ON EXISTENCE OF PI-EXPONENTS OF UNITAL ALGEBRAS

Dušan D. Repovš

Faculty of Mathematics and Physics, University of Ljubljana & Institute of Mathematics, Physics and Mechanics 1000 Ljubljana, Slovenia

MIKHAIL V. ZAICEV

Department of Algebra, Faculty of Mathematics and Mechanics Moscow State University 119992 Moscow, Russia

(Communicated by Alain Miranville)

ABSTRACT. We construct a family of unital non-associative algebras $\{T_{\alpha} | 2 < \alpha \in \mathbb{R}\}$ such that $\underline{exp}(T_{\alpha}) = 2$, whereas $\alpha \leq \underline{exp}(T_{\alpha}) \leq \alpha + 1$. In particular, it follows that ordinary PI-exponent of codimension growth of algebra T_{α} does not exist for any $\alpha > 2$. This is the first example of a unital algebra whose PI-exponent does not exist.

1. **Introduction.** We consider numerical invariants associated with polynomial identities of algebras over a field of characteristic zero. Given an algebra A, one can construct a sequence of non-negative integers $\{c_n(A)\}$, $n=1,2,\ldots$, called the codimensions of A, which is an important numerical characteristic of identical relations of A. In general, the sequence $\{c_n(A)\}$ grows faster than n!. However, there is a wide class of algebras with exponentially bounded codimension growth. This class includes all associative PI-algebras [2], all finite-dimensional algebras [2], Kac-Moody algebras [12], infinite-dimensional simple Lie algebras of Cartan type [9], and many others. If the sequence $\{c_n(A)\}$ is exponentially bounded then the following natural question arises: does the limit

$$\lim_{n \to \infty} \sqrt[n]{c_n(A)} \tag{1.1}$$

exist and what are its possible values? In case of existence, the limit (1.1) is called the PI-exponent of A, denoted as $\exp(A)$. At the end of 1980's, Amitsur conjectured that for any associative PI-algebra, the limit (1.1) exists and is a non-negative integer. Amitsur's conjecture was confirmed in [5,6]. Later, Amitsur's conjecture was also confirmed for finite-dimensional Lie and Jordan algebras [4,15]. Existence of $\exp(A)$ was also proved for all finite-dimensional simple algebras [8] and many others.

 $^{2020\ \}textit{Mathematics Subject Classification}.\ \text{Primary: 16R10; Secondary: 16P90}.$

Key words and phrases. Polynomial identities, exponential codimension growth, PI-exponent, unital algebra, numerical invariant.

The first author was supported by the Slovenian Research Agency grants P1-0292, J1-8131, N1-0114, N1-0083, and N1-0064. The second author was supported by the Russian Science Foundation grant $16-11-10013\Pi$.

Nevertheless, the answer to Amitsur's question in the general case is negative: a counterexample was presented in [14]. Namely, for any real $\alpha>1$, an algebra R_{α} was constructed such that the lower limit of $\sqrt[n]{c_n(A)}$ is equal to 1, whereas the upper limit is equal to α . It now looks natural to describe classes of algebras in which for any algebra A, its PI-exponent exp(A) exists. One of the candidates is the class of all finite-dimensional algebras. Another one is the class of so-called special Lie algebras. The next interesting class consists of unital algebras, it contains in particular, all algebras with an external unit. Given an algebra A, we denote by A^{\sharp} the algebra obtained from A by adjoining the external unit. There is a number of papers where the existence of $exp(A^{\sharp})$ has been proved, provided that exp(A) exists [11, 16, 17]. Moreover, in all these cases, $exp(A^{\sharp}) = exp(A) + 1$.

The main goal of the present paper is to construct a series of unital algebras such that exp(A) does not exist, although the sequence $\{c_n(A) \text{ is exponentially bounded (see Theorem 3.1 and Corollary 3.1 below)}$. All details about polynomial identities and their numerical characteristics can be found in [1, 3, 7].

2. **Definitions and preliminary structures.** Let A be an algebra over a field F and let $F\{X\}$ be a free F-algebra with an infinite set X of free generators. The set $Id(A) \subset F\{X\}$ of all identities of A forms an ideal of $F\{X\}$. Denote by $P_n = P_n(x_1, \ldots, x_n)$ the subspace of $F\{X\}$ of all multilinear polynomials on $x_1, \ldots, x_n \in X$. Then $P_n \cap Id(A)$ is actually the set of all multilinear identities of A of degree n. An important numerical characteristic of Id(A) is the sequence of non-negative integers $\{c_n(A)\}, n = 1, 2, \ldots$, where

$$c_n(A) = \dim \frac{P_n}{P_n \cap Id(A)}.$$

If the sequence $\{c_n(A)\}\$ is exponentially bounded, then the lower and the upper PI-exponents of A, defined as follows

$$\underline{exp}(A) = \liminf_{n \to \infty} \sqrt[n]{c_n(A)}, \quad \overline{exp}(A) = \limsup_{n \to \infty} \sqrt[n]{c_n(A)},$$

are well-defined. An existence of ordinary PI-exponent (1.1) is equivalent to the equality $exp(A) = \overline{exp}(A)$.

In [14], an algebra $R = R(\alpha)$ such that $\underline{exp}(R) = 1$, $\overline{exp}(R) = \alpha$, was constructed for any real $\alpha > 0$. Slightly modifying the construction from [14], we want to get for any real $\alpha > 2$, an algebra R_{α} with $exp(R_{\alpha})^{\sharp} = 2$ and $\alpha \leq \overline{exp}(R^{\sharp}) \leq \alpha + 1$.

Clearly, polynomial identities of A^{\sharp} strongly depend on the identities of A. In particular, we make the following observation. Note that if $f = f(x_1, \ldots, x_n)$ is a multilinear polynomial from $F\{X\}$ then $f(1+x_1, \ldots, 1+x_n) \in F\{X\}^{\sharp}$ is the sum

$$f = \sum f_{i_1,\dots,i_k}, \quad \{i_1,\dots,i_k\} \subseteq \{1,\dots,n\}, \ 0 \le k \le n,$$
 (2.1)

where $f_{i_1,...,i_k}$ is a multilinear polynomial on $x_{i_1},...,x_{i_k}$ obtained from f by replacing all $x_j, j \neq i_1,...,i_k$ with 1.

Remark 2.1. A multilinear polynomial $f = f(x_1, ..., x_n)$ is an identity of A^{\sharp} if and only if all of its components $f_{i_1,...,i_k}$ on the left hand side of (2.1) are identities of A

The next statement easily follows from Remark 2.1.

Remark 2.2. Suppose that an algebra A satisfies all multilinear identities of an algebra B of degree deg $f = k \le n$ for some fixed n. Then A^{\sharp} satisfies all identities of B^{\sharp} of degree $k \le n$.

Using results of [13], we obtain the following inequalities.

Lemma 2.1. ([13, Theorem 2]) Let A be an algebra with an exponentally bounded codimension growth. Then $\overline{exp}(A^{\sharp}) \leq \overline{exp}(A) + 1$.

Lemma 2.2. ([13, Theorem 3]) Let A be an algebra with an exponentally bounded codimension growth satisfying the identity (2.2). Then $\exp(A^{\sharp}) \ge \exp(A) + 1$. \square

Given an integer $T \geq 2$, we define an infinite-dimensional algebra B_T by its basis

$$\{a, b, z_1^i, \dots, z_T^i | i = 1, 2, \dots\}$$

and by the multiplication table

$$z_j^i a = \begin{cases} z_{j+1}^i & \text{if} \quad j \le T - 1, \\ 0 & \text{if} \quad j = T \end{cases}$$

for all $i \geq 1$ and

$$z_T^i b = z_1^{i+1}, \quad i \ge 1.$$

All other products of basis elements are equal to zero. Clearly, algebra B_T is right nilpotent of class 3, that is

$$x_1(x_2x_3) \equiv 0 \tag{2.2}$$

is an identity of B_T . Due to (2.2), any nonzero product of elements of B_T must be left-normed. Therefore we omit brackets in the left-normed products and write $(y_1y_2)y_3 = y_1y_2y_3$ and $(y_1 \cdots y_k)y_{k+1} = y_1 \cdots y_{k+1}$ if $k \ge 3$.

We will use the following properties of algebra B_T .

Lemma 2.3. ([14, Lema 2.1]) Let
$$n \leq T$$
. Then $c_n(B_T) \leq 2n^3$.

Lemma 2.4. ([14, Lema 2.2]) Let n = kT + 1. Then

$$c_n(B_T) \ge k! = \left(\frac{N-1}{T}\right)!.$$

Lemma 2.5. ([14, Lema 2.3]) Any multilinear identity $f = f(x_1, ..., x_n)$ of degree $n \le T$ of algebra B_T is an identity of B_{T+1} .

Let $F[\theta]$ be a polynomial ring over F on one indeterminate θ and let $F[\theta]_0$ be its subring of all polynomials without free term. Denote by Q_N the quotient algebra

$$Q_N = \frac{F[\theta]_0}{(Q^{N+1})},$$

where (Q^{N+1}) is an ideal of $F[\theta]$ generated by Q^{N+1} . Fix an infinite sequence of integers $T_1 < N_1 < T_2 < N_2 \dots$ and consider the algebra

$$R = B(T_1, N_1) \oplus B(T_2, N_2) \oplus \cdots,$$
 (2.3)

where $B(T, N) = B_T \otimes Q_N$.

Let R be an algebra of the type (2.3). Then the following lemma holds.

Lemma 2.6. For any i > 1, the following equalities hold:

(a) if
$$T_i \leq n \leq N_i$$
 then

$$P_n \cap Id(R) = P_n \cap Id(B(T_i, N_i) \oplus B(T_{i+1}, N_{i+1})) = P_n \cap Id(B_{T_i} \oplus B_{T_{i+1}});$$

(b) if
$$N_i < n \le T_{i+1}$$
 then

$$P_n \cap Id(R) = P_n \cap Id(B(T_{i+1}, N_{i+1})) = P_n \cap (Id(B_{T_{i+1}})).$$

Proof. This follows immediately from the equality $B(T_i, N_i)^{N_i+1} = 0$ and from Lemma 2.5.

The following remark is obvious.

Remark 2.3. Let R be an algebra of type (2.3). Then

$$Id(R^{\sharp}) = Id(B(T_1, N_1)^{\sharp} \oplus B(T_2, N_2)^{\sharp} \oplus \cdots).$$

3. The main result.

Theorem 3.1. For any real $\alpha > 1$, there exists an algebra R_{α} with $\underline{exp}(R_{\alpha}) = 1$, $\overline{exp}(R_{\alpha}) = \alpha$ such that $\underline{exp}(R_{\alpha}^{\sharp}) = 2$ and $\alpha \leq \overline{exp}(R_{\alpha}^{\sharp}) \leq \alpha + 1$.

Proof. Note that

$$c_n(A) \le nc_{n-1}(A) \tag{3.1}$$

for any algebra A satisfying (2.2). We will construct R_{α} of type (2.3) by a special choice of the sequence $T_1, N_1, T_2, N_2, \ldots$ depending on α . First, choose T_1 such that

$$2m^3 < \alpha^m \tag{3.2}$$

for all $m \geq T_1$. By Lemma 2.4, algebra B_{T_1} has an overexponential codimenson growth. Hence there exists $N_1 > T_1$ such that

$$c_n(B_{T_1}) < \alpha^n$$
 for all $n \le N_1 - 1$ and $c_{N_1}(B_{T_1}) \ge \alpha^{N_1}$.

Consider an arbitrary $n > N_1$. By Remark 2.1, we have

$$c_n(R^{\sharp}) \le \sum_{k=0}^n \binom{n}{k} c_k(R) = \Sigma_1' + \Sigma_2',$$

where

$$\Sigma_1' = \sum_{k=0}^{N_1} \binom{n}{k} c_k(R), \quad \Sigma_2' = \sum_{k=N_1+1}^n \binom{n}{k} c_k(R).$$

By Lemma 2.6, we have $\Sigma_1' + \Sigma_2' \leq \Sigma_1 + \Sigma_2$, where

$$\Sigma_1 = \sum_{k=0}^{N_1} \binom{n}{k} c_k(B_{T_1}), \quad \Sigma_2 = \sum_{k=0}^n \binom{n}{k} c_k(B_{T_2}).$$

Then for any $T_2 > N_1$, an upper bound for Σ_2 is

$$\Sigma_2 \le \sum_{k=0}^n \binom{n}{k} 2k^3 \le 2n^3 \sum_{k=0}^n \binom{n}{k} = 2n^3 2^n,$$
 (3.3)

which follows from (3.2), provided that $n \leq T_2$.

Let us find an upper bound for Σ_1 assuming that n is sufficiently large. Clearly,

$$\Sigma_1 \le N_1 \alpha^{N_1} \sum_{k=0}^{N_1} \binom{n}{k} \tag{3.4}$$

which follows from the choice of N_1 , relation (3.1), and the equality $B(T_1, N_1)^n = 0$ for all $n \ge N_1 + 1$. Since $N_1 \alpha^{N_1}$ is a constant for fixed N_1 , we only need to estimate the sum of binomial coefficients.

From the Stirling formula

$$m! = \sqrt{2\pi m} (\frac{m}{e})^m e^{\frac{1}{12m+\theta_m}}, \quad 0 < \theta_m < 1,$$

it follows that

$$\binom{n}{k} \le \sqrt{\frac{n}{k(n-k)}} \cdot \frac{n^n}{k^k(n-k)^{n-k}}.$$
(3.5)

Now we define the function $\Phi:[0;1]\to\mathbb{R}$ by setting

$$\Phi(x) = \frac{1}{x^x (1-x)^{1-x}}.$$

It is not difficult to show that Φ increases on [0;1/2], $\Phi(0)=1$, and $\Phi(x)\leq 2$ on [0;1]. In terms of the function Φ we rewrite (3.5) as

$$\binom{n}{k} \leq \sqrt{\Phi\left(\frac{k}{n}\right)} \cdot \Phi\left(\frac{k}{n}\right)^n < 2\Phi\left(\frac{k}{n}\right)^n \leq 2\Phi\left(\frac{N_1}{n}\right)^n \tag{3.6}$$

provided that $n > 2N_1$. Now (3.4) and (3.6) together with (3.3) imply

$$\Sigma_1 \le 2N_1 \alpha^{N_1} (N_1 + 1) \Phi\left(\frac{N_1}{n}\right)^n, \quad \Sigma_2 \le 2n^3 2^n.$$

Since

$$\lim_{n \to \infty} \Phi\left(\frac{N_1}{n}\right)^n = 1$$

and $\Phi(x)$ increases on (0; 1/2], there exists $n > 2N_1$ such that

$$2N_1(N_1+1)\alpha^{N_1}\Phi\left(\frac{N_1}{n}\right)^n + 2n^32^n < (2+\frac{1}{2})^n.$$
(3.7)

Now we take T_2 to be equal to the minimal $n > 2N_1$ satisfying (3.7). Note that for such T_2 we have

$$c_n(R^{\sharp}) < (2 + \frac{1}{2})^n$$

for $n = T_2$.

As soon as T_2 is choosen, we can take N_2 as the minimal n such that $c_n(B_{T_2}) \ge \alpha^n$. Then again, $c_m(R) < m\alpha^m$ if $m < N_2$. Repeating this procedure, we can construct an infinite chain $T_1 < N_1 < T_2 < N_2 \cdots$ such that

$$c_n(R) < \alpha^n + 2n^3 \tag{3.8}$$

for all $n \neq N_1, N_2, \ldots$,

$$\alpha^n \le c_n(R) < \alpha^n + n(\alpha^{n-1} + 2n^3) \tag{3.9}$$

for all $n = N_1, N_2, \dots$ and

$$2N_{j}(N_{j}+1)\alpha^{N_{j}}\Phi\left(\frac{N_{j}}{T_{j+1}}\right)^{T_{j+1}} + 2T_{j+1}^{3} \cdot 2^{T_{j+1}} < (2 + \frac{1}{2^{j}})^{T_{j+1}}$$
(3.10)

for all j = 1, 2, ...

Let us denote by R_{α} the just constructed algebra R of type (2.3). Then (3.10) means that

$$c_n(R_\alpha^{\sharp}) < (2 + \frac{1}{2^j})^n$$
 (3.11)

if $n = T_{j+1}, j = 1, 2, \dots$ It follows from inequality (3.11) that

$$\underline{exp}(R_{\alpha}^{\sharp}) \le 2. \tag{3.12}$$

On the other hand, since R_{α} is not nilpotent, it follows that

$$exp(R_{\alpha}^{\sharp}) \ge 1. \tag{3.13}$$

Since the PI-exponent of non-nilpotent algebra cannot be strictly less than 1, relations (3.12), (3.13) and Lemma 2.2 imply

$$exp(R_{\alpha}) = 1, \ exp(R_{\alpha}^{\sharp}) = 2.$$

Finally, relations (3.8), (3.9) imply the equality $\overline{exp}(R_{\alpha}) = \alpha$. Applying Lemma 2.1, we see that $\overline{exp}(R_{\alpha}^{\sharp}) \leq \alpha + 1$. The inequality $\alpha = \overline{exp}(R_{\alpha}) \leq \overline{exp}(R_{\alpha}^{\sharp})$ is obvious, since R_{α} is a subalgebra of R_{α}^{\sharp} , Thus we have completed the proof of Theorem 3.1.

As a consequence of Theorem 3.1 we get an infinite family of unital algebras of exponential codimension growth without ordinary PI-exponent.

Corollary 3.1. Let $\beta > 2$ be an arbitrary real number. Then the ordinary PI-exponent of unital algebra R^{\sharp}_{β} from Theorem 3.1 does not exist. Moreover, $\underline{exp}(R^{\sharp}_{\beta}) = 2$, whereas $\beta \leq \overline{exp}(R^{\sharp}_{\beta}) \leq \beta + 1$.

Acknowledgments. We would like to thank the referee for comments and suggestions.

REFERENCES

- [1] Y. A. Bahturin, *Identical Relations in Lie Algebras*, VNU Science Press, b.v., Utrecht, 1987.
- [2] Y. Bahturin and V. Drensky, Graded polynomial identities of matrices, Linear Algebra Appl., 357 (2002), 15–34.
- [3] V. Drensky, Free Algebras and PI-Algebras, Graduate Course in Algebra, Springer-Verlag Singapore, Singapore, 2000.
- [4] A. Giambruno, I. Shestakov and M. Zaicev, Finite-dimensional non-associative algebras and codimension growth, Adv. in Appl. Math., 47 (2011), 125–139.
- [5] A. Giambruno and M. Zaicev, On codimension growth of finitely generated associative algebras, Adv. Math., 140 (1998), 145–155.
- [6] A. Giambruno and M. Zaicev, Exponential codimension growth of PI algebras: An exact estimate, Adv. Math., 142 (1999), 221–243.
- [7] A. Giambruno and M. Zaicev, *Polynomial Identities and Asymptotic Methods*, Mathematical Surveys and Monographs, 122. American Mathematical Society, Providence, RI, 2005.
- [8] A. Giambruno and M. Zaicev, On codimension growth of finite-dimensional Lie superalgebras, J. Lond. Math. Soc. (2), 85 (2012), 534–548.
- [9] S. P. Mishchenko, Growth of varieties of Lie algebras, Uspekhi Mat. Nauk, 45 (1990), 25–45, 189; translation in Russian Math. Surveys, 45 (1990), 27–52.
- [10] A. Regev, Existence of identities in $A \otimes B$, Israel J. Math., 11 (1972), 131–152.
- [11] D. Repovš and M. Zaicev, Numerical invariants of identities of unital algebras, Comm. Algebra, 43 (2015), 3823–3839.
- [12] M. V. Zaicev, Varieties and identities of affine Kac-Moody algebras, Methods in Ring Theory, Lecture Notes in Pure and Appl. Math., Marcel Dekker, New York, 198 (1998), 303–314.
- [13] M. V. Zaicev, Growth of codimensions of metabelian algebras, Translation of Vestnik Moskov. Univ. Ser. I Mat. Mekh., (2017), 15–20; translation in Moscow Univ. Math. Bull., 72 (2017), 233–237.
- [14] M. Zaicev, On existence of PI-exponents of codimension growth, Electron. Res. Announc. Math. Sci., 21 (2014), 113–119.
- [15] M. V. Zaĭtsev, Integrality of exponents of growth of identities of finite dimensional Lie algebras, Izv. Ross. Akad. Nauk Ser. Mat., 66 (2002), 23–48; translation in Izv. Math., 66 (2002), 463–487.
- [16] M. V. Zaĭtsev, Identities of finite-dimensional unitary algebras, Algebra Logika, 50 (2011), 563–594, 693, 695; translation in Algebra Logic, 50 (2011), 381–404.

[17] M. V. Zaĭtsev and D. Repovsh, Exponential codimension growth of identities of unitary algebras, Mat. Sb., 206 (2015), 103–126; translation in Sb. Math., 206 (2015), 1440–1462.

Received for publication April 2020.

 $E\text{-}mail\ address: \verb"dusan.repovs@guest.arnes.si"$

 $E\text{-}mail\ address: \verb"zaicevmv@mail.ru"$