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Abstract. We study numerical invariants of identities of finite-dimensional solvable Lie
superalgebras. We define new series of finite-dimensional solvable Lie superalgebras L with
non-nilpotent derived subalgebra L′ and discuss their codimension growth. For the first algebra
of this series we prove the existence and integrality of exp(L) .
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1. Introduction
Let A be an algebra over a field F of characteristic zero. One can define an
infinite sequence {cn(A)}, n = 1, 2, . . . , of non-negative integers associated with A
called codimension sequence. It measures the quantity of polynomial identities of
A . For many classes of algebras the sequence {cn(A)} is exponentially bounded.
In particular, this holds for associative PI-algebras [14], [15], for finite-dimensional
algebras [1], [11], for Kac-Moody Lie algebras [20], [21], and many others. In this
case the sequence (cn(A))

1/n has the lower and upper limits exp(A) and the exp(A)
called the lower and upper PI-exponents of A , respectively. If exp(A) = exp(A)
then there exists an ordinary limit called the PI-exponent exp(A) of A . At the
end of 1980’s Amitsur conjectured that exp(A) exists and is an integer for every
associative PI-algebra A . Amitsur’s conjecture was proved in [7], [8]. Later the
existence and integrality of PI-exponent was proved for finite-dimensional Lie and
Jordan algebras [4], [5], [6], [10], [11], [22]. On the other hand, there are infinite-
dimensional solvable Lie algebras with fractional PI-exponents [2], [18], [24].

None of these results can be generalized to Lie superalgebras. There is an infinite
series of finite-dimensional superalgebras P (t) , t ≥ 2 , where all P (3), P (4), . . .
are simple whereas P (2) is not. For L = P (2) it was proved in [12] that exp(L)
exists and is not an integer. Due to [12], there is a serious reason to expect that
PI-exponent is fractional for any simple superalgebra P (t) , t ≥ 3 .
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For infinite-dimensional Lie superalgebras only some partial results are known
[16], [25]. In particular, in [25] it was shown that PI-exponent of a Lie superal-
gebra L exists and is an integer, provided that its commutator subalgebra L2 is
nilpotent. Note that by the Lie Theorem, the subalgebra L2 is nilpotent for any
finite-dimensional solvable Lie algebra L . Unfortunately, finite-dimensional Lie
superalgebras in general do not satisfy this condition. Hence the result of [25] can-
not be applied to finite-dimensional solvable Lie superalgebras. Although there are
examples of finite-dimensional Lie superalgebras with the fractional PI-exponent,
the following conjecture looks natural: Is it true that any finite-dimensional solv-
able Lie superalgebra has an integer exponent?

In this paper we construct new series of finite-dimensional solvable Lie superalge-
bras S(t) , t = 2, 3, . . . , with non-nilpotent derived subalgebras. For S(2) we prove
the existence and integrality of PI-exponent (Theorem 4.3). We also discuss the
following related question concerning graded identities. Every Lie superalgebra
L = L0 ⊕ L1 is endowed by the natural Z2 -grading. Hence one can also study
asymptotic behavior of graded codimension sequence {cgr

n (L)} . It was mentioned
in [1] that cn(A) ≤ cgr

n (A) for any algebra A = ⊕g∈GAg graded by a finite group
G . Hence exp(A) ≤ expgr(A) . In the associative case there are examples where
this inequality is strong. For instance, if A = F [G] is the group algebra of a finite
abelian group G then exp(A) = 1 whereas expgr(A) = |G| . For Lie superalgebras
similar examples are unknown. On the other hand, there are many examples of
simple (associative and nonassociative) algebras with expgr(A) = exp(A) . In the
present paper we give the first example in the class of solvable Lie superalgebras,
namely, we prove that expgr(S(2)) = exp(S(2)) (Theorem 5.3).

2. Generalities

Let A be an algebra over F and let F{X} be the absolutely free algebra over
F with an infinite set of generators X . A non-associative polynomial f =
f(x1, . . . , xn) ∈ F{X} is said to be an identity of A if f(a1, . . . , an) = 0 for
any a1, . . . , an ∈ A . All identities of A form an ideal Id(A) of F{X} .

Denote by Pn the subspace in F{X} of all multilinear polynomials on x1, . . . , xn ∈
X . Then Pn ∩ Id(A) is the set of all multilinear identities of A of degree n . Since
char F = 0 , the sequence of subspaces

{Pn ∩ Id(A)}, n = 1, 2, . . . ,

completely defines the ideal Id(A) . Denote

Pn(A) =
Pn

Pn ∩ Id(A)
and cn(A) = dimPn(A).

The sequence of integers {cn(A)} , n = 1, 2, . . . , called the codimension sequence
of A , is an important numerical characteristic of Id(A) . The analysis of the
asymptotic behavior of {cn(A)} is one of the main approaches of the study of
identities of algebras.
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As it was mentioned in the introduction, there is a wide class of algebras A such
that cn(A) ≤ an for some constant a . In this case one can define the lower and
the upper PI-exponents of A as follows:

exp(A) = lim inf
n→∞

n
√

cn(A), exp(A) = lim sup
n→∞

n
√

cn(A),

respectively. If the ordinary limit exists we can define the (ordinary) PI-exponent

exp(A) = lim
n→∞

n
√
cn(A).

A powerful tool for computing codimensions is the representation theory of the
symmetric group Sn . One can define an Sn -action on the subspace Pn of multi-
linear polynomials by setting

σf(x1, . . . , xn) = f(xσ(1), . . . , xσ(n))

for σ ∈ Sn . Then Pn becomes an FSn -module. Since Pn ∩ Id(A) is stable under
Sn -action, then Pn(A) is also an FSn -module and its Sn -character

χn(A) = χ(Pn(A))

is called the n-th cocharacter of A . By Maschke’s Theorem, Pn(A) is completely
reducible, so

χn(A) =
∑
λ⊢n

mλχλ (1)

where χλ is the irreducible Sn -character corresponding to the partition λ of n .
All details concerning Sn -representations can be found in [13]. The total sum of
multiplicities in (1) is called the n-th colength of A ,

ln(A) =
∑
λ⊢n

mλ.

Clearly, cn(A) =
∑
λ⊢n

mλdλ (2)

where dλ = degχλ is the dimension of the corresponding irreducible representation
and the multiplicities mλ are taken from (1). It is well-known that the colength
sequence {ln(A)} is polynomially bounded for any finite-dimensional algebra A .

Proposition 2.1 ([3, Theorem 1]). Let dimA = d. Then, for all n ≥ 1,

ln(A) ≤ d(n+ 1)d
2+d.

Throughout the paper we will omit brackets in left-normed products in non-asso-
ciative algebras, i.e., abc = (ab)c , abcd = (abc)d , etc.
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3. Lie superalgebras S(t)

In this section we introduce an infinite series of finite-dimensional solvable Lie
superalgebras with non-nilpotent commutator subalgebra.
First, let R be an arbitrary associative algebra with involution ∗ : R → R .
Consider an associative algebra Q consisting of (2× 2)-matrices over R

Q =

{(
A B
C D

) ∣∣∣∣ A,B,C,D ∈ R

}
.

The algebra Q can be naturally endowed by Z2 -grading Q = Q0 ⊕Q1 , where

Q0 =

{(
A 0
0 D

)}
, Q1 =

{(
0 B
C 0

)}
.

It is well-known that if we define a (super) commutator brackets by setting

[x, y] = xy − (−1)|x∥y|yx

for homogeneous x, y ∈ Q0 ∪Q1 , where |x| = 0 if x ∈ Q0 and |x| = 1 if x ∈ Q1 ,
then Q becomes a Lie superalgebra. For basic notions of super Lie theory we refer
to [17]. Denote by

R+ = {x ∈ R| x∗ = x} , R− = {y ∈ R| y∗ = −y},

the subspaces of symmetric and skew elements of R , respectively. Then the
subspace

L =

{(
x y
z −x∗

) ∣∣∣∣ x ∈ R, y ∈ R+, z ∈ R−
}

= L0 ⊕ L1 (3)

of Q is a Lie superalgebra under the supercommutator product defined above,
where even and odd components are

L0 =

{(
x 0
0 −x∗

)}
, L1 =

{(
0 y
z 0

)}
.

Note that if R = Mt(F ) is a (t × t)-matrix algebra, t ≥ 3 , then its subalgebra
L̃ ⊂ L consisting of the matrix {(

x y
z −x∗

)}
with traceless matrices x where x → x∗ is the transpose involution is a well-known
simple Lie superalgebra P (t) (or b(t) in the notations of [17]).

Now we clarify the structure of R in our case. Let R = UTt(F ) be an algebra
of (t × t)-upper triangular matrices over F . It is well-known (see, for example,
[19]) that the reflection across the secondary diagonal is the involution on R ,
hence L defined in (3) is a finite-dimensional Lie superalgebra. We denote this
superalgebra by S(t) . Its even component S0 ≃ UTt(F ) is solvable hence the
entire L is also solvable (see, for example, [17]). It is not difficult to check that
the derived subalgebra L2 is not nilpotent and we get the following conclusion.
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Proposition 3.1. Let R be the upper triangular (t × t)-matrix algebra with
the involution ∗ : R → R , the reflection across the secondary diagonal. Then
S(t) = L = L0 ⊕ L1 well-defined in (3) is a finite-dimensional solvable Lie
superalgebra, dimL = t(t+ 1), with non-nilpotent commutator subalgebra.

Now we will have to deal with the Lie superalgebra S(2) . First, we compute
supercommutators in the associative superalgebra Q ≃ UT2(F ) ⊗ M2(F ) . If
A,B,C and D are 2× 2-matrices then[(

A 0
0 −A∗

)
,

(
0 B
0 0

)]
=

(
0 AB +BA∗

0 0

)
, (4)[(

A 0
0 −A∗

)
,

(
0 0
C 0

)]
=

(
0 0

−A∗C − CA 0

)
, (5)[(

A 0
0 −A∗

)
,

(
B 0
0 −B∗

)]
=

(
AB −BA 0

0 −(AB −BA)∗

)
, (6)[(

0 B
0 0

)
,

(
0 0
C 0

)]
=

(
BC 0
0 CB

)
. (7)

From now on, we will not use associative multiplication and will omit square
brackets in the product of elements of Lie superalgebra S(2) . That is, xy = [x, y] ,
xyz = [[x, y], z] and so on for x, y, z ∈ S(2) . Let e11, e12 and e22 be (2×2)-matrix
units. Then e∗11 = e22 , e∗22 = e11 , e∗12 = e12 in R and the matrices

a =

(
e11 − e22 0

0 e11 − e22

)
, b =

(
0 e11 + e22
0 0

)
, c =

(
0 0

e11 − e22 0

)
,

d =

(
e11 + e22 0

0 −e11 − e22

)
, x =

(
e12 0
0 −e12

)
, y =

(
0 e12
0 0

)
form a basis of S(2) . By definition a, d and x are even whereas b, c and y are odd.
Using (4), (5), (6), (7) we can compute all nonzero products of basis elements,

bc = cb = a, bd = −db = −2b, cd = −dc = 2c, xa = −ax = −2x,

xb = −bx = 2y, ya = −ay = −2y, yc = cy = −x, yd = −dy = −2y.

4. PI-exponent of S(2)

Since we will have to deal with multialternating sets of arguments in multilinear
and multihomogeneous expressions, it is convenient to use the following agreement.
If f = f(x1, . . . , xn, y1, . . . , yk) is a non-associative polynomial, multilinear on
x1, . . . , xn , then we denote the result of alternation of f on x1, . . . , xn by marking
all x1, . . . , xn by one and the same symbol over xi ’s. For example,

x̄1yx̄2x̄3 =
∑
σ∈S3

(sgnσ)xσ(1)yxσ(2)xσ(3), or

(yx̄1x̃1)(x̄2x̃2)(x̄3x̃3) =

=
∑
σ∈S3

∑
τ∈S3

(sgnσ)(sgn τ)(yxσ(1)xτ(1))(xσ(2)xτ(2))(xσ(3)xτ(3)).
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Our next goal is to prove the relation

y(̃bc̄)(c̃d̄)(d̃ b̄)ãā = 384y. (8)

Since aa = ab = ba = ac = ca = ad = da = 0 , the left hand side of (8) is equal to
y(̃bc̄)(c̃d̄)(d̃ b̄)aa . Hence it suffices to show that

y(̃bc̄)(c̃d̄)(d̃ b̄) = 96y. (9)

The left hand side of (9) can be written as the sum

y(bc̄)(cd̄)(db̄) + y(cc̄)(dd̄)(bb̄) + y(dc̄)(bd̄)(cb̄)−
− y(cc̄)(bd̄)(db̄)− y(dc̄)(cd̄)(bb̄)− y(bc̄)(dd̄)(cb̄).

Direct computations show that

y(bc̄)(cd̄)(db̄) = y(bc)(cd)(db) + y(bd)(cb)(dc) = 4yacb+ 4ybac,

y(cc̄)(dd̄)(bb̄) = y(cb)(dc)(bd) + y(cd)(db)(bc) = 4yacb+ 4ycba,

y(dc̄)(bd̄)(cb̄) = y(dc)(bd)(cb) + y(db)(bc)(cd) = 4ycba+ 4ybac,

−y(cc̄)(bd̄)(db̄) = y(cd)(bc)(db) + y(cb)(bd)(dc) = 4ycab+ 4yabc,

−y(dc̄)(cd̄)(bb̄) = y(db)(cd)(bc) + y(dc)(cb)(bd) = 4ybca+ 4ycab,

−y(bc̄)(dd̄)(cb̄) = y(bd)(dc)(cb) + y(bc)(db)(cd) = 4ybca+ 4yabc.

Since yb = 0 and yab = −2yb = 0 , we obtain

y(̃bc̄)(c̃d̄)(d̃b̄) = 8yacb+ 8ycab+ 8ycba = −16ycb− 8xab− 8xba

= 16xb+ 16xb− 16ya = 96y

and therefore (9), (8) hold. Equality (8) implies the relation

y (̃bc̄)(c̃d̄)(d̃ b̄)ãā · · · (̃̃b¯̄c)(̃c̃ ¯̄d)(˜̃d ¯̄b)˜̃a¯̄a︸ ︷︷ ︸
m

̸= 0 (10)

for any m ≥ 1 . Consider the multilinear polynomial

fm = w(x̃
(1)
1 z̄

(1)
1 )(x̃

(1)
2 z̄

(1)
2 )(x̃

(1)
3 z̄

(1)
3 )x̃

(1)
4 z̄

(1)
4 · · ·

· · · (˜̃x(m)

1
¯̄z
(m)
1 )(˜̃x(m)

2
¯̄z
(m)
2 )(˜̃x(m)

3
¯̄z
(m)
3 )˜̃x(m)

4
¯̄z
(m)
4

of degree 4m+1 . The polynomial fm depends on 2m alternating sets of variables,
each of order four. Moreover, fm assumes a non-zero value under an evaluation
φ : X → S(2) such that

φ(w) = y, φ(x
(i)
1 ) = b, φ(x

(i)
2 ) = c, φ(x

(i)
3 ) = d, φ(x

(i)
4 ) = a,

φ(z
(i)
1 ) = c, φ(z

(i)
2 ) = d, φ(z

(i)
3 ) = b, φ(z

(i)
4 ) = a, i = 1, . . . ,m.
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Denote n = 8m and consider the Sn -action on variables

{x(i)
j , z

(i)
j | 1 ≤ j ≤ 4, 1 ≤ i ≤ m}.

Under this action the subspace

Pn+1 = Pn+1(w, x
(i)
j , z

(i)
j , 1 ≤ j ≤ 4, 1 ≤ i ≤ m)

becomes an FSn -module. The structure of the polynomial fm and the relation
φ(fm) ̸= 0 show that eTλ

fm is not an identity of S(2) , where eTλ
is the essential

idempotent corresponding to some Young tableau Tλ with the Young diagram Dλ

and λ = (2m, 2m, 2m, 2m) ⊢ n . In particular,

cn+1(S(2)) ≥ degχλ. (11)

From the hook formula for degχλ and the Stirling formula for factorials we get

degχλ ≥ n−54n, (12)

provided that n = 8m and λ = (2m)(4) .

The inequalities (11), (12) give us the lower bound for codimensions cn(S(2)) .

Lemma 4.1. The lower PI-exponent of S(2) satisfies the inequality exp(S(2)) ≥ 4.

Proof. Let n ≡ j (mod 8) where 0 ≤ j ≤ 7 . If j = 1 then n = 8m+ 1 and

cn(S(2)) ≥
4n−1

(n− 1)5
≥ 1

5n5
4n

by (11), (12). If j ̸= 1 then there exist m and 1 ≤ i ≤ 8 such that n = 8m+1+ i .
In this case the polynomial g = (eTλ

fm)u1 · · ·ui of degree 8m + 1 + i = n is not
an identity of S(2) since φ(fm) = (384)my for the above mentioned evaluation φ
and ya = −2y . Hence

cn(S(2)) ≥ 4−8n−54n.

Therefore exp(S(2)) ≥ 4 and the proof is complete.

We need another lemma to prove the main result of the paper.

Lemma 4.2. Let mλ ̸= 0 in (2) for A = S(2), λ = (λ1, . . . , λk). Then either
k ≤ 4 or k = 5 and λ5 = 1.

Proof. Let mλ ̸= 0 and k > 4 . Then there exists a Young tableau Tλ such
that eTλ

f ̸∈ Id(A) for some multilinear polynomial f = f(x1, . . . , xn) . Recall that

eTλ
=

 ∑
σ∈RTλ

σ

 ∑
τ∈CTλ

(sgn τ) τ


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where RTλ
and CTλ

are the row stabilizer and the column stabilizer of Tλ in Sn ,
respectively. Note that the polynomial

g = g(x1, . . . , xn) =

 ∑
τ∈CTλ

(sgn τ) τ

 eTλ
f

is also non-identity of A . If k > 5 then g contains an alternating set of variables
{xi1 , . . . , xit} of order t ≥ 6 . Consider an evaluation φ : X → B = {a, b, c, d, x, y} .
The linear subspace J = ⟨x, y⟩ ⊂ A is a nilpotent ideal of A , J2 = 0 . If at least
two of xiα , 1 ≤ α ≤ 6 , lie in J then φ(g) = 0 . But if φ(xi1), . . . , φ(xit) take
not more than five distinct values in B then also φ(g) = 0 , due to the skew
symmetry of g . This contradiction shows that k ≤ 5 . Similar arguments imply
the restriction λ5 ≤ 1 and hence the proof is complete.

Theorem 4.3. The PI-exponent of the Lie superalgebra S(2) exists and

exp(S(2)) = 4.

Proof. Because of Lemma 4.1 it suffices to prove the inequality

exp(S(2)) ≤ 4. (13)

In light of Lemma 4.2, by Lemma 6.2.4 and Lemma 6.2.5 from [9], we have

degχλ < Cnr4n

for some constants C, r if mλ ̸= 0 in (2). Finally, applying Proposition 2.1, we
get the inequality (13) and the proof is complete.

5. Graded PI-exponent of S(2)

Recall the definition of the graded codimension of a Z2 -graded algebra. Let
A = A0 ⊕ A1 be an F -algebra with Z2 -grading. Denote by F{X,Y } the free
algebra on two infinite sets of generators X and Y . Let all x ∈ X be even and
all y ∈ Y odd. Then this parity on X ∪ Y induces Z2 -grading on F{X,Y } .
A polynomial f = f(x1, . . . , xm, y1, . . . , yn) with x1, . . . , xm ∈ X , y1, . . . , yn ∈ Y
is said to be a graded identity of A if f = f(a1, . . . , am, b1, . . . , bn) = 0 for all
a1, . . . , am ∈ A0 , b1, . . . , bn ∈ A1 .

Given 0 ≤ k ≤ n , denote by Pk,n−k the subspace of all multilinear polynomials on
x1, . . . , xk ∈ X, y1, . . . , yn−k ∈ Y and define the integer

ck,n−k(A) = dim
Pk,n−k

Pk,n−k ∩ Idgr(A)

where Idgr(A) is the ideal of graded identities of A . Then the value

cgr
n (A) =

n∑
k=0

(
n

k

)
ck,n−k(A)
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is called the graded n-th codimension of A . As in the non-graded case, the limits

expgr(A) = lim inf
n→∞

n

√
cgr
n (A), expgr(A) = lim sup

n→∞

n

√
cgr
n (A),

expgr(A) = lim
n→∞

n

√
cgr
n (A)

are called the lower, the upper and the ordinary graded PI-exponent of A .

The space Pk,n−k has a natural F [Sk×Sn−k]-module structure where the symmet-
ric groups Sk and Sn−k act on {x1, . . . , xk} and on {y1, . . . , yn−k} , respectively.
Since Pk,n−k ∩ Idgr(A) is stable under the (Sk × Sn−k)-action, then the quotient
space

Pk,n−k(A) =
Pk,n−k

Pk,n−k ∩ Idgr(A)

is also an F [Sk × Sn−k]-module and its (Sk × Sn−k)-character has the form

χk,n−k(A) = χ(Pk,n−k(A)) =
∑
λ⊢k

µ⊢n−k

mλ,µχλ,µ. (14)

In particular, ck,n−k(A) =
∑
λ⊢k

µ⊢n−k

mλ,µ degχλ degχµ. (15)

The sum of multiplicities

lgr
n (A) =

n∑
k=0

∑
λ⊢k

µ⊢n−k

mλ,µ

is called n-th graded colength of A and is polynomially bounded if dimA < ∞
(see [23]) that is, there are constants C, r such that

lgr
n (A) ≤ Cnr. (16)

Recall that A0 = ⟨a, d, x⟩ , A1 = ⟨b, d, y⟩ for our superalgebra A = S(2) and x, y
belong to nilpotent ideal J , J2 = 0 .
The same argument as in the proof of Lemma 4.2 gives us the following result.

Lemma 5.1. Let A = S(2) and let mλ,µ ̸= 0 in (14). Then λ = (λ1) or
λ = (λ1, λ2) or λ = (λ1, λ2, 1) and µ = (µ1) or µ = (µ1, µ2) or µ = (µ1, µ2, 1).

As a consequence of Lemma 5.1 and Lemmas 6.2.4, 6.2.5 from [9] we get the
following statement.

Lemma 5.2. There are constants c,r0, c1, r1 not depending on k such that

degχλ ≤ c0n
r02k, degχµ ≤ c1n

r12k

for all λ ⊢ k , µ ⊢ (n− k) if mλ,µ ̸= 0 in (14).
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Our final result says that exp(S(2)) and expgr(S(2)) coincide.

Theorem 5.3. exp(S(2)) = expgr(S(2)) = 4.

Proof. It is well-known (see [1]) that cn(A) ≤ cgr
n (A) for any group graded

algebra A . Hence, by Theorem 4.3,

expgr(S(2)) ≥ 4. (17)

Let us prove that expgr(S(2)) ≤ 4. (18)

By (16), Lemma 5.1 and Lemma 5.2, we have

ck,n−k(S(2)) ≤ c3n
r32k2n−k = c3n

r32n

for some constants c3, r3 . Then by definition of graded codimensions,

cgr
n (S(2)) ≤ c3n

r32n
∑
k

(
n

k

)
= c3n

r34n.

The latter relation proves (18), and the proof is complete.
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