selector for F(X). Then X is a hereditarily Baire space.
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O For a representation of a first Baire category space X = Uzo:l X, as a union of closed
nowhere dense subsets X,, C X and for any continuous selector s : F(X) — X itis
possible to inductively construct a sequence of pairs {(Ay,, F},) }52, such that for each n:

(0) A,, is a regular closed subset of X and F, is a finite subset of the interior of A4,,;
(1) F—1 C F,, CIntA, C A, CAp;

(2) s(A) ¢ X,,, whenever F,, C A C A,; and

3) s(A,) ¢ F.

Having done such a construction, we see that s((,~_, A,,) ¢ X,,. This contradicts the

fact that X = J)2 | X,,. O

Note that GUTEV, NEDEV, PELANT and VALOV [1992] proved (in a somewhat similar
manner) that a metric space X is hereditarily Baire whenever every LSC mapping from
the Cantor set to F(X) admits a USC compact-valued selection. Moreover, they showed
that under such hypotheses either X is scattered (i.e. every closed subset has an isolated
point) or X contains a homeomorphic copy of the Cantor set.

Thus we have the following facts for hyperspaces of the rationals:

2.2. THEOREM (ENGELKING, HEATH and MICHAEL [1968] HATTORI and NOGURA
[1995]). There exist no continuous selectors for F(Q), for the family of all closed nowhere
dense subsets of Q or for the family of all clopen subsets of Q . There exists a continuous
selector on the family of subsets of Q of the form C' N Q, where C' is connected subset of
the real line.

A natural question concerning existence of selectors for the family of all discrete closed
subsets of QQ arises immediately. A negative answer is a direct corollary of the follow-
ing theorem in which C(M) denotes the family of all discrete closed subsets of a metric
space M, which admits a representation as the value of some Cauchy sequence having no
limit.

2.3. THEOREM (VAN MILL, PELANT and POL [1996]). Let C(M) have a singlevalued
continuous selector s. Then M is a completely metrizable space. Moreover, one can
assume that every selector s is USC and finite-valued.

Nogura and Shakhmatov investigated spaces with a ’small” number of different contin-
uous selectors. Recall that orderability of a topological space X means the existence of
a linear order, say <, on X such that the family of intervals and rays with respect to <
constitutes a base for topology of X.

2.4. THEOREM (NOGURA and SHAKHMATOV [1997a]). Let X be an infinite connected
Hausdorff space. Then there are exactly two continuous selectors for F(X) if and only if
X is compact and orderable.

As a corollary, the topological (up to a homeomorphism) description of the interval is as
follows: this is an infinite, separable, connected, Hausdorff space, admitting exactly two
selectors for F(X). They also proved the following result:
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2.5. THEOREM (NOGURA and SHAKHMATOV [1997b]). A Hausdorff space X has finitely
many selectors if and only if X has finitely many components of connectedness and there
exists a compatible linear order < on X such that every closed subset A of X has a mini-
mal element with respect to <.

Moreover, the total numbers of different selectors over all X in Theorem 2.5 constitutes
a sufficiently scattered subsequence of the natural numbers N. The first seven members
are: 1,2,4,24,576, 720 and 4096. This total number is a function of two natural parame-
ters: the number n of all components of connectedness and the number m of all compact,
nonsingleton components of connectedness (see NOGURA and SHAKHMATOV [1997b] for
the precise formula).

2.C. There exist different topologies on the set F(X') whose restrictions on X C F(X)
are compatible with the original topology of X. The Vietoris topology 7y is only one of
them. Hence different topologies on hyperspaces give different problems on selectors,
continuous with respect to these topologies. Gutev was the first to systematically study
this subject. For a metric space (X, d) the d-proximal topology 7s5(q) on F(X) is defined
as the Vietoris topology 7y, but with the following additional ”boundary” restriction

{Ae]—'(X):ACLnJVi, ANV, 0, dist(A,X\OVi)>O},

i=1 i=1

over the all finite collections of open subsets V; of X.
Thus 75(q) C 7v and it can easily be seen that 7545 C T (q), Where Tg(q) is the
topology on F(X) generated by the Hausdorff metric.

2.6. THEOREM (GUTEV [1996]). For every complete nonarchimedean metric d on the
space X there exists a Ts(q)-continuous selector for F(X).

This theorem improves earlier results in ENGELKING, HEATH and MICHAEL [1968]
and CHOBAN [1970] because each completely metrizable space X with dim X = 0 admits
a complete nonarchimedean metric d. The assumption in Theorem 2.6 that the metric d
is nonarchimedean cannot be simply replaced by dim X = 0. Namely, on the space I
of irrationals there exists a complete compatible metric d such that (F(I), 75(4)) has no
continuous selectors — see COSTANTINI and GUTEV [2007].

Theorem 2.6 holds for separable spaces X for the so-called d-ball proximal topology
TsB(d) C Ts(d)» Which is defined as topology 754y with the additional restriction that the
union [ J;._, V; can be represented as a union of a finite number of closed balls of (X, d)
(for details see GUTEV [1996], GUTEV and NOGURA [2000]).

Bertacchi and Costantini unified separability of the domain with the nonarchimedean
restriction on metric d.

2.7. THEOREM (BERTACCHI and COSTANTINI [1998]). Let (X,d) be a separable com-
plete metric space with a nonarchimedean metric d. Then the hyperspace (F(X), 7w (d))
admits a selector if and only if it is totally disconnected.

Here, 1y (4) in Theorem 2.7 stands for the Wijsman topology which is the weakest
topology on F(X) with continuous distance functions dist(z,-) : F(X) - R, = € X.
Note, that Tw(d) C ToB(d)-
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To end this list of the most important recent hyperspace topology results, recall that the
Fell topology Tr has the base:

{Aef(X):ACLnJVi, ANV #0}

i=1

over all finite collections of open subsets V; of X with compact complement of the union
UV;.

Gutev and Nogura presented the most comprehensive up-to-date view of selectors for
Vietoris-like topologies.

2.8. THEOREM (GUTEV and NOGURA [2000]). Let X be a completely metrizable space
which has a clopen D-orderable base for some D C F(X). Then F(X) admits a Ty (p)-
continuous selector.

Here, the base of the topology 7y (), which is called a D-modification of the Vietoris
topology Ty, constitutes the base of the Vietoris topology neighborhoods:

{Ae]—‘(X):ACLnJVi, ANV, #0},

i=1

with the additional property that the complement X \ UV; can be represented as a union
of a finite number of elements of the family .

The following examples show, that 7y () -continuous selectors with respect to various
D C F(X) are continuous selectors with respect to Vietoris-like topologies 7s(4), T58(a),
TB(d)» Tw(d)» and 7. Below, the d-clopeness of A C X means that dist(A, X \ A) > 0
and d-strongly clopeness of A C X means the existence of a finite F' C A and a positive
number d(x) < dist(z, X \ A), for every z € F, such that A is the union of closed balls
of radii d(z), centered at z € F.

2.9. THEOREM (GUTEV and NOGURA [2000]). Let (X, d) be a metric space.
() If D is a family of d-clopen subsets of (X, d) then Ty (n) C Ts(a);
(b) If D is a family of d-clopen subsets of (X, d) which are finite unions of closed balls
then Tv(m) C TB(d)
(©) If D is a family consisting of finite unions of closed balls then Tv ) C Tp(a);
(d) If D is a family of strongly d-clopen subsets of (X,d) then Ty (qy C Tw (a);
(e) If D is a family of compact subsets of X then Ty ) C Tp.

The proof of Theorem 2.9 looks like a sophisticated modification (or "ID-modification”)
of the well-known method of coverings based on the existence of a suitable sieve (p, )
on X.

Here, a pair (p, ) is called a sieve on X if p = {(pn, A} is a countable spectrum of
a discrete pairwise disjoint index sets A,, and surjections p,, : A,+1 — A, andy = {v,}
is a sequence of open coverings v, = {Va,n : @ € Ay} which are linked together with the
property that V, = {V;s : B € p;' (o)}, a € Ap.
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So the values of a Ty (p)-continuous selector on F(X') are constructed as the kernels
of p-chains of some precise and D-orderable sieve on X. A series of results on selectors
follows from Theorems 2.8 and 2.9. For instance, as an improvement of Theorem 2.6,
one can see that every completely metric space (X, d) admits a 75(4)-continuous selector,
whenever d-clopen subsets of X constitute a base of topology of X. An interesting ap-
proach was proposed for the Fell topology and ball proximal topology. Thus Theorems
2.10 and 2.11 below are a part of a result of Gutev and Nogura.

For the moment, let us say that a surjection [ : (X,d) — (Y, p) between metric spaces
is a fiber-isometry if d(z,y) = p(I(z),(y)), for all z,y with different /() and I(y).

2.10. THEOREM (GUTEV and NOGURA [2000]). Let Y be the hedgehog of the countable
weight over a convergent sequence of reals and X a strongly zero-dimensional metrizable
nonlocally compact space. Then there exists a surjection | : X — Y such that one can
associate to each compatible metric p on'Y a compatible metric d on X such that:

(a) I is a fiber-isometry with respect to d and p; and

(b) X has a clopen base of closed d-balls.

In particular, the associated mapping Iz : F(Y) — F(X) is continuous with respect
to ball proximal topologies. By virtue of Theorem 2.10 and the absence of ball proximal-
continuous selectors for hyperspaces of hedgehog Y, the following characterization theo-
rem can be proved:

2.11. THEOREM (GUTEV and NOGURA [2000]). For a strongly zero-dimensional metriz-
able space X the following conditions are equivalent:
(a) X is locally compact and separable; and

(b) There exists a Tp-continuous selector on F(X).

As a continuation of this result and in the spirit of the van Mill-Wattel theorem, GUTEV
and NOGURA [2001, 2007?a] have recently proved that a Hausdorff space X is topologi-
cally well-orderable if and only if (X ) admits a 7m-continuous selector. ARTICO and
MARCONI [2001] and GUTEV [2001] have generalized this characterization to F»(X) =
{Ae F(X): |A|<2}.

2.D. Let us return to the Vietoris topology on F(X). Another characterization of the
van Mill-Wattel type was obtained by Fujii and Nogura. See also M1YAZAKI [2001a] for
extending van Mill-Wattel result to the class of almost compact spaces.

2.12. THEOREM (FuJII and NOGURA [1999]). Let X be a compact Hausdorff space. The
Jfollowing two conditions are equivalent:
(a) X is homeomorphic to an ordinal space; and

(b) There exists a continuous selector s : F(X) — X, whose values are isolated points
of a closed subset of X.

Artico, Marconi, Moresco and Pelant proposed one more selector description of certain
topological properties. A topological space is said to be nonarchimedean if for some base
of open sets for an arbitrary pair of nondisjoint members of the base one of the members
is a subset of the other one. A nonarchimedean space is a P-space if and only if all of its
countable subsets are closed (and hence discrete).
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2.13. THEOREM (ARTICO, MARCONI, MORESCO and PELANT [2001]). Let X be a
nonarchimedean P-space. Then the following conditions are equivalent:

(a) X is scattered;
(b) X is topologically well-orderable space; and

(¢) There exists a continuous selector on F(X).

Fuitr, M1YAZAKI and NOGURA [2002] have recently showed that any countable regu-
lar space X admits a continuous selector if and only if it is scattered.

Now, let s : F(X) — X be a continuous selector and let G C X be nonempty and
clopen. One can define another selector, say s which associates to each A outside of G
exactly s(A) and to each A meeting G, the value s(A N G). It easy to see that s¢ is also
continuous and that s¢(X) € G (see Fig. 2).

l— S(AQG)

Figure 2

This observation allowed GUTEV and NOGURA [2001] to prove that if a zero-dimen-
sional (in the ind sense) Hausdorff space X admits a continuous selector then the set
{f(X) : f is a continuous selector} is dense in X. Conversely, if the set {f(X) : f is
a continuous selector} is dense in X, then X is totally disconnected. A local "countable”
version of such observation yields the following characterization:

2.14. THEOREM (GUTEV and NOGURA [2001]). For any first countable Hausdorf{f space
X admitting a continuous selector the following conditions are equivalent:
(a) ind X = 0, and

(b) For each point x € X there exists a selector f, : F(X) — X which is "maximal”
with respect to x, i.e. which selects the point x for every closed A C X, containing .

As a corollary, a locally compact Hausdorff space X admitting a continuous selector is
zero-dimensional in the ind sense if and only if the set { f (X)) : f is a continuous selector }
is dense in X.
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Subsequently, Garcia-Ferreira, Gutev, Nogura, Sanchis and Tomita examined more clo-
sely the notion of z-maximal and minimal selectors. Hence in the spirit of Michael theory
they proved that for a Hausdorff space X, admitting a continuous selector every such
selector is maximal with respect to some point if and only if X has at most two different
continuous selectors on F(X):

2.15. THEOREM (GARCIA-FERREIRA ET AL. [2007?]). For any countable space X the
following two conditions are equivalent:

(a) X is a scattered metrizable space; and

(b) For every point x € X there exists a continuous x-maximal selector on F(X).

3. Relations between U- and L-theories

3.A. Everyone understands the notion of continuity of a singlevalued mapping between
topological spaces in a unique sense. For a multivalued mapping the term “continuity’ has
a “multivalued” interpretation, because of many different topologies on the hyperspace
F(X) which coincide on X C F(X) with the original topology. In this part we consider
links between two most useful types of continuity - the upper semicontinuity and the lower
semicontinuity of multivalued mappings. In both cases one can try to find some suitable
relations between multivalued and singlevalued mappings.

In the first case (upper semicontinuity) the notion of approximation by singlevalued
mappings arises naturally. For lower semicontinuity the notion of a selection is a starting
point. Hence we shall for the moment talk about U-theory and about L-theory, respec-
tively.

On the one hand, the main techniques and facts of U-theory and L-theory look very
similar. For example, UV ™-properties of values F'(x) and ELC™&C™-properties in the
case dim X < oo (or the nontopological restriction of convexity of values for an arbitrary
domain, which occurs as a paracompact space in both theories).

Moreover, in both cases there are principal obstructions to purely topological passage
from finite dimensional to the infinite dimensional cases - see examples of PIXLEY [1974],
TAYLOR [1975] and DRANISHNIKOV [1993].

On the other hand, no theorems of U-theory follow directly from theorems of L-theory
and vice versa. For example, clearly an e-approximation f of F' can be defined as a se-
lection of a double e-enlargement F; : x — Dy (F(Dx(z,€)),e). Many authors have
observed this fact. But in general, there is no information about topological or convexity-
like properties of values of such an enlargement. Hence the selection theory cannot be
applied directly. In brief, we had two closed but ”parallel” theories for multivalued map-

pings.

3.B. Shchepin and Brodsky have proposed a unified approach of simultaneously using
U- and L-theories in order to find a new proof of the finite-dimensional Michael selection
theorem together with its recent generalization in MICHAEL [1989]. The key ingredient
of the their considerations is the notion of a filtration of a multivalued mapping. Two
different kinds of filtrations were used.
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For a topological spaces X and Y a finite sequence {F; }?* , of a multivalued mappings
F; : X — Y is said to be an L-filtration if: (1) Fj is a selection of Fj 41, 0 < i < n;
(2) the identity inclusions F;(z) C Fyi(x) are i-apolyhedral for all x € X, ie. for
each polyhedron P with dim P < 4 every continuous mapping g : P — F;(z) is null-
homotopic in Fjy1(z); (3) the families {{z} x F;(z)}rex are ELC*~! families of subsets
of the Cartesian product X x Y, 0 < i < n; (4) for every 0 < ¢ < n there exists
a Gg-subset of X x Y such that {z} x F;(z), z € X, are closed in this G5-subset.

3.1. THEOREM (SHCHEPIN and BRODSKY [1996]). Let X be a paracompact space with
dim X < n, Y acomplete metric space and { F;}?_, an L-filtration of maps F; : X —'Y.
Then the mapping F,, : X — Y admits a singlevalued continuous selection.

It is easy to see that Theorem 3.1 applies to the constant filtration F; = F" and hence we
obtain the finite-dimensional selection theorem as a corollary of the filtered Theorem 3.1.
Moreover, for a constant filtration F; = F' with F' having the properties (3) and (4) from
the definition of L-filtration above, we obtain the generalization of the finite-dimensional
selection theorem which was proposed in MICHAEL [1989]. Note, that almost the same
filtered approach for open-graph mappings was earlier proposed by BIELAWSKI [1989],
but with no detailed argumentation.

Next, we define the notion of a U-filtration. For topological spaces X and Y a fi-
nite sequence {H;}?_, of compact-valued upper semicontinuous mappings is said to be
a U-filtration if: (1°) H; is a selection of H; 11, 0 < ¢ < n; (2’) the identity inclusions
H;(z) C H;y1(z) are UVi-aspherical for all z € X, i.e. for every open U C H; (x)
there exists a smaller open V' C H;(x) such that every continuous mapping g : S* — V
is null-homotopic in U; where S? is the standard i-dimensional sphere. Clearly, condition
(2’) in the definition of a U-filtration looks like an approximate version of condition (2) in
the definition of an L-filtration.

We shall now formulate the notion of (graphic) approximations of multivalued mappings
F:X =Y. LetV = {V,}aca beacovering of X and W = {W, },er acoveringof Y.
A singlevalued mapping f: X — Y is said to be a (V x W)-approximation of F' if for
every z € X there exist « € A and v € T and points ' € X, y’' € F(z') such that =
and z' belong to V,,, f(x) and y’ belongs to WW,. In other words, the graph of f lies in
the neighborhood of the graph F' with respect to the covering {Vy X W, }aea ver of the
Cartesian product X x Y.

For metric spaces X and Y and for coverings V and W of X and Y by &/2-open balls we
obtain the more usual notion of (graphic) e-approximations AUBIN and CELLINA [1984].
Namely, a singlevalued mapping f. : X — Y between metric spaces (X, p) and (Y, d) is
said to be e-approximation of a given multivalued mapping F' : X — Y if foreveryz € X
there exist points ' € X and y’ € F(z') such that p(z,2") < e and d(y’, f-(2)) < e.

We recall the well-known Cellina approximation theorem (see AUBIN and CELLINA
[1984]) which states that each convex-valued USC F' : X — Y from a metric space
(X, p) into a normed space (Y, || - ||) with convex values F'(z), z € X, is approximable,
i.e. that for every € > 0 there exists a singlevalued continuous e-approximation of F'. The
following theorem is a natural finite-dimensional version of Cellina’s theorem:

3.2. THEOREM (SHCHEPIN and BRODSKY [1996]). Let X be a paracompact space with
dim X < n, Y an ANE for the class of all paracompacta and {H;}}'_, a U-filtration of
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mappings H; : X — Y. Then for every open in X x Y neighborhood G of the graph
['(H,) of the mapping H,, there exists a continuous singlevalued mapping h : X — 'Y
such that the graph T'(h) lies in G.

The following theorem gives an intimate relation between L-filtrations and U -filtrations.
This theorem can also be regarded as a filtered analogue of the compact-valued selection
theorem:

3.3. THEOREM (SHCHEPIN and BRODSKY [1996]). Let X be a paracompact space, Y be
a complete metric space and {F;}7_, an L-filtration of maps F; : X — Y. Then there
exists a U-filtration {H;}7_, such that H, is a selection of F,,. Moreover each H; is
a selection of F;, 0 < i < n and the inclusions H;(z) C H;y1(z) are UV *-apolyhedral.

We point out some discordance: in the definition of an L-filtration we talked about
apolyhedrality and in the definition of a U-filtration about asphericity. In view of Theo-
rem 3.3, the UV *-asphericity of H;(z) C H;1(z) cannot be directly derived from the
UVi-asphericity of inclusions F;(z) C Fi1i(z), = € X, of given L-filtration {F;}7 .
Moreover, there is a gap in the original proof of Theorem 3.1 — the authors in fact need
an L-filtration {Fi}?io of length n2, not n. BRODSKY [2000] later partially filled this gap
by considering singular filtrations (see below). Recently, BRODSKY, CHIGOGIDZE and
KARASEV [2002] have completely solved the problem (see Theorem 4.22 below).

We now formulate the crucial technical ingredient of the whole procedure. The follow-
ing theorem asserts the existence of another U-filtration { H}}?_, accompanying a given
L-filtration { F;}_,. Here, we drop the conclusions that Hy(z) C Fo(X), ..., H,—1(z) C
F,,_1(z) and add the property that the sizes of values H,,(z) can be chosen to be less than
arbitrary given € > 0.

3.4. THEOREM (SHCHEPIN and BRODSKY [1996]). Let X be a paracompact space with
dim X < n, Y a Banach space and € > 0. Then for every L-filtration {F;}?_,, every
U-filtration { H; }?_, with H,, being a selection of F,, and every openin X x Y neighbor-
hood G of the graph I'(Hy,) of the mapping H,, there exists another U-filtration {H}7_,
such that:

(1) H}, is a selection of F,;
(2) The graph T'(H),) lies in G; and
(3) diam H), (z) < ¢, foreachz € X.

The proof of Theorem 3.4 is divided, roughly speaking into two steps. One can begin
by the application of Theorem 3.2 to the given a U-filtration {H;}} , with H,, C F,.
Hence we obtain some singlevalued continuous mapping h: X — Y which is an approx-
imation of H,. Then we perform a thickening” procedure with h, in order to obtain
anew L-filtration {F}}?_, with small sizes of values F} (z), x € X. Such an L-filtration
{F/}™_, naturally arises from the ELC™~! properties of the values of the final map-
ping F,, of a given L-filtration {F;}}_,. Finally, we use the "filtered” compact-valued
selection Theorem 3.3 exactly for the new L-filtration {F}}?_,. The result of such an ap-
plication gives the desired U-filtration { H/}?", with small sizes of values H),(z), z € X.
This is the strategy of the proof of Theorem 3.4. The inductive repetition for some series
>4 €k < € involves in each fiber F,,(z) a sequence of subcompacta HE (z) which turns
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out to be fundamental with respect to the Hausdorff metric. Its limit point gives the value
f(x) of the desired selection f of F.

3.C. For resolving some difficulties with the proof of Theorem 3.1 and in order to find
new applications of the filtered approach, BRODSKY [2002, 2007?] introduced the notion
of a singular filtration of a multivalued mapping.

For two multivalued mappings ® : X — Y and ¥ : X — Z with the same base, their
fiberwise transformation is defined as a singlevalued continuous mapping f : '¢ — 'y
between their graphs such that f({z} x ®(z)) C {z} x ¥(z),z € X.

For a multivalued mapping F' : X — Y its singular n-length filtration is defined as
atriple F = {f;, F}, f;} where F; : X — Y; are multivalued mappings, f; : F; — F and
fi : F; — F4 are fiberwise transformations such that f; = f;11 o fl (see Fig. 3).

A singular filtration F is said to be:

(1) simple if all fiberwise transformations are fiberwise inclusions;

(2) complete if all spaces Y; are completely metrizable and all fibers {z} x F;(z) are
closed in some Gs-subset of X x Yj;

(3) contractible if inclusions f;({x} x Fj(x)) C {x}x Fi41(x),z € X are homotopically
trivial;

(4) connected if inclusions f;({z} x Fy(x)) C {x} x Fi;1(z),z € X are i-aspherical
for all ;

(5) lower continuous if all mappings F; are LSC and family {{z} x F;(z)}.ex is
ELC*'; and

(6) compact if all mappings F; all compact-valued and USC.

3.5. THEOREM (BRODSKY [2000]). For each complete, connected and lower continu-
ous n-length filtration F = { fi, Fi, fi} of mappings from a metrizable space X with
dim X < n into a completely metrizable space Y there exists a singlevalued continuous
selections of F,.

Theorem 3.5 is based on the following theorem which, briefly speaking, reduces a sin-
gular filtration to some simple filtration with nice topological properties. Note, that in the
following theorem n can be equal to infinity.

3.6. THEOREM (BRODSKY [2000]). For each complete, connected and lower continu-
ous n-length filtration ¥ = {f;, F;, fi} of mappings from a metrizable space X with
dim X < n into a completely metrizable space Y there exist compact, contractible, sim-
ple n-filtration G = {§;, G}, g9;} and fiberwise transformation h : F — G.
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Clearly, Theorem 3.6 is a singular version of Theorem 3.3. Some words about its proof
are in order. Metrizable domain X is the image of some zero-dimensional metric space Z
under some perfect mapping p : Z — X. The inductive procedure of extensions of h
reduces to a selection problem for a suitable multivalued mapping from Z to a space of
continuous singlevalued mappings from the graph of fiberwise join I'g,,-1. The latter
functional space is endowed by some asymmetric (not metric) and the analogue of stan-
dard zero-dimensional selection theorem done here by hands”, following known covering
technique. In Theorem 3.6 metrizability of X is needed because of necessity of certain
asymmetry in a suitable functional space.

We formulate two possibilities for applications which give the first known positive step
towards a solution of the two-dimensional Serre fibration problem (see Problem 5.12 be-
low).
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3.7. THEOREM (BRODSKY [2002]). Let f : X — Y be a mapping from a metrizable space
onto an AN R metrizable space with all preimages homeomorphic to a fixed compact two-
dimensional manifold. Then each partial section of f over closed subsets A C X admits
a local continuous extension, whenever:

(1) f is homotopically 0-regular; or

(2) f is a Serre fibration and X andY are locally connected.

The intermediate result between Theorems 3.5 and 3.7 states that a connected com-
plete lower continuous 2-length singular filtration admits a continuous selection whenever
it maps an AN R metric space X into a complete metric space Y and all values of the
last member of the filtration are hereditary aspherical. Note, that any two-dimensional
manifold is a locally hereditary aspherical space.

There are many applications of the filtered approach in the approximation theory which
we shall omit here for the lack of space (see BRODSKY [1999, 2002]).

3.D. In Sections 1 and 2 above problems from L-theory were reduced to problems in
U-theory. Here we consider a converse reduction which was proposed in REPOVS and
SEMENOV [2007].

A family £ of nonempty subsets of a topological space Y is said to be selectable with
respect to a pair (X, A) if for each LSC mapping F' : X — Y with values from £ (i.e.
F(z) € L forevery z € X) and each selection s : A — Y of the restriction F'| 4 there
exists a selection f : X — Y of F' which extends s (shortly, £ € S(X, A)).

For a positive r and for a family £ of nonempty subsets of a metric space Y we denote
by L, the family of all subsets of Y which are r-close (with respect to the Hausdorff
distance) to the elements of the family.

A family £ of a nonempty subsets of a metric space Y is said to be nearly selectable
with respect to a pair (X, A) if for every € > 0 there exists 0 > 0 such that for each LSC
mapping F' : X — Y with values from £; and for each selection s : A — Y of the
restriction F'| 4 there exists an e-selection f : X — Y of F which extends s. Shortly,
L € NS(X, A). Below, we shall consider only hereditary families of sets.

3.8. THEOREM (REPOVS and SEMENOV [200?]). Let H : X — Y be a USC mapping be-
tween metric spaces and A a closed subset of X, and let all values of H be in some family
L which is nearly selectable with respect to the pair (X, A). Then for every covering w
of X, every e > 0 and every selection s : A — Y of the restriction H| 4 there exists an
(w x e)-approximation of H which extends s.
O Fora givene > 0 we choose e > 0 > 0 with respect to the definition of near selectability
of the family £. Next we construct a new multivalued mapping F' : X — Y such that:

(a) F'is an LSC mapping and H(z) C F(x), forevery x € X; and

(b) For every = € X, there exists z, € X such that H(z,) C F(z) C D(H(2;),9).

In particular, F'(z) € L5. By paracompactness of the domain X, one can find a locally
finite open star-refinement v of the given covering of X. For each x € X, let V, be an
arbitrary element of the covering v such that x € V,. Now the covering of the domain
arises naturally. Namely,

Ur = Hfl(D(H(l‘),(S)) ﬂ Vza reX.
We shall need the following lemma:
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3.9. LEMMA (SEMENOV [2000b]). For each positive T and each open covering {Uy }zex,
x € U, of a metric space X there exists a lower semicontinuous numerical function
[ : X — (0,7/2] with the following property: for every © € X there exists z € X such
that z € D(z,1;) C U,.

We now apply this lemma to the covering {U, },cx chosen above, for 7 = ¢, and we
define F : X — Y, by setting F'(z) = H(D(=,l,)). O

A typical example of a nearly selectable family with respect to arbitrary paracompact
domains and their closed subsets is the family of all nonempty convex subsets of a normed
space. As a special case we have for the empty set A:

3.10. COROLLARY (REPOVS and SEMENOV [2007]). Let H : X — Y be an USC map-
ping between metric spaces and let all values of H belong to some family L which is nearly
selectable with respect to X. Then H is approximable.

As a concrete application we have the following relative approximation fact:

3.11. COROLLARY (REPOVS and SEMENOV [200?)). Let H : X — Y be a convex-valued
USC mapping from a metric space X into a normed space Y and A C X a closed subset.
Let € > 0 be given. Then:
(1) Each (g/4)-selection s : A — Y of the restriction H|4 can be extended to some
e-approximation h : X —Y of H; and

(2) There exists a continuous function 0 : X — (0, 00) such that each 6(-)-approximation
a: A — Y of H can be extended to an e-approximation h : X —'Y of H.

In the nonconvex situation the same technique was applied in SEMENOV [2000b] for re-
solving approximation problem for paraconvex-valued mappings. For a nonempty closed
subset P C Y of a Banach space (Y, || - ||) and for an open ball D C Y of radius r, one
defines:

0(P, D) = sup{dist(q, P)/r | ¢ € conv(P N D)},

and the value of its function of nonconvexity ap at a point r > 0 is defined as ap(r) =
sup{d(P, D)}, where sup is taken over the set of all open balls of radius r. Next, a subset
of a Banach space is said to be a-paraconvex if its function of nonconvexity majorates by
the preassigned constant a € [0, 1).

A direct calculation shows that for every o < 1 and R > 0 the family P, g of all
a-paraconvex subsets P of a Banach space Y with diam P < R is nearly selectable with
respect to paracompact spaces. Moreover, one can check that in this case § = m
is a suitable answer for § = d(¢) in the definitions above. Hence for any o € [0,1) and
any USC mapping F' : X — Y from a metric space to a normed space we see that F' is
approximable if all values F'(z), x € X, are a-paraconvex in Y.

As for other unified U- and L- facts we conclude by the following result.

3.12. THEOREM (BEN-EL-MECHAIEKH and KRYZSZEWSKI [1997]). Let F' : X —» Y
be a LSC mapping and H : X — Y a USC mapping from a paracompact space X into
a Banach space Y . Suppose that both mappings are convex-valued, F' is closed-valued and
F(z) N H(z) # 0,x € X. Then for every ¢ > 0 there exists a continuous singlevalued
mapping f : X — Y which is a selection of F' and e-approximation of H.
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4. Miscellaneous results

4.A. Problem 1.3 deals with generalized ranges of multivalued mappings: substitution
of a G5-subset instead of a Banach space. The following problem is related to generalized
domains (as a variation, one can consider reflexive Banach spaces instead of Hilbert space).

4.1. PROBLEM (CHOBAN, GUTEV and NEDEV). Does every LSC closed- and convex-
valued mapping from a collectionwise normal and countably paracompact domain into
a Hilbert space admit a singlevalued continuous selection?

As a continuation of the result in NEDEV [1987], Choban and Nedev considered more
complicated, in general nonparacompact domains of an LSC mappings. They extended
a given LSC mapping to some paracompactification (Dieudonné completion) of an original
domain and then applied Theorem 1.1. Recall that GO-spaces are precisely the subspaces
of linearly ordered spaces. Their result is a step towards resolving (still open) Problem 4.1.

4.2. THEOREM (CHOBAN and NEDEV [1997]). Every LSC closed- and convex-valued
mapping F' : X — 'Y from a generalized ordered space X to a reflexive Banach space Y
has a singlevalued continuous selection.

Shishkov obtained similar results for domains which are o-products of metric spaces.
Such a product of uncountably many copies of reals is collectionwise normal and count-
ably paracompact but not pseudoparacompact.

4.3. THEOREM (SHISHKOV [2001]). Every closed- and convex-valued LSC mapping of
a o-product of a metric spaces into a Hilbert space has a singlevalued continuous selec-
tion.

Initially, Shishkov result dealt with separable metric spaces. He had earlier proved that
the same selection result holds for any reflexive range and any collectionwise normal,
countably paracompact and pseudoparacompact domain. Recently Shishkov has strength-
ened the Choban-Nedev theorem above because of paracompactness of the Dieudonné
completition of GO-spaces.

4.4. THEOREM (SHISHKOV [2002]). Each LSC closed- and convex-valued mapping of
a normal and countably paracompact domain into a reflexive Banach space admits a LSC
closed- and convex-valued extension over the Dieudonne completition of the domain.

It is interesting that the property of the domain to be collectionwise normal and count-
ably paracompact admits a characterization via multivalued selections. It turns out that
for such purpose it suffices to consider in the assumption of the classical compact-valued
Michael’s selection theorem (see MICHAEL [1959c]) not only an LSC mapping, but such
a mapping together with its a USC selection.

4.5. THEOREM (MI1YAZAKI [2001b]). For a Ti-space X the following conditions are
equivalent:

(a) X is a collectionwise normal and countably paracompact space; and
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(b) For every completely metrizable space Y, every LSC mapping F' : X — Y with
F(x) either compact or F(z) =Y forall x € X and every compact-valued USC
selection H : X — 'Y of F there exist a compact-valued USC mapping ® : X —Y
and a compact-valued LSC mapping G : X — Y such that H(z) C G(z) C
®(x) C F(z), =€ X.

See MIYAZAKI [2001b] for other conditions which are equivalent to (a), (b). Inside
the class of all normal spaces the collectionwise normality property has the following
multivalued extension-type description.

4.6. THEOREM (MIYAZAKI [2001b]). For a normal space X the following conditions are
equivalent:

(a) X is collectionwise normal; and

(b) For every finite-dimensional completely metrizable space Y and every USC mapping
H : X — Y with values consisting of at most n points there exist a compact-valued
USC mapping ® : X — Y and a compact-valued LSC mapping G : X — Y such
that H(z) C G(z) C ®(x), = € X.

Recall also the following generalization of the compact-valued Michael’s selection the-
orem to the class of Cech-complete spaces.

4.7. THEOREM (CALBRIX and ALLECHE [1996]). For each paracompact space X, each
regular AF-complete space Y admitting a weak k-development and each closed-valued
LSC mapping F : X — Y there exist a compact-valued USC mapping ® : X — Y and
a compact-valued LSC mapping G : X — Y such that G(z) C ®(z) C F(z), =z € X.

Note that every AF'-complete submetrizable space X has a weak k-development. A spa-
ce is called AF'-complete if it is Hausdorff and has a sequence of open coverings which
is complete. The class of all Cech-complete spaces coincides with the class of all com-
pletely regular AF'-complete spaces and completely metrizable spaces are exactly metriz-
able AF'-complete spaces.

4.B. Kiinzi and Shapiro used Theorem 1.1 to prove the uniform version of the Dugundji
extension theorem for partially defined mappings:

4.8. THEOREM (KUNZzI and SHAPIRO [1997]). For each metrizable space X there exists
a continuous mapping E : Cye(X) — Cy(X) such that E(f)|gom ; = f for all maps
[ € Cype(X) and for every K € exp.(X) the restriction E|,-1 (k) is a linear positive
operator with E(idk ) = idx.

Here C,.(X) and Cj(X) are sets of all continuous numerical mappings f with com-
pact domain dom f C X and all continuous bounded numerical mappings on the whole
space X . Elements of C,.(X) are identified with their graphs and topology is induced by
the Vietoris topology on F(X X R), where C,(X) is endowed with the usual sup-norm
topology. One can associate to each f € C,.(X) its domain and obtain the projection p
onto exp.(X) - the compact exponent of X .

A sketch of the proof goes as follows. For a Banach space B and every K € exp.(B)
one must consider the subset R(K) C Cy(B, B) consisting of all » : B — B with
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r(B)Cconv(K) and 7| = idk. Clearly, R(K) is a closed convex subset of Cy,(B, B)
which is nonempty, due to the Dugundji theorem. It turns out that Theorem 1.1 is applica-
ble to the mapping R : exp.(B) — Cy(B, B). Hence the desired operator of simultaneous
extension can be given by the formula

E(f)(x) = / fdu(dom. f)(x),

where X is embedded into the conjugate space of the Banach space B = BL(X,d) of all
bounded Lipshitz numerical mappings on the metric space (X, d).

Moreover, the above formula works for mappings not only to reals, but to Banach spaces
and Cartesian products of Banach spaces. Metrizability of the domain X can be weakened
to the restriction that X is one-to-one continuous preimage of a metric space. Note that
the one-point-Lindelofication of an uncountable discrete space admits such an operator E,
although it is not a submetrizable space.

STEPANOVA [1993] had earlier characterized preimages of metric spaces under perfect
mappings as spaces X for which a continuous mapping E : C\.(X) — Cj(X) exists with

E(f)|dom = fand SUPgzedom f |f(€l7)| = SUDPgex |E(f)($)|

4.C. Filippov and Drozdovsky introduced new types of semicontinuity which unify
lower and upper semicontinuity.

4.9. DEFINITION. A multivalued mapping F' : X — Y is said to be mixed semicontinuous
at a point z € X if for each open sets U and V with F(z) C U and F(z) NV # 0,
respectively, there exists an open neighborhood W of x such that for every ' € W one of
the following holds:

F@@)cU o  F@E")nV #£0.

They proved the following theorem concerning USC selections for mappings which are
mixed semicontinuous at each point of domain:

4.10. THEOREM (FILIPPOV and DROZDOVSKY [1998, 2000]). Let X be a hereditary
normal paracompact space and 'Y a completely metrizable space. Then every compact-
valued mixed semicontinuous mapping F' : X —'Y has a USC compact-valued selection.

Considering the case Y = {0; 1}, it easy to see that the domain X must be hereditarily
normal whenever Theorem 4.10 holds for each mixed semicontinuous mapping. Theorem
4.10 is useful in theory of differential equations with multivalued right-hand sides because
of the well-known conditions in DAVY [1972] for the original mapping F' imply the same
conditions for USC selection of F'. Hence, the inclusion y' € F(¢,y) admits a solutions
for a mixed semicontinuous right-hand side.

In their proof the authors used the idea of universality of the zero-dimensional selection
theorem (see Part A of REPOVS and SEMENOV [1998a]): they considered the projection
wx : A(X) — X of the absolute of the domain over the domain. This is a perfect
mapping and A(X) is a paracompact space, because X is such. The hereditary normality
of domain, extremal disconnectedness of the absolute and mixed continuity of F' show
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that the mapping G : A(X) — Y defined by G(z) = liminf,_,, F(7x(y)), is an LSC
selection of the composition F' o mx with nonempty closed values. By the compact-valued
selection theorem we find an USC compact-valued selection H of G and finally H o 71')_(1
gives the desired selection of F'.

A simple example of a mixed continuous mapping F' : X — Y is given by the mapping
F(z) = ¥(z),z € A;F(z) = ®(z),z € X \ A where ® : X — Y is compact-valued
LSC mapping and ¥ : A — Y is its USC compact-valued selection over closed subset
A C X. Hence, as a corollary of Theorem 4.7 we see that the selection ¥ admits an USC
extension over whole X.

FrRYSZKOWSKI and GORNIEWICZ [2000] introduced somewhat different type of mixed
continuity. They considered mappings which are lower semicontinuous at some points
of the domain and upper semicontinuous at all remaining points of the domain. General
theorems on multivalued selections are proved together with various applications in theory
of differential inclusions.

Finally, we mention here one more “unified” selection result, which has recently been
proved by Arutyunov. The following theorem looks like a mixture of theorems of Kurato-
wski—Ryll-Nardzewski and Michael-Pixley:

4.11. THEOREM (ARUTYUNOV [2001]). Let F' : X — Y be a measurable mapping from
a metric space X endowed by a o-additive, regular measure, dimx 7 < 0and A C X
such that all values F(z),x € A, are convex and F' is LSC over Z U Cl(A). Then F
admits a singlevalued measurable selection which is continuous over Z U A.

Moreover as usual, the set of all such selections is pointwise dense in values of multival-
ued mapping F'. For applications in the optimal control theory see ARUTYUNOV [2000].

4.D. Cauchy problem for differential inclusions 2’ € F'(¢,z), £(0) = 0 was first re-
duced in ANTOSIEWICZ and CELLINA [1975] to a selection problem for some multivalued
mapping ' : K — Li(I,R"). Here I is a segment of reals, K is some suitable convex
compactum of continuous functions u : I — R™ and

F(u) = {v e Li(I,R")|v(t) € F(t,u(t)) a.e.in I}.

The mapping F' is LSC whenever F is also such. But the values of F' are in general
nonconvex. They are decomposable subsets of Lq (I, R™).

4.12. DEFINITION. A set Z of a measurable mappings from a measurable space (T, A, i)
into a topological space FE is said to be decomposable if for every f,g € Z and for every
A € A, the mapping defined by h(t) = f(t), whent € A and h(t) = g(t), whent ¢ A,
belongs to Z.

The intersection of all decomposable sets, containing a given set S, is called the decom-
posable hull Dec(S) of the set. For spaces of numerical functions on nonatomic domains,
the decomposable hull of the two-point set is homeomorphic to the Hilbert space. Hence,
it is a very unusual convexity-like property. Thus it is impossible to adapt the proof of the
convex-valued selection theorem directly to decomposable-valued mappings. One of the
reasons is a big difference between the mapping which associates to each set its convex
hull (it is continuous in the Hausdorff metric on subsets), and the one which associates to
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each set its decomposable hull (it fails to be continuous). For example, the decomposable
hull Dec(D(f,a)) of any ball B(f,a) coincides with the entire space L (T, E).

FRYSZKOWSKI [1983] (resp. BRESSAN and COLOMBO [1988]) proved selection theo-
rems for a decomposable-valued LSC mappings with compact metric domains (resp. with
separable metric domains). In both cases the so-called Lyapunov convexity theorem or
its generalizations were used. The principal obstruction for a similar proof of the selec-
tion theorem for any paracompact domains is that the Lyapunov theorem fails for infinite
number nonatomic real-valued measures.

In an attempt to return to the original idea of the Theorem 1.1, AGEEV and REPOVS
[2000] introduced the notions of dispersibly decomposable sets and dispersibly decom-
posable hulls Disp(A) C Dec(A). All decomposable sets are dispersibly decomposable
sets and also (which is more important) all open and closed balls are dispersibly decom-
posable. Precisely the latter fact enables one to apply the usual techniques developed for
the Michael convex-valued selection Theorem 1.1. Thus they proved the following selec-
tion theorem for the multivalued mappings with uniformly dispersed values (the so called
dispersible multivalued mappings):

4.13. THEOREM (AGEEV and REPOVS [2000]). Let (T, A, 11) be a separable measurable
space, E a Banach space, X a paracompact space and L1 (T, E) the space of all Bochner
integrable functions. Then each dispersible closed-valued mapping F : X — L{(T, E)
admits a continuous selection.

The main technical step was the following lemma on a dividing of segment onto disjoint
measurable subsets.

4.14. LEMMA. For every o > 0 and every point s = (sg, 81, ..., Sn) € A" of the standard
n-dimensional simplex A™ there exists a partition P = {P;}}_ of the interval I such that

|m(P;NJ) —s; -m(J)| < o,
foreach 0 < i < n and each subinterval J C I.

The partitions from Lemma 4.14 are called o-approximatively s-dispersible.

4.15. DEFINITION. A multivalued mapping F' : X — Ly (I, E) is said to be dispersible if

foreach g € X, e > 0, s € A™ and each functions ug, u1, - .., u, € F(x) there exist

a neighborhood V' (z) of the point z and a number o > 0 such that for any o-appro-
n

ximatively s-dispersible partition P = {P;}!_,, the function )_ w; - xp, is contained in

=0
D(F(z),e), for every point z € V (z9).

After checking that a LSC mapping F' is dispersible whenever for each point z € X the
value F'(z) is a decomposable set, one can obtain the generalization of the Fryszkowski,
Bressan and Colombo theorems to arbitrary paracompact domains.

The following theorem substantially generalizes GONCHAROV and TOLSTONOGOV
[1994] to paracompact domains:
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4.16. THEOREM ( AGEEV and REPOVS [2000]). Let (T, A, ) be a separable measu-
rable space and X be a paracompact space. Let F' : X — Ly(T, E) be a dispersible
closed-valued mapping and { G; : X — Li(T, E)}ien be a sequence of dispersible
multivalued mappings with open graphs such that D(G;(z);€;) C Giy1(x), where the
sequence {e;} does not depend on x € X. If for every point x € X the intersection

®(z) = F(z) N G(x) is nonempty, where G(x) = |J G;(x), then the multivalued map-
i=1
ping ®: X — L(T,E), x — ®(zx), admits a continuous selection.

In a series of papers TOLSTONOGOV [1999a, 1999b, 1999c] studied selections pass-
ing through fixed points of multivalued contractions, depending on a parameter, with de-
composable values. In particular, such parametric fixed points sets are absolute retracts
and the sets of such selections are dense in the set of all continuous selections of the
convexified mappings. Earlier, GORNIEWICZ and MARANO [1996] proposed unified ap-
proach for proving such nonparametric facts as for convex-valued contraction and also for
decomposable-valued contractions (see also GORNIEWICZ, MARANO and SLOSARSKI
[1996]).

4.E. Continuing the subject of unusual convexities, let us say something about some
papers which are related to different kinds of such structures. Saveliev proposed a relax-
ation of Michael’s axiomatic structure {(M,,, k,)} on a metric space M (see MICHAEL
[1959b]) in the following three directions. First, he assumed M to be uniform. This re-
minds one of the approaches of GEILER [1970] and VAN DE VEL [1993b]. Second, the
convex combination functions k,, were assumed to be multivalued. Recall that we have
met such a situation earlier for decomposable-valued mappings. Moreover the sequence
of mappings k,, was replaced by a multivalued (and partially defined) mapping C' from the
set A(M) of all formal convex combinations of elements of M into M. This repeats the
approach of HORVATH [1991]. Briefly, a convexity on M is defined as a triple (M, C, Z)
where Z is a topology on M which may be different from the uniform topology of M.

4.17. THEOREM (SAVELIEV [2000]). Let X be a normal space, M a complete uni-
Sorm space, and (M, C, Z) a continuous convexity with a countable convex uniform base
and with uniform topology of M which is finer than the topology Z. Then every LSC
closed-valued and convex-valued mapping from X to Z admits a selection whenever
p(X) > (M),

Here 1,,(M) denotes the Lindelof number of the uniformity and p(X) is the largest
cardinal number 1 < k (where & is a cardinal much bigger than cardinalities of all sets
considered) such that each open cover of X whose cardinality is less than p has a lo-
cally finite open refinement. Note that p(X) = « for a paracompact space X . Hence by
putting Z = M in Theorem 4.17 one can obtain the selection theorem for paracompact do-
mains. Such a theorem includes as a special cases the convex-valued selection theorems of
MICHAEL [1959b], CURTIS [1985], HORVATH [1991], and VAN DE VEL [1993a, 1993b].

JI-CHENG Hou [2001] proved a selection theorem for mappings into spaces having
H -structure (in the sense of Horvath) which are ball-locally-uniformly LSC, but in general
not LSC (see Part B of REPOVS and SEMENOV [1998a]).

Colombo and Goncharov considered a specific type of convexity in Hilbert spaces.



450 Repovs and Semenov / Selections of multivalued mappings [Ch.16

4.18. DEFINITION. A closed subset K of a Hilbert space is called ¢-convex if there exists
a continuous function ¢ : K — [0, 0o) such that

v,y —2) < 6@l - lly -zl
for all y,z € K and all v proximally normal to K at z.

All convex sets as well as sets with sufficiently smooth boundary are ¢-convex. In such
sets one can obtain a kind of geodesic between two points which allows a convexity type
structure.

4.19. THEOREM (COLOMBO and GONCHAROV [2001]). Each continuous mapping from
a metric space into a finite-dimensional Euclidean space admitting as values closed simply
connected C?-manifolds with negative sectional curvature, uniformly bounded from below,
has a dense family of continuous selections.

Continuous singlevalued selections f of a given multivalued mapping F' are usually
constructed as uniform limits of sequences of certain approximations {f,} of F. Prac-
tically all known selection results have been obtained by using one of the following two
approaches for a construction of { f,,}. In the first (and the most popular) one, the method
of outside approximations, mappings f,, are continuous &,,-selections of F', i.e. f,(z) all
lie near the set F'(z) and all mappings f;, are continuous. In the second one, the method
of inside approximations, f;,, are d,-continuous selections of F, i.e. f,(x) all lie in the
set F'(z), however f,, are discontinuous.

In REPOVS and SEMENOV [1999] continuous selections were constructed as uniform
limits of a sequence of d-continuous e-selections. Such a method was needed in order
to unify different kinds of selection theorems. Namely, one forgets about closedness of
values F'(x) over a countable subset C' of domain and restricts nonconvexity of values
F(z) outside a zero-dimensional subset of domain. The density theorem holds as well.

4.20. THEOREM (REPOVS and SEMENOV [1999]). Let § : (0,00) — (0, 00) be a weakly
g-summable function and F' : X — Y a lower semicontinuous mapping from a para-
compact space X into a Banach space Y. Suppose that C C X is a countable subset
of the domain such that values F(z) are closed for all x € X \ C and that Z C X
with dimxZ < 0. Then F has a singlevalued continuous selection, whenever B(-) is
a pointwise strong majorant of the function (sup{acy(r(2)) () |2 € X \ Z})*.

In REPOVS and SEMENOV [2001] we compared the nonconvexity of the set and non-
convexity of its e-neighborhoods. The answers depend on smoothness properties of a unit
sphere of a Banach range space. Hence on the one hand there exist a 4-dimensional Ba-
nach space B, its 1-dimensional subset P and a sequences €y, t,, of positive reals tending
to zero such that the function of nonconvexity ap(-) always is less than some ¢ € [0, 1)
while ap(p.,) are identically equal to 1 on the intervals (0,%,) (i.e., nonconvexity of
neighborhoods in principle differs from nonconvexity of the set). On the other hand, for
uniformly convex Banach spaces, the inequality ap(-) < g < 1 always implies the in-
equality ap(p)(-) < p < 1. Note, that even on the Euclidean plane there are examples
with ¢ < p.
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4.F. Recently a new series of papers on continuous selections has appeared. All of
them, are related to the substitution in selection theory of Lebesgue dimension dim by
extension dimension. The extension dimension of a topological space equals to a class of
C'W -complexes, not a natural number. This notion was introduced by DRANISHNIKOV
[1995] (see also DRANISHNIKOV and DYDAK [1996]). A comprehensive survey of the
subject can be found in CHIGOGIDZE [2002].

KARASEV [2007] proved an extdim-analogue of Michael’s finite-dimensional theorem.
BRODSKY, CHIGOGIDZE and KARASEV [2002] found a unified "filtered” approach to
both selection and approximation results with respect to extdim-theory.

For a CWW-complexes L and K we say that L < K if

(L€ AE(X)) = (K € AE(X))

for each X from a suitable class of spaces. First, authors were interested in the separable
and metrizable situation. It now seems that proofs remain valid in general position, i.e.
for paracompact domains and completely metrizable ranges. Thus L ~ K if L < K and
K < L and [L] denotes the equivalence class.

4.21. DEFINITION. A space X is said to have extension dimension < [L] (notation:
ed(X) <[L)if L € AE(X).

Clearly, dim X < n is equivalent to ed(X) < [S"] and dimg X < n is equivalent to
ed(X) < [K(G,n)], where K(G,n) is the Eilenberg-MacLane complex. One can de-
velop homotopy and shape theories specifically designed to work for at most [L]-dimensi-
onal spaces (see CHIGOGIDZE [2002]). The theories were developed mostly for finitely do-
minated complexes L. Absolute extensors for at most [L]-dimensional spaces in a category
of continuous maps are precisely [L]-soft mappings. And compacta of trivial [L]-shape are
precisely UV [Fl-compacta.

As for selection theorems, they are presently known to be true for finite complexes
L only. All notions used in the filtered approach to selection theorem (see Subsection 3.3
above) admit natural extensional analogues. For example, a pair of spaces V' C U is said to
be [L]-connected if for every paracompact space X of extension dimension ed(X) < [L]
and for every closed subspace A C X any mapping of A into V' can be extended to
a mapping of X into U. Or, a multivalued mapping F' : X — Y is called [L]-continuous
at a point (z,y) € T'p of its graph if for every neighborhood Oy of the point y € Y, there
is a neighborhood O’y of the point y and a neighborhood Oz of the point z € X such that
for all ' € O, the pair F(z') N O'y C F(z') N Oy is [L]-connected. Hence the above
filtered Theorems 3.1 and 3.5 admit the following generalization.

4.22. THEOREM (BRODSKY, CHIGOGIDZE and KARASEV [2002]). Let L be a finite
CW -complex such that [L] < [S™] for some n. Let X be a paracompact space of exten-
sion dimension ed(X) < [L]. Let a complete lower [L]-continuous multivalued mapping
® of X into a complete metric space Y contain an n-UVFl-filtered compact submapping
W which is singlevalued on some closed subset A C X. Then any neighborhood U of the
graph Uy in the product X XY contains the graph of a singlevalued continuous selection
s of the mapping ® which coincides with U | 4 On the set A.

In particular, under the assumptions of Theorem 4.22 each complete lower [L]-continuous
multivalued mapping F' : X — Y into a complete metric space has a continuous selection.
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There exists an extension dimensional version of Uspenskii’s selection theorem for
C-domains which we used in Section 1 above.

4.23. THEOREM (BRODSKY and CHIGOGIDZE [200?]). Let L be a finite CW -complex
and F : X =Y a multivalued mapping of a paracompact C-space X of extension dimen-
sion ed(X) < [L] to a topological space Y. If F admits infinite fiberwise [L].-connected
filtration of strongly LSC multivalued mappings, then F' has a singlevalued continuous
selection.

Recall, that a multivalued mapping F' is said to be strongly lower semicontinuous if for
any point z € X and any compact set K C F'(z) there exists a neighborhood V' of = such
that K C F'(z) forevery z € V.

As for an applications, we mention two facts concerning the so-called Bundle problem
(see Problem 5.12. below):

4.24. THEOREM (BRODSKY, CHIGOGIDZE and SHCHEPIN [2007]). Letp : E — B
be a Serre fibration of LC°-compacta with a constant fiber which is a compact two-
dimensional manifold. If B € ANR, then any section of p over closed subset A C B
can be extended to a section of p over some neighborhood of A.

4.25. THEOREM (BRODSKY, CHIGOGIDZE and SHCHEPIN [2007]). Letp : E — B be
a topologically regular mapping of compacta with fibers homeomorphic to a 3-dimensional
manifold. If B € AN R, then any section of p over closed subset A C B can be extended
to a section of p over some neighborhood of A.

5. Open problems

5.1. PROBLEM (MICHAEL). Let Y be a GG5-subset of a Banach space B. Does then every
LSC mapping F' : X — Y of a paracompact space X with convex closed (in Y') values
have a continuous selection?

We wish to emphasize that this problem is infinite-dimensional by its nature. Indeed,
for dim X < oo one can simply apply the finite-dimensional selection theorem. For
C-domains X see proof in Section 1. Gutev has observed that using so-called selection-
factorization technique of Choban and Nedev the problem for dim B < oo reduces to
metrizable domains and then one can apply the Michael selection theorem for perfectly
normal domains and nonclosed-valued mappings into a separable range space. Maybe,
one should first attempt it for Hilbert spaces B or for reflexive spaces B.

5.2. PROBLEM. Is it true that the affirmative answer to Problem 5.1 for an arbitrary Banach
space B characterizes C-property of the domain?

5.3. PROBLEM (CHOBAN, GUTEV and NEDEV). Does each LSC closed- and convex-
valued mapping from a collectionwise normal and countably paracompact domain into
a Hilbert space admit a singlevalued continuous selection?

The following problems due to van de Vel relate to an axiomatic definition of the con-
vexity notion. For detailed discussion see VAN DE VEL [1993a, 1993b].
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5.4. PROBLEM (VAN DE VEL). Does every LSC compact- and convex-valued mapping
from a normal domain into a metric space Y endowed by an uniform convex system admit
a singlevalued continuous selection?

5.5. PROBLEM (VAN DE VEL). Problem 5.4 for paracompact domains and closed-valued
mappings.

Recall, that a convex system on a set Y means a collection of subsets of Y which is
closed for intersection and for chain union. The difference from convex structures is that
the set Y itself needs not be convex. Subsets of convex sets are called admissible - they are
the sets which have a convex hull. This definition includes the structures defined earlier
by MICHAEL [1959b] and CURTIS[1985]. A polytope is the convex hull of an admissible
finite set. Of course, singletons are assumed to be convex. The uniformity of the convex
system means that all polytopes are compact, all convex sets are connected and the (partial)
convex hull operator is uniformly continuous i.e. for all € > 0 there is > 0 such that if
two finite sets A and B are d-close in the Hausdorff metric, then hull(A) and hull(B) are
e-close. The answers are affirmative for uniform convex systems with real parameters, as
defined by Michael and Curtis. It also holds for uniform metric convex systems which can
be extended to uniform metric convex structures. Such an extension problem is in general
also unsolved.

RICCERI [1987] proved that a multivalued mapping G from an interval I C R into
a topological space Y admits an LSC multivalued selection H whenever the graph of G
is connected and locally connected and for every open set 2 C Y, the set G~ ()N int(])
has no isolated points. He stated the following factorization problem.

5.6. PROBLEM (RICCERI). Let X and Y be any topological spaces and let F' : X — 2Y.
Find suitable conditions under which there exist an interval I C R, a continuous function
h: X — I and a mapping G : I — 2Y, satisfying the following properties:

(1) G(h(x)) C F(z) forallz € X;
(2) The graph of G is connected and locally connected; and
(3) For every open set 2 C Y, the set G~ (2)N int(I) has no isolated points.

The motivation for this problem comes from the fact that each time it has a positive
answer, the multifunction F' admits a lower semicontinuous multiselection with nonempty
values.

Next, we reproduce some problems proposed by GUTEV and NOGURA [200?b]. Below,
Sel(X) and Sel,,(X) means the set of all continuous (with respect to Vietoris topology)
selectors for closed subsets of X and for subsets, consisting of < n elements. And a space
X is zero-dimensional if it has a base of clopen sets, i.e. if ind X = 0.

5.7. PROBLEM. Does there exist a space X such that Sely(X) # 0 but Sel,,(X) = 0 for
some n > 2?

Recall that Selo(X) # ) — X is linearly ordered topological space ~—>
Sel(X) # 0 for compact space X, but Sel2(R) # () while Sel(R) = §. Having also
Sely(X) 20 — ind X < 1 for compact X it is naturally ask the following:
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5.8. PROBLEM. Does there exist a space X such that Sel>(X) # @) and ind X > 1?

As mentioned above (see Section 2), (Sel(X) # 0 & ind X = 0) = {f(X) : fis
a continuous selector} is dense in X. In the other direction X is totally disconnected
whenever {f(X) : f - continuous selector} is dense in X.

5.9. PROBLEM. Does there exist a space X which is not zero-dimensional but {f(X) :
f is a continuous selector} is dense in X ?

In comparison with results in ENGELKING, HEATH and MICHAEL [1968] and CHOBAN
[1970], the following question seems to be interesting:

5.10. PROBLEM (GUTEV and NOGURA). Does there exist a zero-dimensional metrizable
space X such that 7(X) has a continuous selector but dim X # 0?

The following Bundle problem has a negative answer for n > 4, a positive answer
for n = 1 and partially positive solution for n = 2 (see Theorem 3.7 above). That for
mappings between finite-dimensional compacta and for n > 4 the answer is affirmative.

5.11. PROBLEM (SHCHEPIN). Let p : E — B be a Serre fibration with a constant fiber
which is an n-dimensional manifold. Is p a locally trivial fibration?

Shchepin has proposed Problems 5.12-5.15 related to the Bundle problem below:

5.12. PROBLEM. Does every open mapping of a locally connected continuum onto arc
have a continuous section?

5.13. PROBLEM. Is any piecewise linear n-soft mapping of compact polyhedra a Serre
n-fibration?

5.14. PROBLEM. Does every Serre fibration with a compact locally connected base have
a global section if all of its fibers are contractible compact 4-manifolds with boundary?

5.15. PROBLEM. Is the complex-valued mapping z§ + z3 of C? (2-dimensional complex
space) onto C' a Serre 1-fibration?

One of the approaches to a possible solution of the Bundle problem for n = 2 relates
to a convexity-like structures in the space Ho(D?) of all autohomeomorphisms of two-
dimensional disk which act identically over the boundary of the disk. Hence we can ask the
following problems concerning the function of nonconvexity of H, considered as a subset
of the Banach space C(D?;R?). Recall, that H is a contractible AN R and moreover it
is homeomorphic to the Hilbert space (Mason’s theorem). The following three problems
concerning paraconvexity of the set Hy(D?) are due to Shchepin and Semenoyv.

5.16. PROBLEM. Let f € Hy(D?) and dist(f,id|p2) = 2r. Estimate the distance
dist(#; Hy). Is 0, 5r the correct answer?

Passing to higher dimensional simplices we obtain:
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5.17. PROBLEM. Let f1, fa, ..., fn € Ho(D?) and f € conv{fi, f2, .-, fu}. Is it true that
dist(f; Hop) < 0,5r where r is minimal radius of a ball which covers all fi, fa, ..., fn?

As a preliminary step in attacking Problem 5.17 one can change autohomeomorphisms
of disk to embeddings of a segment into the plane.

5.18. PROBLEM. Let f and g be two embeddings of the segment [0, 1] into the Euclidean
plane and dist(f,g) = 2r. Estimate the distance between the mapping % and the set of
all embeddings of this segment to the plane.

The two following problems are due to Semenov. The Nash’s embedding theorem as-
serts that for each Riemannian metric p on a smooth compact manifold M™ there exists
an isometric embedding of (M™; p) to RN where N ~ n2. Let us consider embeddings
into the infinite-dimensional Hilbert space H.

5.19. PROBLEM. For each Riemannian metric p on M define F'(p) as the set of all isomet-
ric embeddings of (M, p) < H. Does then the multivalued mapping F' admit a continuous
selection?

Note, that each value F'(p) is invariant under the action of the orthogonal group O(H)
which is homotopically trivial (due to the Kuiper theorem).

The following problem arises as a possible unification of proofs of Michael selection
Theorem 1.1 and Fryszkowski selection theorem. For a Banach space B consider a sub-
set S of all continuous linear operators on B with the property that A € § —
(id — A) € S and define S-convex subsets C C B as the sets with the property that
reCyeCAeS = (id-—Azxz+AyeC.

5.20. PROBLEM. Find a suitable axiomatic restrictions for S under which Theorem 1.1
holds for mappings with S-convex values.

Observe, that for S = {t - id|t € [0,1]} we obtain the standard convexity in Banach
space B and for B = L, (T, ) and S = the set of all operators of multiplications on
characteristic functions of measurable sets S-convexity coincides with decomposability.

Recall that a subset M of a Banach space B is said to be proximinal if for each xz € B
the set Pys(z) of points of M which are nearest to z is non-empty.

5.21. PROBLEM (DEUTSCH). Is there a semicontinuity condition on the metric projection
Py, onto a proximinal subspace M in a Banach space that is both necessary and sufficient
for the metric projection to admit a continuous selection?

FISCHER [1988] proved that for a Banach space of continuous functions on compacta
and for any finite-dimensional subspace M an affirmative answer is given by the so-called
almost lower semicontinuity. This last notion was introduced for general multivalued map-
pings by DEUTSCH and KENDEROV [1983] and characterizes the property of a multival-
ued mapping to have continuous e-selections for any positive €. It should be mentioned
that L1 [1991] has given an intrinsic characterization of those finite-dimensional subspaces
M of Co(T') such that Pys admits a continuous selection. (These are the so-called weakly
regularly interpolating subspaces.)

Recently BROWN, DEUTSCH, INDUMATHI AND KENDEROV [2002] have established
a geometric characterization of those Banach spaces X in which Py; admits a continuous
selection for any one-dimensional subspace M.
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