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PRODUCTS OF HUREWICZ SPACES IN THE LAVERMODEL

DUŠAN REPOVŠ AND LYUBOMYRZDOMSKYY

Abstract. This article is devoted to the interplay between forcing with fusion and combi-
natorial covering properties. We illustrate this interplay by proving that in the Laver model
for the consistency of the Borel’s conjecture, the product of any two metrizable spaces with
the Hurewicz property has the Menger property.

§1. Introduction. A topological space X has the Menger property (or,
alternatively, is a Menger space) if for every sequence 〈Un : n ∈ �〉 of open
covers of X there exists a sequence 〈Vn : n ∈ �〉 such that each Vn is a finite
subfamily of Un and the collection {∪Vn : n ∈ �} is a cover of X . This
property was introduced by Hurewicz, and the current name (the Menger
property) is used because Hurewicz proved in [12] that for metrizable spaces
his property is equivalent to one property of a base considered by Menger
in [16]. If in the definition above we additionally require that {∪Vn : n ∈ �}
is a �-cover of X (this means that the set {n ∈ � : x �∈ ∪Vn} is finite
for each x ∈ X ), then we obtain the definition of the Hurewicz property
introduced in [13]. Each �-compact space is obviously a Hurewicz space,
and Hurewicz spaces have the Menger property. Contrary to a conjecture
of Hurewicz the class of metrizable spaces having the Hurewicz property
appeared to be much wider than the class of �-compact spaces [14, Theo-
rem 5.1]. The properties of Menger and Hurewicz are classical examples of
combinatorial covering properties of topological spaces which are nowadays
also called selection principles. This is a growing area of general topology,
see, e.g., [29]. For instance, Menger and Hurewicz spaces found applications
in such areas as forcing [9], Ramsey theory in algebra [30], combina-
torics of discrete subspaces [1], and Tukey relations between hyperspaces of
compacts [10].
Even before the era of combinatorial covering properties, there was a lot of
activity around the study of special sets of reals. These studies resolvedmany
classical questions in general topology andmeasure theory.As a result, infor-
mation about special sets of reals is included in standard topology textbooks,
such as Kuratowski’s Topology. The most influential survey on special sets
of reals is, probably, Miller’s chapter [18] in the Handbook of Set-Theoretic
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HUREWICZ SPACES IN THE LAVERMODEL 325

Topology. The most recent monograph on this topic is written by Bukovsky,
see [7]. It complements nicely the classical book [4] of Bartoszynski and
Judah. This theory still finds interesting applications in general topology,
see, e.g., [11] for the interplay between �-sets and homogeneity.
The theory of combinatorial covering properties, which originated in
[14, 24], can be thought of as a continuation to that of special sets of reals,
with emphasis on the behaviour of their open or Borel covers. Some com-
binatorial covering properties including the Menger and Hurewicz ones are
about 15 years older than Gödel’s works on L and 40 years older than the
method of forcing, and they were introduced in the areas of topology where
set-theoretic methods are quite rare even nowadays. E.g., the original idea
behind the Menger property, as it is explicitly stated in the first paragraph
of [16], was an application in dimension theory. However, since at least [15]
it has become clear that the combinatorial covering properties are strongly
influenced by axiomatics and hence can be studied with the help of forcing,
see, e.g., [3, 8, 9, 19, 25] for the more recent works along these lines. There
are equivalences among statements from disciplines with diverse origins
(Ramsey theory, game theory, function spaces and convergence, topologi-
cal groups, dimension theory, covering properties, combinatorial set theory,
forcing, hyperspaces, filters, etc.) with combinatorial covering properties.
Even though not all of these have found nontrivial applications so far (by
translating into the other fields, via an equivalence, the results known for
combinatorial covering properties), they are offering an alternative point of
view onto the known properties and thus enhance their understanding. E.g.,
it is shown in [9] that a Mathias forcing associated to a filter F on � does
not add dominating reals iff F is Menger as a subspace of 2�, thus demon-
strating that this property of filters is topological and in this way answering
some questions for which it was unclear how the “standard” approaches in
this area can be used.
One of the basic questions about a topological property is whether it is
preserved by various kinds of products in certain classes of spaces. As usu-
ally, the preservation results may be divided into positive, asserting that
properties under consideration are preserved by products (e.g., the classical
Tychonoff theorem) and negative which are typically some constructions of
spaces possessing certain property whose product fails to have it (e.g., the
folklore fact that the Lindelöf property is not preserved even by squares, as
witnessed by the Sorgenfrei line). In case of combinatorial covering proper-
ties we know that the strongest possible negative result is consistent: Under
CH there exist X,Y ⊂ R which have the �-space property with respect
to countable Borel covers, whose product X × Y is not Menger, see [21,
Theorem 3.2]. Thus the product of spaces with the strongest combinatorial
covering property considered thus far might fail to have even the weakest
one. This implies that no positive results for combinatorial covering proper-
ties can be obtained outright in ZFC.Unlike the vastmajority of topological
and combinatorial consequences under CH, the latter one does not follow
from any equality among cardinal characteristics of the continuum, see
the discussion on [21, p. 2882]. However, there are many other negative
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326 DUŠAN REPOVŠ AND LYUBOMYRZDOMSKYY

results stating that under certain equality among cardinal characteristics
(e.g., cov(N ) = cof (N ), b = d, etc.1) there are spaces X,Y ⊂ R with some
combinatorial covering property such that X × Y is not Menger, see, e.g.,
[2, 22, 27].
Regarding the positive results, until recently the most unclear situation
was with the Hurewicz property and the weaker ones. This was the main
motivation for this article. There are two reasons why a product of Hurewicz
spaces X,Y can fail to be Hurewicz/Menger. In the first place, X × Y
may simply fail to be a Lindelöf space, i.e., it might have an open cover
U without countable subcover. Then X × Y is not even a Menger space.
This may indeed happen: in ZFC there are two normal spaces X,Y with a
covering property much stronger than the Hurewicz one such that X × Y
does not have the Lindelöf property, see [28, Section 3]. However, the above
situationbecomes impossible ifwe restrict our attention tometrizable spaces.
This second case, on which we concentrate in the sequel, turned out to
be sensitive to the ambient set-theoretic universe: under CH there exists
a Hurewicz space whose square is not Menger, see [14, Theorem 2.12].
The above result has been achieved by a transfinite construction of length
�1, using the combinatorics of the ideal of measure zero subsets of reals.
This combinatorics turned out [27, Theorem 43] to require much weaker
set-theoretic assumptions than CH. In particular, under the Martin Axiom
there areHurewicz subspaces of the irrationals whose product is notMenger.
The following theorem, which is the main result of this article, shows
that an additional assumption in the results from [14, 27] mentioned above
is really needed. In addition, it implies that the affirmative answer to [14,
Problem 2] is consistent, see [29, Section 2] for the discussion of this problem.

Theorem 1.1. In the Laver model for the consistency of the Borel’s con-
jecture, the product of any two Hurewicz spaces has the Menger property
provided that it is a Lindelöf space. In particular, the product of any two
Hurewicz metrizable spaces has the Menger property.

This theorem seems to be the first “positive” consistency result related to
the preservation by products of combinatorial covering properties weaker
than the �-compactness, in which no further restrictions2 on the spaces are
assumed. The proof is based on the analysis of continuous maps and names
for reals in the model of set theory constructed in [15]. The question whether
the product of Hurewicz metrizable spaces is a Hurewicz space in this model
remains open. It is worth mentioning here that in the Cohen model there
are Hurewicz subsets of R whose product has the Menger property but fails
to have the Hurewicz one, see [21, Theorem 6.6].
As suggested in its formulation, the model we use in Theorem 1.1 was
invented by Laver in order to prove that Borel’s conjecture is consistent, the

1We refer the reader to [5] for the definitions and basic properties of cardinal characteristics
of the continuum which are mentioned but are not used in the proofs in this article.
2The requirement that the product must be Lindelöf is vacuous for metrizable spaces. Let

us note that nowadays the study of combinatorial covering properties concentrates mainly
on sets of reals.
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HUREWICZ SPACES IN THE LAVERMODEL 327

latter being the statement that every strong measure zero set is countable.
A strong measure zero set is a subset A of the real line with the following
property: for every sequence 〈εn : n ∈ �〉 of positive reals there exists
a sequence 〈In : n ∈ �〉 of intervals such that |In| < εn for all n and
A is covered by the In’s. Here |In| denotes the length of In. Obviously,
every countable set is a strong measure zero set, and so is every union of
countably many strong measure zero sets. Sierpiński proved in [26] that
CH implies the existence of uncountable strong measure zero sets, i.e., the
negation of Borel’s conjecture. Combined with this Laver’s result gave the
independence of Borel’s conjecture. This outstanding result was the first3

instance when a forcing, adding a real, was iterated with countable supports
without collapsing cardinals. This work of Laver can be thought of as one
of the motivations behind Baumgartner’s axiomA and later Shelah’s theory
of proper forcing.
The conclusion of Theorem 1.1 does not follow from Borel’s conjecture: If
we add �2 many random reals over the Laver model then Borel’s conjecture
still holds by [4, Section 8.3.B] and we have cov(N ) = cof (N ), and hence in
thismodel there exists aHurewicz set of realswhose square is notMenger, see
[27]. Thus Borel’s conjecture is consistent with the existence of a Hurewicz
set of reals with nonMenger square.
Theorem1.1 seems tobe an instance of amore general phenomena, namely
that proper posets with fusion affect the behavior of combinatorial covering
properties. This happens because sets of reals with certain combinatorial
covering properties are forced to have a rather clear structure, which suffices
to prove positive preservation results. For instance, the core of the proof of
Theorem 1.1 is that Hurewicz subspaces of the real line are concentrated in a
sense around their “simpler” subspaces in the Laver model, see Lemma 2.2.
As a consequence of corresponding structural results we have proved [33]
that the Menger property is preserved by finite products in the Miller model
constructed in [17], and there are only cmanyMenger subspaces of R in the
Sacks model constructed in [23], see [10].
We believe that the interplay between forcing with fusion and combinato-
rial covering properties has many more instances and it is worth considering
whether there is some deep reason behind it.
We assume that the reader is familiar with the basics of forcing as well as
with standard proper posets used in the set theory of reals.

§2. Proof of Theorem 1.1. We shall first introduce a notion crucial for the
proof of Theorem 1.1.

Definition 2.1. A topological space X is called weakly concentrated if
for every collection Q ⊂ [X ]� which is cofinal with respect to inclusion, and
for every function R : Q → P(X ) assigning to each Q ∈ Q a G�-set R(Q)
containing Q, there exists Q1 ∈ [Q]�1 such that X ⊂ ⋃

Q∈Q1
R(Q).

3According to our colleagues who worked in set theory already in the 70s.
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328 DUŠAN REPOVŠ AND LYUBOMYRZDOMSKYY

The topology in P(�) is generated by the countable base B = {[s, n] : s ∈
[�]<�, n ∈ �}, where [s, n] = {x ⊂ � : x∩n = s}. Thus any open subsetO
of P(�) may be identified with BO = {〈s, n〉 ∈ [�]<�×� : [s, n] ⊂ O}, and
vice versa, any B ⊂ [�]<� × � gives rise to an open OB =

⋃
〈s,n〉∈B [s, n].

Note that B ⊂ BOB for all B . By a code for an F� subset F of P(�) we
mean a sequence �B = 〈Bn : n ∈ �〉 of subsets of [�]<� × � such that
F = P(�) \⋂n∈� OBn . Obviously each F� set F ⊂ P(�) has many codes
in the sense of the definition above. For models V � V ′ of ZFC and an
F�-subset F ∈ V ′ of P(�) we say that F is coded in V if there exists a code
for F which is an element of V . Note that being coded in V doesn’t imply
being a subset of V : P(�) has codes in V (e.g., 〈〈∅, 0〉 : n ∈ �〉) but it is not
a subset of V as long as there are new reals in V ′.
The consideration above also applies to other Polish spaces having a base
which can be identified with some “simple” (e.g., constructive would suffice
for our purposes) subset of H (�), the family of all hereditarily finite sets.
Among them are ��,P(�)×��, etc. In particular, since every continuous
function from an F�-subset F of P(�) to �� is an F�-subset of P(�)×�� ,
we may speak about such functions coded in V .
For a subset X ∈ V ′ of P(�) and an F�-subset Y of X we shall say that
Y is coded in V if there exists an F�-subset F of P(�) coded in V such
that Y = X ∩ F . Similarly, for continuous functions: f : Y → �� is coded
in V if there exists an F�-subset F of P(�) such that Y = X ∩ F and a
continuous f̃ : F → �� coded in V , such that f = f̃ � Y .
The following lemma is the key part of the proof of Theorem 1.1. Its proof
is reminiscent of that of [19, Theorem 3.2]. We will use the notation from
[15] with only differences being that smaller conditions in a forcing poset are
supposed to carry more information about the generic filter, and the ground
model is denoted by V .
A subset C of �2 is called an �1-club if it is unbounded and for every
α ∈ �2 of cofinality �1, if C ∩ α is cofinal in α then α ∈ C .
Lemma 2.2. In the Laver model everyHurewicz subspace ofP(�) is weakly
concentrated.

Proof. We work in V [G�2 ], where G�2 is P�2 -generic and P�2 is the itera-
tion of length �2 with countable supports of the Laver forcing, see [15] for
details.
It is well known that a space X ⊂ P(�) is Hurewicz if and only if f[X ]
is bounded with respect to ≤∗ for every continuous f : X → ��, see [14,
Theorem 4.4] or [13]. Let us fix a Hurewicz space X ⊂ P(�). The Hurewicz
property is preserved by F�-subspaces because it is obviously preserved by
closed subspaces and countable unions. Therefore there exists an �1-club
C ⊂ �2 such that for every α ∈ C and continuous f : F → �� coded
in V [Gα], where F is an F�-subspace of X coded in V [Gα], there exists
b ∈ �� ∩ V [Gα] such that f(x) ≤∗ b for all x ∈ F . Indeed, since for
every α < �2 CH holds in V [Gα], there are at most �1 many pairs 〈F,f〉
such that F is an F�-subspace of X coded in V [Gα] and f : F → �� is
a continuous function coded in V [Gα]. For every such pair find �F,f < �2
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HUREWICZ SPACES IN THE LAVERMODEL 329

and bF,f ∈ �� ∩ V [G�F,f ] such that f(x) ≤∗ bF,f for all x ∈ F . Let �(α)
be the supremum of all the �F,f for F,f as above. It is clear that the �1-club
C ∈ V [G�2 ] of all α such that �(
) < α for all 
 < α is as required.
Let Q ⊂ [X ]� be cofinal with respect to the inclusion. Fix a function
R : Q → P(X ) assigning to eachQ ∈ Q aG�-subsetR(Q) of P(�) contain-
ing Q. By a standard argument (see, e.g., the proof of [6, Lemma 5.10])
there exists an �1-club D ⊂ �2 such that Q ∩ V [Gα] ∈ V [Gα] and
R � (Q ∩ V [Gα]) ∈ V [Gα] for4 all α ∈ D. Moreover, using CH in the
intermediate models as in the previous paragraph, we may also assume that
for everyQ0 ∈ [X ∩V [Gα]]� ∩V [Gα] there existsQ ∈ Q∩V [Gα] such that
Q0 ⊂ Q.
Let us fix α ∈ C ∩D. We claim that X ⊂W , whereW = ⋃{R(Q) : Q ∈

Q∩V [Gα]}. Suppose that, contrary to our claim, there exists p ∈ G�2 and a
P�2 -name ẋ such that p � ẋ ∈ Ẋ \Ẇ . By [15, Lemma 11] there is no loss of
generality in assuming that α = 0. Applying [15, Lemma 14] to a sequence
〈ȧi : i ∈ �〉 such that ȧi = ẋ for all i ∈ �, we get a condition p′ ≤ p
such that p′(0) ≤0 p(0), and a finite set Us of reals for every s ∈ p′(0) with
p′(0)〈0〉 ≤ s , such that for each ε > 0, s ∈ p′(0) with p′(0)〈0〉 ≤ s , and for
all but finitely many immediate successors t of s in p′(0) we have

p′(0)t ˆp′ � [1, �2) � ∃u ∈ Us (|ẋ − u| < ε).
Fix Q ∈ Q ∩ V containing X ∩ ⋃{Us : s ∈ p′(0), s ≥ p′(0)〈0〉} and set
F = X \ R(Q). Note that F is an F�-subset of X coded in V . It follows
that p′ � ẋ ∈ Ḟ because p′ is stronger than p that forces ẋ �∈ Ẇ ⊃ Ẋ \ Ḟ .
Consider the map f : F → �S , where S = {s ∈ p′(0) : s ≥ p′(0)〈0〉},
defined as follows:

f(y)(s) = [1/min{|y − u| : u ∈ Us}] + 1
for5 all s ∈ S and y ∈ F . Since F is disjoint from Q which contains all
the Us ’s, f is well defined. Since both F and f are coded in V , there exists
b ∈ �S ∩ V such that f(y) ≤∗ b for all y ∈ F .
It follows from p′ � ẋ ∈ Ḟ that p′ � ḟ(ẋ) ≤∗ b, and hence there exists
p′′ ≤ p and a finite subset S0 of S such that p′′ � ḟ(ẋ)(s) ≤ b(s) for
all S \ S0. By replacing p′′ with p′′(0)s ˆp′′ � [1, �2) for some s ∈ p′′(0),
if necessary, we may additionally assume that p′′(0)〈0〉 ∈ S \ S0. Letting
s ′′ = p′′(0)〈0〉, we conclude from the above that p′′ � ḟ(ẋ)(s ′′) ≤ b(s ′′),
which means that

p′′ � min{|ẋ − u| : u ∈ Us ′′} ≥ 1/b(s ′′).
On the other hand, by our choice of p′ and p′′ ≤ p′ we get that for all but
finitely many immediate successors t of s ′′ in p′′(0) we have

p′′(0)t ˆp′′ � [1, �2) � ∃u ∈ Us ′′ |ẋ − u| < 1/b(s ′′)
which means p′′(0)t ˆp′′ � [1, �2) � min{|ẋ − u| : u ∈ Us ′′} < 1/b(s ′′) and
thus leads to a contradiction. �
4Here by R we mean the map which assigns to a Q ∈ Q some code of P(�) \R(Q).
5Here [a] is the largest integer not exceeding a.
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330 DUŠAN REPOVŠ AND LYUBOMYRZDOMSKYY

A subset X of P(�) is called a �-set if any A ∈ [X ]� is a G�-subset
of X . Obviously, every weakly concentrated �-set has size ≤ �1. Therefore
Lemma 2.2 implies [19, Theorem 3.2] because the property of a subset of
P(�) considered in the latter theorem easily implies being both Hurewicz
and a �-set, see, e.g., the proof of [31, Theorem 5] for details.
The next lemma can probably be considered as folklore. We present its
proof for the sake of completeness.

Lemma 2.3. Let Y ⊂ P(�) be Hurewicz and Q ⊂ P(�) countable. Then
for every G�-subset O of P(�)2 containing Q × Y there exists a G�-subset
R ⊃ Q such that R × Y ⊂ O.
Proof. Without loss of generality we shall assume that O is open. Let
us write Q in the form {qn : n ∈ �} and set On = {z ∈ P(�) : 〈qn, z〉 ∈
O} ⊃ Y . For every n find a cover Un of Y consisting of clopen subsets of
P(�) contained in On. Let 〈U ′

k : k ∈ �〉 be a sequence of open covers of
Y such that each Un appears in it infinitely often. Applying the Hurewicz
property of Y we can find a sequence 〈Vk : k ∈ �〉 such that Vk ∈ [Uk]<�
and Y ⊂ ⋃

k∈� Zk , where Zk =
⋂
m≥k ∪Vm. Note that each Zk is compact

and Zk ⊂ On for all n ∈ � (because there exists m ≥ k such that U ′
m = Un,

and then Zk ⊂ ∪Vm ⊂ On). Thus Q × Y ⊂ Q × (⋃k∈� Zk) ⊂ O. Since Zk
is compact, there exists for every k an openRk ⊃ Q such thatRk×Zk ⊂ O.
Set R =

⋂
k∈� Rk and note that R ⊃ Q andR×Y ⊂ R×⋃

k∈� Zk ⊂ O. �
Let A be a countable set and x, y ∈ �A. As usually, x ≤∗ y means that

{a ∈ A : x(a) > y(a)} is finite. The smallest cardinality of an unbounded
with respect to≤∗ subset of�� is denoted by b. It is well known that�1 < b
in the Laver model, see [5] for this fact as well as systematic treatment of
cardinal characteristics of reals.
The second part of Theorem 1.1 is a direct consequence of Lemma 2.2
and the following.

Proposition 2.4. Suppose that b > �1. Let Y ⊂ P(�) be a Hurewicz
space and X ⊂ P(�) weakly concentrated. Then X × Y is Menger.
Proof. Fix a sequence 〈Un : n ∈ �〉 of covers of X × Y by clopen
subsets of P(�)2. For every Q ∈ [X ]� fix a sequence 〈WQ

n : n ∈ �〉
such that WQ

n ∈ [Un]<� and Q × Y ⊂ ⋂
n∈�

⋃
m≥n ∪WQ

m . Letting OQ =
⋂
n∈�

⋃
m≥n ∪WQ

m and using Lemma 2.3, we can find a G�-subset RQ ⊃ Q
such that RQ × Y ⊂ OQ . Since X is weakly concentrated, there exists
Q ⊂ [X ]� of size |Q| = �1 such that R =

⋃{RQ : Q ∈ Q} contains X
as a subset. Let us fix x ∈ X and find Q ∈ Q such that x ∈ RQ. Then
{x} × Y ⊂ RQ × Y ⊂ OQ. Therefore for every 〈x, y〉 ∈ X × Y there
exists Q ∈ Q such that 〈x, y〉 ∈ OQ =

⋂
n∈�

⋃
m≥n ∪WQ

m . Let us write Un
in the form {Unk : k ∈ �} and for every Q ∈ Q fix a real bQ ∈ �� with
the property WQ

n ⊂ {Unk : k ≤ bQ(n)}. Since |Q| = �1 < b, there exists
b ∈ �� such that bQ ≤∗ b for all Q ∈ Q. It follows from the above that
X × Y ⊂ ⋃

n∈�
⋃
k≤b(n)U

n
k , which completes our proof. �
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A family F ⊂ [�]� is called a semifilter if for every F ∈ F and X ⊂ �, if
|F \ X | < � then X ∈ F .
The proof of the first part of Theorem 1.1 uses characterizations of the
properties of Hurewicz and Menger obtained in [32]. Let u = 〈Un : n ∈ �〉
be a sequence of subsets of a set X . For every x ∈ X let Is(x, u, X ) =
{n ∈ � : x ∈ Un}. If every Is(x, u, X ) is infinite (the collection of all such
sequences u will be denoted by Λs(X )), then we shall denote by Us(u,X )
the smallest semifilter on � containing all Is(x, u, X ). By [32, Theorem 3],
a Lindelöf topological space X is Menger (Hurewicz) if and only if for
every u ∈ Λs(X ) consisting of open sets, the semifilter Us(u,X ) is Menger
(Hurewicz). The proof given there also works if we consider only those
〈Un : n ∈ �〉 ∈ Λs(X ) such that all Un’s belong to a given base of X .
Proof of Theorem 1.1. Suppose thatX,Y are Hurewicz spaces such that
X ×Y is Lindelöf and fixw = 〈Un×Vn : n ∈ �〉 ∈ Λs(X ×Y ) consisting of
open sets. Set u = 〈Un : n ∈ �〉, v = 〈Vn : n ∈ �〉, and note that u ∈ Λs(X )
and v ∈ Λs(Y ). It is easy to see that

Us(w,X × Y ) = {A ∩ B : A ∈ Us(u,X ), B ∈ Us(v, Y )},
and hence Us(w,X × Y ) is a continuous image of Us(u,X ) × Us(v, Y ). By
[32, Theorem 3] both of latter ones are Hurewicz, considered as subspaces
of P(�), and hence their product is a Menger space by Proposition 2.4 and
Lemma 2.2. Thus Us(w,X × Y ) is Menger, being a continuous image of a
Menger space. It now suffices to use [32, Theorem 3] again. �
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[13] , Über Folgen stetiger Funktionen. Fundamenta Mathematicae, vol. 9 (1927),

pp. 193–204.
[14]W. Just, A.W.Miller, M. Scheepers, and P. J. Szeptycki, The combinatorics of open

covers. II. Topology and its Applications, vol. 73 (1996), pp. 241–266.
[15] R. Laver,On the consistency of Borel’s conjecture.ActaMathematica, vol. 137 (1976),

pp. 151–169.
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[26] W. Sierpiński, Sur un ensemble non dénombrable, dont toute image continue est de

mesure nulle. Fundamenta Mathematicae, vol. 11 (1928), pp. 302–303.
[27] M. Scheepers and B. Tsaban, The combinatorics of Borel covers. Topology and its

Applications, vol. 121 (2002), pp. 357–382.
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