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We introduce grading on certain finite dimensional simple Lie 
superalgebras of type P (t) by elementary abelian 2-group. 
This grading gives rise to Pauli matrices and is a far general-
ization of (Z2 ×Z2)-grading on Lie algebra of (2 ×2)-traceless 
matrices.We use this grading for studying numerical invariants 
of polynomial identities of Lie superalgebras. In particular, we 
compute graded PI-exponent corresponding to Pauli grading.
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1. Introduction

In this paper we study algebras over a field F of characteristic zero. Group graded 
algebras have been intensively studied in the last two decades (see, for example, [3,5,
6,10,11,18,19,26]). All possible gradings on matrix algebras over an algebraically closed 
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field were described in [3,6]. Recently, all gradings by a finite abelian groups on fi-
nite dimensional simple real algebras have also been classified in [7,23]. Many authors 
have also paid attention to gradings on Lie algebras [5,8,11,19]. Both, in associative 
and Lie case, an exceptional role is played by gradings which cannot be “refined” – 
in particular, gradings whose homogeneous components are one-dimensional [3,6,8,19]. 
Classification of group gradings on Lie superalgebras is only in its initial stages (see, 
e.g., [4]). Therefore an important role is played by new examples of gradings on Lie 
superalgebras.

It is well known that abelian gradings are closely connected to automorphism and 
involution actions on algebra (see, for example, [3]), hence the knowledge of gradings gives 
us an important information about the group of automorphisms and antiautomorphisms 
of an algebra. Another application of gradings is the study of graded and non-graded 
identities and their numerical invariants.

Given an algebra A, one can associate to it an infinite sequence of non-negative inte-
gers

{cn(A)}, n = 1, 2, . . . ,

called codimensions of A. The study of asymptotic behavior of {cn(A)} is one of the 
most important and current approaches in the modern PI-theory [14]. In many cases 
codimension growth is exponentially bounded. In particular,

dimA = d < ∞ ⇒ cn(A) ≤ dn+1

(see [2] and also [15, Proposition 2]). If, in addition, A is endowed with a grading by 
a group G then one can also define the graded codimension sequence cGn (A). For a 
finite dimensional algebra A, graded and ordinary codimensions satisfy the following 
inequalities:

cn(A) ≤ cGn (A) ≤ (dimA)n+1 (1)

(see [2]).
As a rule, an investigation of asymptotics of graded codimensions is much easier 

than a study of non-graded codimensions. This fact was used in our previous papers for 
obtaining the results on both graded and non-graded codimension growth [16,20–22].

If A is a finite dimensional graded simple algebra then there exist the limits

exp(A) = lim
n→∞

n
√

cn(A), expG(A) = lim
n→∞

n

√
cGn (A) (2)

and according to (1) we have

exp(A) ≤ expG(A) ≤ dimA. (3)
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It is well known that in many most important cases of algebras (associative, Lie, 
Jordan, alternative, etc.)

exp(A) = dimA, (4)

provided that A is simple and F is algebraically closed [12,13,25]. In this case expG(A)
is also equal to dimA for any grading on A. If A is graded simple but not simple in 
the usual sense then graded and non-graded exponents can differ. For example, if G
is a finite abelian group of order |G| = m and A is its group algebra, A = FG, then 
exp(A) = 1 whereas expG(A) = m. Clearly, if A is simple in non-graded sense then A
is also graded simple for any G-grading. Relations (3) and (4) show that the conjecture 
that exp(A) = expG(A) holds for associative, Lie, Jordan and alternative algebras over 
an algebraically closed field.

Nevertheless, in the Lie superalgebra case there exist simple algebras such that exp(A)
and expG(A) exist and are strictly less than dimA (see [16,22]). Here we are talking about 
canonical Z2-grading on Lie superalgebras. Therefore the study of relations between 
graded and non-graded PI-exponents is of interest in the general case. In particular, if 
the conjecture that exp(A) = expG(A) is confirmed then it would give us a powerful tool 
for computing precise asymptotics of codimension growth. Another consequence would 
be the independence of expG(A) on the particular G-grading.

The goal of the present paper is twofold. In the first part we define the so-called Pauli 
G-grading on the simple Lie superalgebra of the type L = P (t) (in the notation of [17], 
for general material on Lie superalgebras see also [24]), where t is the power of 2 and G
is an elementary abelian 2-group. This grading possesses many remarkable properties. In 
fact, it is induced from the grading on simple 3-dimensional Lie algebra sl2(F ) by Pauli 
matrices and is compatible with the canonical Z2-grading. All non-zero homogeneous 
components of L are one-dimensional. Also, any even homogeneous element 0 �= a ∈ Lg

is a non-degenerate matrix and for any homogeneous elements a ∈ Lg, b ∈ Lh their 
Lie supercommutator is either zero or non-degenerate. In the second part of the paper 
we investigate the graded codimension growth of L. We show that all computations 
are much easier than in the non-graded case due to the remarkable properties of Pauli 
grading.

Our main result is Theorem 1 below, stating that expG(P (t)) = t2−1 +t
√
t2 − 1. Note 

that Theorem 1 is true for t = 2 although P (2) is not simple and expG(P (2)) = 3 +2
√

3
holds for both Pauli grading and the canonical Z2-grading (see [20]).

Theorem 1. Let L be a Lie superalgebra of the type P (t), t = 2q, q ≥ 1, equipped with 
G-grading given in Proposition 2. Then G-graded PI-exponent of L exists and

expG(L) = t2 − 1 + t
√
t2 − 1.
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2. Pauli gradings

Let L be an algebra over a field F and let G be a group. One says that L is G-graded 
if L has a vector space decomposition

L =
⊕
g∈G

Lg

such that LgLh ⊆ Lgh for all g, h ∈ G. Subspaces Lg, g ∈ G, are called homogeneous 
components of L. Any element a ∈ Lg is called homogeneous of degree deg a = g. The 
subset

Supp L = {g ∈ G|Lg �= 0}

is said to be the support of the grading. A subspace V ⊆ L is called homogeneous if

V =
⊕
g∈G

V ∩ Lg.

Let A and B be two associative algebras and let G and H be two groups. Suppose 
that A and B are endowed by G- and H-gradings, respectively,

A =
⊕
g∈G

Ag, B =
⊕
h∈H

Bh.

Then one can introduce G ×H-grading on the tensor product A ⊗B by setting

(A⊗B)gh = Ag ⊗Bh.

An associative algebra R is said to be a superalgebra if R has some Z2-grading, that 
is

R = R(0) ⊕R(1), R(0)R(0) + R(1)R(1) ⊆ R(0), R(0)R(1) + R(1)R(0 ⊆ R(1).

A special case of associative superalgebras which we will use later is the Z2-graded n ×n

matrix algebra R = Mk,l(F ) with

R =
{(

A B

C D

)}
= R(0) ⊕R(1) , R(0) =

{(
A 0
0 D

)}
, R(1) =

{(
0 B

C 0

)}

where n = k + l, A, B, C, D are k × k, k × l, l × k and l × l matrices, respectively. 
In particular, when k = l we have Z2-grading on M2k(F ) which will be used for the 
definition of Lie superalgebra P (k).

Recall now that Z2-graded non-associative algebra L = L(0) ⊕ L(1) is called a Lie 
superalgebra if it satisfies homogeneous relations
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ab + (−1)|a||b|ba = 0, a(bc) = (ab)c + (−1)|a||b|b(ac) = 0

for all a, b, c ∈ L(0) ∪ L(1) where |x| = 0 if x ∈ L(0) and |x| = 1 if x ∈ L(1). In 
particular, any associative superalgebra R = R(0) ⊕ R(1) with the new product called 
supercommutator, defined for homogeneous elements as

[a, b] = ab− (−1)|a||b|ba

becomes a Lie superalgebra.
Let L(0) ⊕ L(1) be a Lie superalgebra and let G be a group. Then a G-grading

L = ⊕g∈GLg

is called compatible with Z2-grading of L if Lg ⊆ L(0) or Lg ⊆ L(1) for all g ∈ G.
For defining the Pauli grading on the associative matrix algebra M2q(F ) we start with 

q = 1. Consider 2 × 2 matrices

σ0 =
{(

1 0
0 1

)}
, σ1 =

{(
1 0
0 −1

)}
, σ2 =

{(
0 1
1 0

)}
, σ3 =

{(
0 1
−1 0

)}
. (5)

Matrices (5) are closely related to Pauli matrices.

σx =
{(

0 1
1 0

)}
, σy =

{(
0 −i

i 0

)}
, σz =

{(
1 0
0 −1

)}
.

It is well-known that the linear span L =< σx, σy, σz > is closed under Lie commutator 
and L � su(2) as Lie algebra whereas the span < σ0, σ1, σ2, σ3 > as an associative 
algebra is isomorphic to M2(F ). Denote by G =< a >2 × < b >2 the product of two 
cyclic groups of order 2 with generators a and b, respectively. Clearly, G is isomorphic 
to Z2 × Z2 and the decomposition

R = M2(F ) = Re ⊕Ra ⊕Rb ⊕Rab (6)

is a G-grading, where

Re =< σ0 >,Ra =< σ1 >,Rb =< σ2 >,Rab =< σ3 > .

We call the grading (6) on M2(F ) Pauli grading on M2(F ).
We generalize this construction to matrices of arbitrary size 2q, q ≥ 2 in the following 

way. Let R = R1 ⊗ · · · ⊗ Rq where all R1, . . . , Rq are isomorphic to the 2 × 2 matrix 
algebra M2(F ). Let also

G0 = G1 × . . .×Gq, Gj =< aj >2 × < bj >2� Z2 ⊕ Z2, j = 1, . . . , q. (7)
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Then R has a basis consisting of elements

c = x1 ⊗ · · · ⊗ xq (8)

where all x1, . . . , xq are of the type (5). Then in the Kronecker realization of tensor 
product of matrices for transpose involution T we have

cT = (x1 ⊗ · · · ⊗ xq)T = xT
1 ⊗ · · · ⊗ xT

q .

In particular, the element c of the type (5) is symmetric if and only if the number of 
matrices σ3 among x1, . . . , xq is even and cT = −c if and only if the number of σ3 is odd.

All R1, . . . , Rq have Pauli grading as defined earlier and we can extend these gradings 
to their tensor product R. Then we obtain G0-grading on R

R =
⊕
g∈G0

Rg

where Rg =< x1 ⊗ · · · ⊗ xq > and all x1, . . . , xq are of the type (5). Moreover, we have

deg(x1 ⊗ · · · ⊗ xq) = deg x1 · · ·deg xq (9)

where

deg xi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ei, if xi = σ0
ai, if xi = σ1 ,

bi, if xi = σ2 ,

aibi, if xi = σ3

(10)

and σ0, σ1, σ2, σ3 are defined in (5).
Combining all previous arguments we get the following.

Proposition 1. The following assertions hold:

1) Relations (5), (9), (10) define G0-grading on the matrix algebra R = M2q (F ), where 
G0 is the elementary abelian 2-group defined in (7);

2) dimRg = 1 for every g ∈ G0;
3) R has a homogeneous in G0-grading basis consisting of products (8) and any basis 

element is either symmetric or skew-symmetric under transpose involution;
4) Every non-zero homogeneous element is invertible; and
5) Lie subalgebra sl2q of traceless matrices is homogeneous in this grading. �

Applying Proposition 1, we construct a grading on some simple Lie superalgebras. 
Recall that P (t) (in the notation [17]) is a Lie superalgebra L ⊂ Mt,t(F ) with
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L(0) =
{(

A 0
0 −AT

)}
, L(1) =

{(
0 B

C 0

)}

where A, B and C are t × t matrices, trA = 0, BT = B, CT = −C and X → XT is 
the transpose involution on Mt(F ). We equip L with an abelian grading in the following 
way. Let

t = 2q, R = R1 ⊗ · · · ⊗Rq, R1 = · · · = Rq = M2(F )

and let G0 be as in (7). We extend G0 to

G =< a0 >2 ×G0 � (Z2)2q+1

and define G-grading on L compatible with canonical Z2-grading. If Xg ∈ R is homoge-
neous, degXg = g ∈ G0, then

Y =
{(

Xg 0
0 −XT

g

)}
, (11)

is homogeneous in L, deg Y = g for all Xg ∈ sl2q (F ) ⊂ R,

if Xg is symmetric then Y =
{(

0 Xg

0 0

)}
(12)

is homogeneous, deg Y = a0g

if Xg is skew then Y =
{(

0 0
Xg 0

)}
(13)

is homogeneous, deg Y = a0g. The following proposition is an immediate consequence of 
Proposition 1 and multiplication rule of L.

Proposition 2. Let

G0 =< a1 >2 × < b1 >2 × · · ·× < aq >2 × < bq >2

and

G =< a0 >2 ×G0

be elementary abelian 2-groups. Then (11), (12) and (13) define a G-grading on L =
P (2q) compatible with the canonical Z2-grading. All homogeneous components of L are 
1-dimensional. If

g = a0g0, h = a0h0, g0, h0 ∈ G0, 0 �= Xg ∈ Lg, Xh ∈ Lh
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and both Xg, Xh are either of the type (12) or of the type (13) then [Xg, Xh] = 0. In all 
other cases [Xg, Xh] is an invertible element of M2q(F ). �
3. Graded PI-exponent

We recall some key notions from the theory of identities and their numerical invariants. 
We refer the reader to [1,9,14] for details. Consider an absolutely free algebra F{X} with 
a free generating set

X =
⋃
g∈G

Xg, |Xg| = ∞ for any g ∈ G.

One can define a G-grading on F{X} by setting degG x = g, when x ∈ Xg, and extend 
this grading to the entire F{X} in the natural way. A polynomial f(x1, . . . , xn) in ho-
mogeneous variables x1 ∈ Xg1 , . . . , xn ∈ Xgn is called a graded identity of a G-graded 
algebra A if f(a1, . . . , an) = 0 for any a1 ∈ Ag1 , . . . , an ∈ Agn . The set IdG(A) of all 
graded identities of A forms an ideal of F{X} which is stable under graded homomor-
phisms F{X} → F{X}.

First, let G be finite, G = {g1, . . . , gk} and

X = Xg1

⋃
. . .

⋃
Xgk .

Denote by Pn1,...,nk
the subspace of F{X} of multilinear polynomials of total degree 

n = n1 + · · · + nk in variables

x
(1)
1 , . . . , x(1)

n1
∈ Xg1 , . . . , x

(k)
1 , . . . , x(k)

nk
∈ Xgk .

Then the value

cn1,...,nk
(A) = dim Pn1,...,nk

Pn1,...,nk
∩ IdG(A)

is called a partial codimension of A while

cGn (A) =
∑

n1+···+nk=n

(
n

n1, . . . , nk

)
cn1,...,nk

(A) (14)

is called a graded codimension of A. Recall that the support of the grading is the set

Supp A = {g ∈ G|Ag �= 0}.

Note that if Supp A �= G, say, Supp A = {g1, . . . , gd}, d < k, then the value

∑
n1+···+nd=n

(
n

n1, . . . , nd

)
dim Pn1,...,nd

Pn1,...,nd
∩ IdG(A) (15)

coincides with (14).
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Denote

Pn1,...,nk
(A) = Pn1,...,nk

Pn1,...,nk
∩ IdG(A) . (16)

For finding a lower bound for PI-exponent we need the following observation.

Lemma 1. Let A be a G-graded algebra with the support SuppA = {g1, . . . , gd} ⊆ G. Let 
also dimAg = 1 for any g ∈ SuppA. Then

(1) if Pn1,...,nd
(A) �= 0 then dimPn1,...,nd

(A) = 1,
(2) dimPn1,...,nd

(A) = 1 if and only if there exist u1 ∈ Ag1 , . . . , ud ∈ Agd and a mono-
mial m(u1, . . . , ud) = m �= 0 on u1, . . . , ud such that every uj appears in m exactly 
nj times, j = 1, . . . , d.

Proof. First, let Pn1,...,nd
(A) �= 0. Then there exists a multilinear homogeneous polyno-

mial

f = f(x(1)
1 , . . . , x(1)

n1
, . . . , x

(d)
1 , . . . , x(d)

nd
) ∈ Pn1,...,nd

which is not an identity of A. That is, one can find u1 ∈ Ag1 , . . . , ud ∈ Agd such that 
f(u1, . . . , ud) �= 0. If

g = g(x(1)
1 , . . . , x(1)

n1
, . . . , x

(d)
1 , . . . , x(d)

nd
) ∈ Pn1,...,nd

\ IdG(A)

then

g(u1, . . . , u1, . . . , ud, . . . , ud) = λf(u1, . . . , u1, . . . , ud, . . . , ud)

for some scalar λ since dimAg = 1 for g = gn1
1 · · · gnd

d . Hence g − λf ≡ 0 is an identity 
of A. This proves (1).

Now let dimPn1,...,nd
(A) = 1, that is Pn1,...,nd

(A) �= 0. Then there exist

f = f(x(1)
1 , . . . , x(1)

n1
, . . . , x

(d)
1 , . . . , x(d)

nd
) ∈ Pn1,...,nd

\ IdG(A)

and u1 ∈ Ag1 , . . . , ud ∈ Agd such that

f(u1, . . . , u1︸ ︷︷ ︸
n1

, . . . , ud, . . . , ud︸ ︷︷ ︸
nd

) �= 0

in A. Hence, at least one monomial of f has a non-zero value under evaluation ϕ :
F{X} �→ A, where

ϕ(x(i)
j ) = ui, 1 ≤ i ≤ d, 1 ≤ j ≤ ni.

This implies (2), and have we completed the proof. �
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Corollary 1.

cGn =
∑(

n

n1, . . . , nd

)
(17)

where the sum in (17) is taken over all tuples (n1, . . . , nd) such that

Pn1,...,nd
(A) �= 0. (18)

Moreover, for the inequality (18) it suffices to check the condition (2) of Lemma 1. �
Now we go back to the Lie superalgebra

L = L(0) ⊕ L(1) = P (t), t = 2q,

with the G-grading presented in Proposition 2. First, we give an upper bound for 
expG(L). Note that Stirling formula for factorials implies the inequalities

1
nd

Φ(n;n1, . . . , nd)n ≤
(

n

n1, . . . , nd

)
≤ nΦ(n;n1, . . . , nd)n (19)

where

Φ(n;n1, . . . , nd) = (n1

n
)−

n1
n · · · (nd

n
)−

nd
n

and n = n1 + · · · + nd.
Denote

a = t(t + 1)
2 , b = t(t− 1)

2 , c = t2 − 1, d = a + b + c = dimL.

The algebra L has a natural Z-grading

L = L−1 ⊕ L0 ⊕ L1

where

L−1 =
{(

0 0
C 0

)}
, L0 = L(0) =

{(
A 0
0 −AT

)}
, L1 =

{(
0 B

0 0

)}
.

All remaining components Lk, k �= 0, ±1, are zero. Clearly, Pn1,...,nd
(L) �= 0 only if

|n1 + · · · + na − na+1 · · · − na+b| ≤ 1 (20)

where {g1, . . . , gd} ⊆ G is the support SuppL. It follows from Corollary 1 and (19) that
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1
nd

max{Φ(n;n1, . . . , nd)n} ≤ cGn (L) ≤ nd max{Φ(n;n1, . . . , nd)n} (21)

where the maximum is taken over all n1, . . . , nd satisfying (20).
First, consider the case where the left side of (20) is equal to zero. Then we rewrite

Φ(n;n1, . . . , nd) = Φ(x1, . . . , xd)

where x1 + · · · + xd = 1, x1, . . . , xd ≥ 0,

Φ(x1, . . . , xd) = x−x1
1 · · ·x−xd

d (22)

and

x1 + · · · + xa = xa+1 + · · · + xa+b.

It is easy to see that the maximal value of the function (22) is achieved when

x1 = · · · = xa, xa+1 = · · · = xa+b, xa+b+1 = · · · = xa+b+c.

Denote x = x1, y = xa+b, z = xa+b+c. Then (22) does not exceed

Φ̃ = Φ̃(x, y, z) = x−axy−byz−cz

and x, y, z satisfy the relations ax = by, ax + by + cz = 1. These relations imply

Φ̃−1 = z(t2−1)z(1 − (t2 − 1)z)(1−(t2−1)z)(t2(t2 − 1))
(t2−1)z−1

2

as a function of z. Then

g(z) = ln Φ̃−1 = cz ln z + (1 − cz) ln(1 − cz) − 1
2(1 − cz) ln(ct2).

Direct calculations show that g′(z) = 0 only if

z = z0 = (t2 − 1 + t
√

t2 − 1)−1

and g′′(z0) > 0. Hence, in z0 the function g(z) has a local minimum. Moreover,

g(z0) = − ln(t2 − 1 + t
√
t2 − 1).

It follows that

Φ̃ ≤ t2 − 1 + t
√
t2 − 1

and
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n

√
cGn (L) ≤ n

d
n (t2 − 1 + t

√
t2 − 1) (23)

as follows from (21) in the case n1 + · · · + na = na+1 + · · · + na+b.
If n1 + · · · + na − na+1 − · · · − na+b = −1 then(

n

n1, . . . , nd

)
≤

(
n + 1

n1 + 1, n2, . . . , nd

)
and

n

√
cGn (L) ≤ (n + 1)

d
n+1 (t2 − 1 + t

√
t2 − 1). (24)

Similarly, if n1 + · · · + na − na+1 − · · · − na+b = 1 then

n

√
cGn (L) ≤ (n− 1)

d
n−1 (t2 − 1 + t

√
t2 − 1) (25)

since (
n

n1, . . . , nd

)
≤ n

(
n− 1

n1, . . . , na+b−1, na+b − 1, na+b+1, . . . , nd

)
.

Inequalities (23), (24) and (25) give us the following.

Lemma 2.

expG(L) ≤ t2 − 1 + t
√
t2 − 1.

Now we will get the same lower bound.

Lemma 3.

expG(L) ≥ t2 − 1 + t
√
t2 − 1. (26)

Proof. Recall that L is Z-graded algebra, L = L−1 ⊕ L0 ⊕ L1, and a = dimL1, b =
dimL−1, c = dimL0. Consider a collection

X = {x1, . . . , x1︸ ︷︷ ︸
b

, . . . , xa, . . . , xa︸ ︷︷ ︸
b

}

where x1, . . . , xa are homogeneous in G-grading elements L1 with pairwise distinct degree 
in G-grading. Similarly, we take

Y = {y1, . . . , y1︸ ︷︷ ︸, . . . , yb, . . . , yb︸ ︷︷ ︸},

a a
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with homogeneous y1, . . . , yb ∈ L−1, degGyi are distinct. Renaming elements of X, Y we 
write

X = {x(1), . . . , x(ab)}, Y = {y(1), . . . , y(ab)}.

We remark that any xi, 1 ≤ i ≤ a appears among x(1), . . . , x(ab) exactly b times. Similarly, 
any yj , 1 ≤ j ≤ b, appears among y(1), . . . , y(ab) exactly a times. Consider supercommu-
tators

z1 = [x(1), y(1)], . . . , zab = [x(ab), y(ab)].

By Proposition 2 all zi are invertible in M2t(F ) matrices homogeneous in G-grading of L. 
Also,

z1, . . . , zab ∈ L(0) � sl2t(F ).

Note that xy = ±yx for any homogeneous x, y ∈ L(0). It follows that for any i = 1, . . . , ab
there exists z′i ∈ L(0) homogeneous in G-grading such that

[z′i, zi] = 2z′izi �= 0

where the product z′izi is taken in the associative algebra M2t(F ). Hence, the left-normed 
Lie commutators

z
(i)
k = [z′i, zi, . . . , zi︸ ︷︷ ︸

k

] = 2kz′izki , k = 1, 2, . . . ,

are non-zero homogeneous elements of L(0).
As before, one can find homogeneous u1, . . . , uab ∈ L(0) and linearly independent 

homogeneous v1, . . . , vc ∈ L(0) such that

wk = [z(1)
k , u1, z

(2)
k , u2, . . . , z

(ab)
k , uab] �= 0

and

wk,s = [wk, w
′
1, v1, . . . , v1︸ ︷︷ ︸

s

, w′
2, v2, . . . , v2︸ ︷︷ ︸

s

, . . . , w′
c, vc, . . . , vc︸ ︷︷ ︸

s

] �= 0

for some homogeneous w′
1, . . . , w

′
c ∈ L(0).

If u is a monomial on x1, . . . , xa, y1, . . . , yb, v1, . . . , vc in L then we will denote by 
Degxi

u, Degyi
u, Degviu the total number of factors xi, yi and vi in u, respectively. Then

Degxi
wk,s ≥ kb for all i = 1, . . . , a,

Degyi
wk,s ≥ ka for all i = 1, . . . , b,

Degv wk,s ≥ s for all i = 1, . . . , c.

i
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Total degrees Deg on {xα, yβ , vγ} are as follows:

Degz(i)
k = 2k + 1,Degwk = 2ab(k + 1),Degwk,s = 2ab(k + 1) + c(s + 1) = n.

Denote

ni = Degxi
wk,s, i = 1, . . . , a, (27)

na+i = Degyi
wk,s, i = 1, . . . , b, (28)

na+b+i = Degviwk,s, i = 1, . . . , c. (29)

If

m1 = · · · = ma = kb,ma+1 = · · · = ma+b = ka,ma+b+1 = · · · = ma+b+c = s,

and

m = m1 + · · · + ma+b+c = 2abk + cs

then n −m = 2ab + c and(
n

n1, . . . , nd

)
≥

(
m

m1, . . . ,md

)
≥

≥ 1
md

Φ(m;m1, . . . ,md)m = 1
md

Φ̃(kb
m

,
ka

m
,
s

m
)m. (30)

Denote ks = α. Then

s

m
= s

2abk + cs
= 1

k
s · t2(t2−1)

2 + t2 − 1
= 1

t2 − 1 + α t2(t2−1)
2

.

Note that if

β = 2
t
√
t2 − 1

then

t2 − 1 + β
t2(t2 − 1)

2 ) = t2 − 1 + t
√
t2 − 1

and

Φ̃(x̄, ȳ, z̄) = Φmax = t2 − 1 + t
√
t2 − 1

provided that

z̄ = (t2 − 1 + t
√
t2 − 1)−1, ax̄ = bȳ, ax̄ + dȳ + cz̄ = 1.
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In particular, if

α = k

s
→ β

then

Φ̃(kb
m

,
ka

m
,
s

m
) → Φmax.

More precisely, for any ε > 0 there exists real δ such that the inequality

|k
s
− 2

t
√
t2 − 1

| < δ (31)

implies

Φ(m;m1, . . . ,md) ≥ t2 − 1 + t
√
t2 − 1 − ε. (32)

Fix one pair (k, s) with the relation (31) and take

m = 2abk + cs, n̄1 = m + 2ab + c, ni

as in (27), (28), (29). Then we have for any r = 1, 2, . . .,(
rn̄1

rn1, . . . , rnd

)
≥ 1

(rn̄1)d
Φ(rm; rm1, . . . , rmd)rm = 1

(rn̄1)d
Φ(m;m1, . . . ,md)rm

≥ 1
(rn̄1)d

(t2 − 1 + t
√
t2 − 1 − ε)rm

as follows from (30), (32).
Denote n̄r = rn̄1. For any given ρ > 0 we can choose n̄1 large enough and suppose 

that

rm

n̄r
= n̄r − (2ab + c)r

n̄r
= 1 − 2ab + c

n̄1
> 1 − ρ

from which it follows that

cGn̄r
≥ 1

n̄d
r

(t2 − 1 + t
√
t2 − 1 − ε)1−ρ. (33)

Since n̄r+1 − n̄r = 2ab + c = const and(
n′

n′
1, . . . , n

′
d

)
≥

(
n

n1, . . . , nd

)
as soon as

n′ = n + 1, n′
1 ≥ n1, . . . , n

′
d ≥ nd,
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(33) implies the inequality

expG(L) ≥ t2 − 1 + t
√
t2 − 1 − ε.

Recall that ε > 0 is arbitrary, hence (26) follows and we are done. �
Proof of Theorem 1. The assertions of Theorem 1 now follow from Lemmas 2 and 3. �
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