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Abstract. We study numerical invariants of identities of finite-dimensional solvable Lie
superalgebras. We define new series of finite-dimensional solvable Lie superalgebras L with
non-nilpotent derived subalgebra L’ and discuss their codimension growth. For the first algebra
of this series we prove the existence and integrality of exp(L).
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1. Introduction

Let A be an algebra over a field I of characteristic zero. One can define an
infinite sequence {c,(A)},n =1,2,..., of non-negative integers associated with A
called codimension sequence. It measures the quantity of polynomial identities of
A. For many classes of algebras the sequence {c,(A)} is exponentially bounded.
In particular, this holds for associative PI-algebras [14], [15], for finite-dimensional
algebras [1], [11], for Kac-Moody Lie algebras [20], [21], and many others. In this
case the sequence (c,(A))/™ has the lower and upper limits exp(A) and the exp(A)
called the lower and upper Pl-exponents of A, respectively. If exp(A) = exp(A)
then there exists an ordinary limit called the PI-exponent exp(A) of A. At the
end of 1980’s Amitsur conjectured that exp(A) exists and is an integer for every
associative Pl-algebra A. Amitsur’s conjecture was proved in [7], [8]. Later the
existence and integrality of PI-exponent was proved for finite-dimensional Lie and
Jordan algebras [4], [5], [6], [10], [11], [22]. On the other hand, there are infinite-
dimensional solvable Lie algebras with fractional PI-exponents [2], [18], [24].

None of these results can be generalized to Lie superalgebras. There is an infinite
series of finite-dimensional superalgebras P(t), ¢ > 2, where all P(3), P(4),...
are simple whereas P(2) is not. For L = P(2) it was proved in [12] that exp(L)
exists and is not an integer. Due to [12], there is a serious reason to expect that
Pl-exponent is fractional for any simple superalgebra P(t), t > 3.
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ence Foundation grant 16-11-10013. We thank the referee for valuable comments and suggestions.

ISSN 0949-5932 / $2.50 © Heldermann Verlag



1190 REPOVS AND ZAICEV

For infinite-dimensional Lie superalgebras only some partial results are known
[16], [25]. In particular, in [25] it was shown that Pl-exponent of a Lie superal-
gebra L exists and is an integer, provided that its commutator subalgebra L? is
nilpotent. Note that by the Lie Theorem, the subalgebra L? is nilpotent for any
finite-dimensional solvable Lie algebra L. Unfortunately, finite-dimensional Lie
superalgebras in general do not satisfy this condition. Hence the result of [25] can-
not be applied to finite-dimensional solvable Lie superalgebras. Although there are
examples of finite-dimensional Lie superalgebras with the fractional PI-exponent,
the following conjecture looks natural: Is it true that any finite-dimensional solv-
able Lie superalgebra has an integer exponent?

In this paper we construct new series of finite-dimensional solvable Lie superalge-
bras S(t), t = 2,3,..., with non-nilpotent derived subalgebras. For S(2) we prove
the existence and integrality of Pl-exponent (Theorem 4.3). We also discuss the
following related question concerning graded identities. Every Lie superalgebra
L = Ly @® L, is endowed by the natural Z,-grading. Hence one can also study
asymptotic behavior of graded codimension sequence {c&(L)}. It was mentioned
in [1] that ¢,(A) < & (A) for any algebra A = @A, graded by a finite group
G. Hence exp(A) < exp®(A). In the associative case there are examples where
this inequality is strong. For instance, if A = F[G] is the group algebra of a finite
abelian group G then exp(A) = 1 whereas exp®(A) = |G|. For Lie superalgebras
similar examples are unknown. On the other hand, there are many examples of
simple (associative and nonassociative) algebras with exp# (A) = exp(A). In the
present paper we give the first example in the class of solvable Lie superalgebras,
namely, we prove that exp® (S(2)) = exp(S(2)) (Theorem 5.3).

2. Generalities

Let A be an algebra over F' and let F{X} be the absolutely free algebra over
F with an infinite set of generators X. A non-associative polynomial f =
f(z1,...,x,) € F{X} is said to be an identity of A if f(ai,...,a,) = 0 for
any ai,...,a, € A. All identities of A form an ideal Id(A) of F{X}.

Denote by P, the subspace in F{X} of all multilinear polynomials on z1,...,z, €
X. Then P,NId(A) is the set of all multilinear identities of A of degree n. Since
char F' = 0, the sequence of subspaces

{P,NId(A)}, n=12,...,

completely defines the ideal Id(A). Denote

P
P(A) = —2 d A)=dim P,(A).
n( ) PnﬂId(A) an Cn( ) 1umn n( )
The sequence of integers {c,(A)}, n = 1,2,..., called the codimension sequence

of A, is an important numerical characteristic of Id(A). The analysis of the
asymptotic behavior of {¢,(A)} is one of the main approaches of the study of
identities of algebras.
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As it was mentioned in the introduction, there is a wide class of algebras A such
that ¢,(A) < a” for some constant a. In this case one can define the lower and
the upper Pl-exponents of A as follows:

exp(A) = liminf {/c,(A), exp(A) = limsup /¢, (A),

n—oo n—oo

respectively. If the ordinary limit exists we can define the (ordinary) Pl-exponent

exp(A) = lim {/c,(A).

n—oo

A powerful tool for computing codimensions is the representation theory of the
symmetric group 5,. One can define an S,,-action on the subspace P, of multi-
linear polynomials by setting

O-f<x17 B 7:Cn) = f(x(f(l)a cee 7x0(n))

for 0 € S,,. Then P, becomes an F'S,-module. Since P, N1d(A) is stable under
Sy -action, then P,(A) is also an F'S,-module and its .S, -character

is called the n-th cocharacter of A. By Maschke’s Theorem, P,(A) is completely
reducible, so

Xn(A) =) maxa (1)

AFn

where Yy, is the irreducible S, -character corresponding to the partition \ of n.
All details concerning S, -representations can be found in [13]. The total sum of
multiplicities in (1) is called the n-th colength of A,

(A) =) ma.
Clearly, cn(A) = Z myda (2)

where d) = deg x, is the dimension of the corresponding irreducible representation
and the multiplicities m) are taken from (1). It is well-known that the colength
sequence {l,(A)} is polynomially bounded for any finite-dimensional algebra A.

Proposition 2.1 ([3, Theorem 1]).  Let dim A =d. Then, for all n > 1,
L(A) < d(n+1)"+,

Throughout the paper we will omit brackets in left-normed products in non-asso-
ciative algebras, i.e., abc = (ab)c, abed = (abc)d, ete.
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3. Lie superalgebras S(t)

In this section we introduce an infinite series of finite-dimensional solvable Lie
superalgebras with non-nilpotent commutator subalgebra.

First, let R be an arbitrary associative algebra with involution x: R — R.
Consider an associative algebra @) consisting of (2 X 2)-matrices over R

Q:{(é g)‘A,B,C,DeR}.

The algebra ) can be naturally endowed by Zs-grading @) = Qo & @)1, where

a-{(2 )} a-{(¢ D))

It is well-known that if we define a (super) commutator brackets by setting

[z,y] = ay — (=1)"Wya

for homogeneous x,y € Qo U @1, where |z| =0 if x € Qo and |z| =1 if z € @y,
then () becomes a Lie superalgebra. For basic notions of super Lie theory we refer
to [17]. Denote by

Rt={zeRlz*=2}, R ={yeR|y =—y},

the subspaces of symmetric and skew elements of R, respectively. Then the

subspace
b= {< - )
z -

of @) is a Lie superalgebra under the supercommutator product defined above,
where even and odd components are

we{( 2} {0}

Note that if R = M;(F) is a (t x t)-matrix algebra, ¢ > 3, then its subalgebra
L C L consisting of the matrix

r oy

z —x

with traceless matrices x where x — x* is the transpose involution is a well-known
simple Lie superalgebra P(t) (or b(t) in the notations of [17]).

xGR,y€R+,zER}:LO@L1 (3)

Now we clarify the structure of R in our case. Let R = UT,(F) be an algebra
of (t x t)-upper triangular matrices over F'. It is well-known (see, for example,
[19]) that the reflection across the secondary diagonal is the involution on R,
hence L defined in (3) is a finite-dimensional Lie superalgebra. We denote this
superalgebra by S(t). Its even component Sy ~ UT,(F') is solvable hence the
entire L is also solvable (see, for example, [17]). It is not difficult to check that
the derived subalgebra L? is not nilpotent and we get the following conclusion.
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Proposition 3.1. Let R be the upper triangular (t X t)-matriz algebra with
the involution *x: R — R, the reflection across the secondary diagonal. Then
S(t) = L = Ly @ Ly well-defined in (3) is a finite-dimensional solvable Lie
superalgebra, dim L = t(t + 1), with non-nilpotent commutator subalgebra.

Now we will have to deal with the Lie superalgebra S(2). First, we compute
supercommutators in the associative superalgebra @ ~ UTy(F) ® My(F). If
A, B,C and D are 2 x 2-matrices then

A 0 0 B\| [0 AB+ BA* ()
0 —A* )\ 0 0 /)] \0O 0 ’
A 0 0 0\] _ 0 0 %)
0 —A*)’\C 0)] \ -AC-CA 0 )’
A 0 B 0 \| (AB-BA 0 (6)
0 —A)’\ 0 —=B* )] 0 —(AB — BA)* ]’
0 B 0 0\] (BC 0 )
0o 0)'’\Co)] 0 CB )’
From now on, we will not use associative multiplication and will omit square
brackets in the product of elements of Lie superalgebra S(2). That is, zy = [z, y],

ryz = [[z,y], 2] and so on for z,y,z € S(2). Let €11, €12 and ex be (2 x 2)-matrix
units. Then e]; = es, €5, = €11, €], = €12 in R and the matrices

0= €11 — €22 0 b— 0 e +exn = 0 0
0 €11 — €22 ’ 0 0 ’ ein —exp 0 ’
d— €11 + €22 0 . €12 0 _ 0 e
0 —€11 — €92 ’ 0 —€12 ’ y 0 0

form a basis of S(2). By definition a,d and x are even whereas b, ¢ and y are odd.
Using (4), (5), (6), (7) we can compute all nonzero products of basis elements,

bc=cb=a, bd=—db=—-2b, cd=—dc=2c, xa=—ar=—2r,
ab=—br =2, ya=—-ay=-2y, yc=cy=—wx, yd=—dy=-2y.

4. Pl-exponent of S(2)

Since we will have to deal with multialternating sets of arguments in multilinear
and multihomogeneous expressions, it is convenient to use the following agreement.

If f = f(x1,...,2n,y1,...,Y) IS a non-associative polynomial, multilinear on
x1,...,T,, then we denote the result of alternation of f on zq,...,x, by marking
all z1,...,x, by one and the same symbol over z;’s. For example,

TiyTaTs = Y (G0 0)To(1)YT0(2)To(z), O

og€E€Ss3
(y7171)(T2T2) (T373) =

=D D (seno)(senT) (YT ) (To@Tr(2)) (To@)Tr(3)).

oceS3 TES3
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Our next goal is to prove the relation

y(b¢)(ed) (d b)aa = 384y. 8)

Since aa = ab = ba = ac = ca = ad = da = 0, the left hand side of (8) is equal to
y(be)(¢d)(d b)aa. Hence it suffices to show that

y(be)(cd)(d b) = 96y. (9)

The left hand side of (9) can be written as the sum

y(be)(ed)(db) + y(cc)(dd)(bb) + y(de) (bd) (cb) —
— y(c)(bd)(db) — y(de)(ed) (bb) — y(be)(dd)(cb).

Direct computations show that

y(be)(cd)(db) = y(be)(cd)(db) + y(bd)(cb)(de) = dyach + 4ybac,
y(cc)(dd)(bb) = y(cb)(de)(bd) + y(cd)(db)(bc) = 4dyach + dycba,
y(de)(bd)(cb) = y(de)(bd)(cb) + y(db)(be)(ed) = 4ycba + 4ybac,
—y(ce)(bd)(db) = y(cd)(bc)(db) + y(cb)(bd)(dc) = dycab + 4yabc,
—y(de)(ed) (bb) = y(db)(cd)(be) + y(dc)(cb)(bd) = dybca + 4ycab,
—y(be)(dd)(cb) = y(bd)(de)(cb) + y(be)(db)(cd) = dybea + 4yabe.

Since yb =0 and yab = —2yb = 0, we obtain

y(be)(ed) (db) = 8yach + 8ycab + Sycha = —16ych — 8zab — 8zba
= 16xb + 1620 — 16ya = 96y

and therefore (9), (8) hold. Equality (8) implies the relation

y (be) (¢d)(d b)aa - - - (b6)(¢d)(d b)aa # 0 (10)

(.

for any m > 1. Consider the multilinear polynomial
o = ) G A
=(m) _(m)\ ,=(M) _(m)\ <(M) _(m)\=(m) _(m,
@AM @ B @ BT Y
of degree 4m—+1. The polynomial f,, depends on 2m alternating sets of variables,

each of order four. Moreover, f,, assumes a non-zero value under an evaluation
©: X — S(2) such that

pw) =y, o) =0, o) =c @) =d o)) =aq,

ez =¢, o= =d, o) =b, e =a, i=1,...,m.
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Denote n = 8m and consider the S, -action on variables

{20 1<j <4, 1<i <m)

Under this action the subspace
Pop1 = Poy(w,2 20 1<j <4, 1<i<m)

becomes an F'S,-module. The structure of the polynomial f,, and the relation
©(fm) # 0 show that er, f,, is not an identity of S(2), where e, is the essential
idempotent corresponding to some Young tableau 7\ with the Young diagram D)
and A\ = (2m, 2m,2m,2m) F n. In particular,

cn+1(5(2)) > deg xa. (11)
From the hook formula for deg x, and the Stirling formula for factorials we get
deg x» > n 4", (12)
provided that n = 8m and A = (2m)®.
The inequalities (11), (12) give us the lower bound for codimensions ¢,(S(2)).

Lemma 4.1. Thelower Pl-exponent of S(2) satisfies the inequality exp(S(2)) > 4.

Proof. Let n=j (mod 8) where 0 <j <7.1If j=1 then n=8m+ 1 and

a(s@) > s Ly
" ~ (n—1)> ~ bnd
by (11), (12). If j # 1 then there exist m and 1 <4 < 8 such that n = 8m+1+1.
In this case the polynomial g = (er, fim)u1 ---u; of degree 8m + 1+ i =n is not
an identity of S(2) since ¢(f,) = (384)™y for the above mentioned evaluation ¢
and ya = —2y. Hence
cn(S(2)) > 4780754,

Therefore exp(S(2)) > 4 and the proof is complete. n
We need another lemma to prove the main result of the paper.

Lemma 4.2.  Let my # 0 in (2) for A= S(2), A= (\,..., ). Then either
k<4 ork=5and \s=1.

Proof. Let my # 0 and k > 4. Then there exists a Young tableau T\ such
that ep, f ¢ Id(A) for some multilinear polynomial f = f(z1,...,2,). Recall that

er, = Z o Z (sgnt) T

O'ERT/\ TECTA
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where Rp, and Cp, are the row stabilizer and the column stabilizer of 7y in 5,
respectively. Note that the polynomial

g=g(x1,...,2,) = Z (sgut) 7 | er f

TECTA

is also non-identity of A. If £ > 5 then g contains an alternating set of variables
{i,...,2;} of order t > 6. Consider an evaluation ¢: X — B = {a,b,c,d,z,y}.
The linear subspace J = (x,y) C A is a nilpotent ideal of A, J? = 0. If at least
two of x;,, 1 < a < 6, liein J then p(g) = 0. But if ¢(x;),...,p(z;,) take
not more than five distinct values in B then also ¢(g) = 0, due to the skew
symmetry of g. This contradiction shows that £ < 5. Similar arguments imply
the restriction A5 <1 and hence the proof is complete. |

Theorem 4.3. The Pl-exponent of the Lie superalgebra S(2) exists and
exp(S(2)) = 4.
Proof. Because of Lemma 4.1 it suffices to prove the inequality
exp(5(2)) <4 (13)
In light of Lemma 4.2, by Lemma 6.2.4 and Lemma 6.2.5 from [9], we have
deg xn < Cn"4"

for some constants C,r if my # 0 in (2). Finally, applying Proposition 2.1, we
get the inequality (13) and the proof is complete. [ |

5. Graded Pl-exponent of S(2)

Recall the definition of the graded codimension of a Z,-graded algebra. Let
A = Ay @ Ay be an F-algebra with Zy-grading. Denote by F{X,Y} the free
algebra on two infinite sets of generators X and Y. Let all x € X be even and
all y € Y odd. Then this parity on X UY induces Zsy-grading on F{X,Y}.
A polynomial f = f(z1,...,Zm, Y1, Yn) With z1,..., 2 € X, y1,...,yn €Y
is said to be a graded identity of A if f = f(ay,...,am,b1,...,b,) = 0 for all
A1y vy Qo GA(), bl,...,bHEAl.

Given 0 < k <n, denote by P}, the subspace of all multilinear polynomials on
X1, T € X, Y1, .., Yn_ik € Y and define the integer

Prn—r
Py N1d®(A)

Ckn—k(A) = dim

where 1d®'(A) is the ideal of graded identities of A. Then the value

E(A) = En: (Z) Crni(A)

k=0



REPOVS AND ZAICEV 1197

is called the graded n-th codimension of A. As in the non-graded case, the limits

exp® (A) = liminf {/c5 (A), exp’(A) = limsup {/c5 (A),

n—oo
exp®(A) = lim {/cy (A)
n—oo
are called the lower, the upper and the ordinary graded Pl-exponent of A.

The space Py, has a natural F[Sg xS, _x]-module structure where the symmet-
ric groups Sy and S,_x act on {x1,...,xx} and on {yi,...,y,_x}, respectively.
Since Py, N 1d®(A) is stable under the (S x S,_)-action, then the quotient

space
Pk,nfk

" Punx N1d¥(A)

is also an F[Sg X S,,_x]-module and its (Sg x S,_x)-character has the form

Pin—i(A)

Xen—k(A) = X(Pin—k(A)) = Z M XA (14)
uézﬁk
In particular, Chn—k(A) = Z my,, deg xx deg x . (15)
AFE
pEn—k

The sum of multiplicities

BEA) =YD m,

k=0 AFk
pukEn—k

is called n-th graded colength of A and is polynomially bounded if dim A < oo
(see [23]) that is, there are constants C,r such that

I5(A) < Cn". (16)

Recall that Ay = (a,d,x), A; = (b,d,y) for our superalgebra A = S(2) and z,y
belong to nilpotent ideal J, J? = 0.
The same argument as in the proof of Lemma 4.2 gives us the following result.

Lemma 5.1. Let A = S(2) and let my, # 0 in (14). Then X = (\;) or
A= (A, A2) or A= (A, Mg, 1) and p= (1) or p= (1, p2) or p= (p1, p2,1).

As a consequence of Lemma 5.1 and Lemmas 6.2.4, 6.2.5 from [9] we get the
following statement.

Lemma 5.2.  There are constants c o, c1,r1 not depending on k such that
deg y < con"2", deg x, < cin"2"

forall N\bk, ptF(n—k) if my,#0 in (14).
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final result says that exp(S(2)) and exp® (S(2)) coincide.

Theorem 5.3. exp(S(2)) = exp#(5(2)) = 4.

Proof. It is well-known (see [1]) that c¢,(A) < ¢8'(A) for any group graded
algebra A. Hence, by Theorem 4.3,

exp¥(S(2)) = 4. (17
Let us prove that exp®(5(2)) < 4. (18)

By (

16), Lemma 5.1 and Lemma 5.2, we have

Chn-k(S(2)) < can"2F2"F = cyns2"

for some constants c3,r3. Then by definition of graded codimensions,

The

1]

C%r<s<2)) < anr32n Z (IZ) = 03nr34n.

k

latter relation proves (18), and the proof is complete. [
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