
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 141, Number 12, December 2013, Pages 4139–4153
S 0002-9939(2013)11691-6
Article electronically published on August 15, 2013

ON IDENTITIES OF INFINITE DIMENSIONAL

LIE SUPERALGEBRAS

DUŠAN REPOVŠ AND MIKHAIL ZAICEV

(Communicated by Kailash C. Misra)

Abstract. We study codimension growth of infinite dimensional Lie super-
algebras over an algebraically closed field of characteristic zero. We prove that
if a Lie superalgebra L is a Grassmann envelope of a finite dimensional simple
Lie algebra, then the PI-exponent of L exists and is a positive integer.

1. Introduction

We shall consider algebras over a field F of characteristic zero. One of the ap-
proaches in the investigation of associative and non-associative algebras is to study
numerical invariants associated with their identical relations. Given an algebra A,
we can associate to it the sequence of its codimensions {cn(A)}n∈N (all notions and
definitions will be given in the next section).

This sequence gives some information not only about the identities of A but also
about the structure of A. For example, A is nilpotent if and only if cn(A) = 0
for all large enough n. If A is an associative non-nilpotent F -algebra, then A is
commutative if and only if cn(A) = 1 for all n ≥ 1.

For an associative algebra A with a non-trivial polynomial identity, the se-
quence cn(A) is exponentially bounded by the celebrated Regev Theorem [20],
while cn(A) = n! if A does not satisfy any non-trivial polynomial identity. In the
non-associative case the sequence of codimensions may have even faster growth.
For example, if A is an absolutely free algebra, then

cn(A) = ann!

where

an =
1

2

(
2n− 2

n− 1

)
is the Catalan number, i.e. the number of all possible arrangements of brackets in
the word of length n.
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4140 D. REPOVŠ AND M. ZAICEV

For a Lie algebra L the sequence {cn(L)}n∈N is in general not exponentially
bounded, even if L satisfies non-trivial Lie identities (see for example [18]). Nev-
ertheless, a class of Lie algebras with exponentially bounded codimensions is suffi-
ciently wide. It includes, in particular, all finite dimensional algebras [1, 11], Kac-
Moody algebras [23, 24], infinite dimensional simple Lie algebras of Cartan type
[15], Virasoro algebra, and many others.

In the case when {cn(A)}n∈N is exponentially bounded, the upper and lower

limits of the sequence { n
√
cn(A)}n∈N exist and a natural question arises: does the

ordinary limit

lim
n→∞

n
√
cn(A)

exist? In the case of existence we call this limit exp(A) or the PI-exponent of A.
Amitsur conjectured in the 1980’s that for any associative P.I. algebra such a

limit exists and that it is a non-negative integer. This conjecture was confirmed first
for verbally prime P.I. algebras in [4,21] and later for the general case in [8,9]. For
Lie algebras a series of positive results was obtained for finite dimensional algebras
[6, 7, 25], for algebras with nilpotent commutator subalgebras [17], for affine Kac-
Moody algebras [23,24], and for some other classes (see [16]). For Lie superalgebras
there exist only partial results [26, 27, 30, 31].

On the other hand, it was shown in [28] that there exists a Lie algebra L with

3.1 < lim inf
n→∞

n
√
cn(L) ≤ lim sup

n→∞
n
√
cn(L) < 3.9.

This algebra L is soluble and almost nilpotent; i.e. it contains a nilpotent ideal
of finite codimension. In the general non-associative case there exists, for any real
number α > 1, an algebra Aα such that

lim
n→∞

n
√
cn(Aα) = α

(see [5]). Note also that by a recent result [12] there exist finite dimensional Lie

superalgebras with a fractional limit n
√
cn(L).

In the present paper we shall study Grassmann envelopes of finite dimensional
simple Lie algebras. Our main result is the following theorem:

Theorem 1. Let L0 ⊕ L1 be a finite dimensional simple Lie algebra over an al-
gebraically closed field F of characteristic zero with some Z2-grading. Also, let

L̃ = L0 ⊗G0 ⊕ L1 ⊗G1 be the Grassmann envelope of L. Then the limit

exp(L̃) = lim
n→∞

n

√
cn(L̃)

exists and is a positive integer. Moreover, exp(L̃) = dimL.

Another result of our paper concerns graded identities. Since any Lie superalge-
bra L is Z2-graded, one can consider Z2-graded identities of L and the corresponding
graded codimensions cgrn (L). We shall prove that graded codimensions have similar
properties.

Licensed to University of Ljubljana. Prepared on Fri Sep 27 00:34:51 EDT 2013 for download from IP 193.2.68.233.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



IDENTITIES OF INFINITE DIMENSIONAL LIE SUPERALGEBRAS 4141

Theorem 2. Let L = L0 ⊕ L1 be a finite dimensional simple Lie algebra over an
algebraically closed field F of characteristic zero with some Z2-grading. Also, let

L̃ = L0 ⊗G0 ⊕ L1 ⊗G1 be a Grassmann envelope of L. Then the limit

expgr(L̃) = lim
n→∞

n

√
cgrn (L̃)

exists and is a non-negative integer. Moreover, expgr(L̃) = dimL.

In other words, both PI-exponent exp(L̃) and graded PI-exponent expgr(L̃) exist,
they are integers, and they coincide. Note that for an arbitrary Z2-graded algebra
the growth of ordinary codimensions and graded codimensions may differ. For
example, if A = Mk(F )⊗ FZ2 with the canonical Z2-grading induced from group
algebra FZ2, where Mk(F ) is a full k × k matrix algebra, then exp(A) = k2, while
expgr(A) = 2k2 (see [10] for details). In the Lie case one can take L = L0⊕L1 to be
a two dimensional metabelian algebra with L0 = 〈e〉, L1 = 〈f〉 and with only one
non-trivial product [e, f ] = f . Then cn(L) = n− 1 for all n ≥ 2; hence exp(L) = 1.
On the other hand, expgr(L) = 2.

2. The main constructions and definitions

Let A be an arbitrary non-associative algebra over a field F and let F{X} be
an absolutely free F -algebra with a countable generating set X. A polynomial f =
f(x1, . . . , xn) is said to be an identity of A if f(a1, . . . , an) = 0 for any a1, . . . , an ∈
A. The set of all identities of L forms a T-ideal Id(A) in F{X}, that is, an ideal
which is stable under all endomorphisms of F{X}. Denote by Pn = Pn(x1, . . . , xn)
the subspace of all multilinear polynomials on x1, . . . , xn in F{X}. Then Pn ∩
Id(A) is a subspace of all multilinear identities of A of degree n. In the case
when char F = 0, the T-ideal Id(A) is completely determined by the subspaces
{Pn ∩ Id(A)}, n = 1, 2, . . . .

For estimating how many identities an algebra A can have, one can define the
so-called n-th codimension of the identities of A or, for short, the codimension of
A:

cn(A) = dim
Pn

Pn ∩ Id(A)
, n = 1, 2, . . . .

As was mentioned above, the class of associative and non-associative algebras
with exponentially bounded sequence {cn(A)} is sufficiently wide. In the case when
cn(A) < an for some real a, one can define the lower and the upper PI-exponents
of A as follows:

exp(A) = lim inf
n→∞

n
√

cn(A), exp(A) = lim sup
n→∞

n
√
cn(A)

and the ordinary PI-exponent as follows:

(1) exp(A) = lim
n→∞

n
√

cn(A),

provided that exp(A) = exp(A).
For Z2-graded algebras one can also consider graded identities. Let X and Y be

two infinite sets of variables and let F{X ∪Y } be an absolutely free algebra gener-
ated by X ∪Y . If we suppose that all elements of X are even and all elements of Y
are odd, i.e. deg(x) = 0, deg(y) = 1 for any x ∈ X, y ∈ Y, then F{X ∪ Y } can be
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4142 D. REPOVŠ AND M. ZAICEV

naturally endowed by a Z2-grading. A polynomial f = f(x1, . . . , xm, y1, . . . , yn) ∈
F{X ∪ Y } is said to be a graded identity of a superalgebra A = A0 ⊕ A1 if
f(a1, . . . , am, b1, . . . , bn) = 0, for all a1, . . . , am ∈ A0, b1, . . . , bn ∈ A1. Fix 0 ≤ k ≤ n
and denote by Pk,n−k the subspace of F{X ∪ Y } spanned by all multilinear poly-
nomials in x1, . . . , xk ∈ X, y1, . . . , yn−k ∈ Y . Then Pk,n−k ∩ Id(A) is the set of all
multilinear polynomial identities of the superalgebra A = A0 ⊕ A1 in k even and
n− k odd variables.

One of the equivalent definitions of graded codimensions of A is

cgrn (A) =

n∑
k=0

(
n

k

)
ck,n−k(A),

where

ck,n−k(A) = dim
Pk,n−k

Pk,n−k ∩ Id(A)
.

Starting from a Z2-graded algebra of some class (Lie, Jordan alternative, etc.),
one can construct a Z2-graded algebra of a different class using the notion of a
Grassmann envelope – they play an exceptional role in PI-theory. For example,
any variety of associative algebras is generated by the Grassmann envelope of some
finite dimensional associative superalgebra [14]. In the Lie case any so-called spe-
cial variety is generated by the Grassmann envelope of a finitely generated Lie
superalgebra [22].

We recall this construction for the Lie and the super Lie cases. Let G be the
Grassmann algebra generated by 1 and the infinite set {e1, e2, . . .} satisfying the
following relations: eiej = −ejei, i, j = 1, 2, . . . . It is known that G has a natural
Z2-grading G = G0 ⊕G1, where

G0 = Span〈ei1 · · · ein |n = 2k, k = 0, 1, . . .〉,

G1 = Span〈ei1 · · · ein |n = 2k + 1, k = 0, 1, . . .〉.
Given a Lie algebra L with a Z2-grading L = L0 ⊕ L1, its Grassmann envelope

G(L) = L0 ⊗G0 ⊕ L1 ⊗G1 ⊂ L⊗G

is a Lie superalgebra. Vice versa, if L = L0 ⊕ L1 is a Lie superalgebra, then G(L)
is an ordinary Lie algebra with a Z2-grading.

3. Cocharacters of Grassmann envelopes

The main tool in studying codimension asymptotics is the representation theory
of symmetric groups. We refer the reader to [13] for details. The symmetric group
Sn acts naturally on multilinear polynomials in F{X} as

(2) σf(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)).

Hence Pn is an FSn-module and Pn ∩ Id(L), and also

Pn(L) =
Pn

Pn ∩ Id(L)

are FSn-modules. The Sn-character χ(Pn(L)) is called the n-th cocharacter of L
and we shall write

χn(L) = χ(Pn(L)).
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IDENTITIES OF INFINITE DIMENSIONAL LIE SUPERALGEBRAS 4143

Recall that any irreducible FSn-module corresponds to a partition λ of n, λ � n,
λ = (λ1, . . . , λk), where λ1 ≥ · · · ≥ λk are positive integers and λ1 + · · ·+ λk = n.
By the Maschke Theorem, any finite dimensional FSn-module M decomposes into
a direct sum of irreducible components, and hence its character χ(M) has a decom-
position

χ(M) =
∑
λ�n

mλχλ,

where mλ are non-negative integers. In particular, for the algebra L we have

(3) χ(L) =
∑
λ�n

mλχλ.

Integers mλ in (3) are called multiplicities of χλ in χn(L), and dλ = degχλ =
χλ(1) are the dimensions of the corresponding irreducible representations. There-
fore

(4) cn(L) = dimPn(L) =
∑
λ�n

mλdλ.

For any partition λ = (λ1, . . . , λk) � n one can construct the Young diagram Dλ

containing λ1 boxes in the first row, λ2 boxes in the second row, and so on:

Dλ =

· · · · · ·
· · ·

...

Given integers k, l, d ≥ 0, we define the partition

h(k, l, d) = (l + d, . . . , l + d︸ ︷︷ ︸
k

, l, . . . , l︸ ︷︷ ︸
d

)

of n = kl+ d(k + l). The Young diagram associated with h(k, l, d) is hook-shaped,
and we define H(k, l), an infinite hook, as the union of all Dλ with λ = h(k, l, d),
d = 1, 2, . . . . For short we shall say that a partition λ � n lies in the hook H(k, l),
λ ∈ H(k, l), if Dλ ⊂ H(k, l). In other words, λ ∈ H(k, l) if λ = (λ1, . . . , λt) and
λk+1 ≤ l. According to this definition we shall say that the cocharacter of L lies in
the hook H(k, l) if mλ = 0 in (3) as soon as λ 
∈ H(k, l).

A special case of H(k, l) is an infinite strip H(k, 0). In this case λ ∈ H(k, 0) if
λk+1 = 0.

The following fact is well-known, and we state it without proof.

Lemma 1. Let L be a finite dimensional algebra, dimL = d < ∞. Then χn(L)
lies in the hook H(d, 0) for all n ≥ 1. �

Another important numerical invariant of the identities of L is the colength
ln(L). By definition

(5) ln(L) =
∑
λ�n

mλ,

where mλ are taken from (3). It easily follows from (4) and (5) that

(6) max{dλ|mλ 
= 0} ≤ cn(L) ≤ ln(L) ·max{dλ|mλ 
= 0}.
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4144 D. REPOVŠ AND M. ZAICEV

For studying graded identities of L = L0 ⊕L1 we need to act separately on even
and odd variables. More precisely, the space Pk,n−k = Pk,n−k(x1, . . . , xk, y1, . . . ,
yn−k) is an Sk × Sn−k-module where symmetric groups Sk, Sn−k act on x1, . . . , xk

and y1, . . . , yn−k, respectively. Any irreducible Sk×Sn−k-module is a tensor product
of an Sk-module and an Sn−k-module and corresponds to the pair λ, μ of partitions,
λ � k, μ � n − k. As before, the subspace Pn−k ∩ Id(L) is an Sk × Sn−k-stable
subspace, and one can consider the quotient

Pk,n−k(L) =
Pk,n−k

Pk,n−k ∩ Id(L)

as an Sk × Sn−k-module. Its Sk × Sn−k-character χk,n−k(L) = χ(Pk,n−k(L)) is
decomposed into irreducible components,

(7) χk,n−k(L) =
∑
λ�k

μ�n−k

mλ,μχλ,μ,

and we define the (k, n− k)-colength of L as

lk,n−k(L) =
∑
λ�k

μ�n−k

mλ,μ

with mλ,μ taken from (7).
First, we prove some relations between graded and non-graded numerical in-

variants. We begin by recalling the correspondence between multilinear homoge-
neous polynomials in a free Z2-graded Lie algebra and in a free Lie superalgebra.
Let f = f(x1, . . . , xk, y1, . . . , ym) be a non-associative polynomial multilinear on
x1, . . . , xk, y1, . . . , ym, where x1, . . . , xk are supposed to be even indeterminates
and y1, . . . , ym are supposed to be odd. Then f is a linear combination of mono-
mials from Pk,m. Let M = M(x1, . . . , xk, y1, . . . , ym) be such a monomial. We fix
positions of y1, . . . , ym in M and write M for short in the following form:

M = X0yσ(1)X1 · · ·Xm−1yσ(m)Xm,

where X0, . . . , Xm are some words (possibly empty) consisting of left and right

brackets and indeterminates x1, . . . , xk. Now we define a monomial M̃ on even
indeterminates x1, . . . , xk and odd indeterminates y1, . . . , ym from the free Lie su-
peralgebra as

M̃ = sgn(σ)X0yσ(1)X1 · · ·Xm−1yσ(m)Xm.

Extending this map ˜ by linearity, we obtain a linear isomorphism Pk,m → Pk,m

of two subspaces of a Z2-graded free Lie algebra and a free Lie superalgebra, re-
spectively. Although the monomials in Pk,m are not linearly independent, it easily
follows from the Jacobi and the super-Jacobi identities that the map ˜ is well-
defined. Similarly, we can define the inverse map from a free Lie superalgebra to a
free Z2-graded Lie algebra.

Following the same argument as in the associative case (see [10, Lemma 3.4.7]),
we obtain the following result for any Z2-graded Lie algebra L and its Grassmann
envelope G(L) = G0 ⊗ L0 ⊕G1 ⊗ L1.

Lemma 2. Let f ∈ Pk,m be a multilinear polynomial in a free Lie algebra L. Then

• f is a graded identity of L if and only if f̃ is a graded identity of G(L) and

• ˜̃
f = f . �
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IDENTITIES OF INFINITE DIMENSIONAL LIE SUPERALGEBRAS 4145

The next lemma is an obvious generalization of Lemma 1.

Lemma 3. Let L = L0 ⊕ L1 be a finite dimensional Lie algebra, dimL0 =
k, dimL1 = l, and let

χq,n−q(L) =
∑
λ�q

μ�n−q

mλ,μχλ,μ

be its (q, n− q)-graded cocharacter. If mλ,μ 
= 0, then λ ∈ H(k, 0) and μ ∈ H(l, 0).
�

Using this remark we restrict the shape of the graded cocharacter of the Grass-
mann envelope G(L).

Lemma 4. Let L = L0 ⊕ L1 be a finite dimensional Lie algebra, dimL0 =

k, dimL1 = l, and let L̃ be its Grassmann envelope. If

(8) χq,n−q(L̃) =
∑
λ�q

μ�n−q

mλ,μχλ,μ

and mλ,μ 
= 0 in (8), then λ ∈ H(k, 0) and μ ∈ H(0, l).

Proof. Suppose mλ,μ 
= 0 in (8) for some λ � q, μ � n − q. Then there exists a
multilinear polynomial g = g(x1, . . . , xq, y1, . . . , yn−q) such that

f = eTλ
eTμ

g(x1, . . . , yn−q)

is not a graded identity of L̃, where eTλ
∈ FSq, eTμ

∈ FSn−q are essential idem-
potents generating minimal left ideals in FSq, FSn−q, respectively. Inclusion λ ∈
H(k, 0) immediately follows by Lemma 3 since L and G(L) have the same cochar-
acters on even indeterminates. Since eTλ

and eTμ
commute, applying Lemma 4.8.6

from [10] we get

f̃ = aeTλ
g,

where a ∈ Iμ′ . Here μ′ is the conjugated to μ partition of n − q and Iμ′ is the
minimal two-sided ideal of FSn−q generated by eTμ′ . That is, Iμ′ has the character

r · χμ′ , where r = dμ′ = degμ′.

By Lemma 2, f̃ is not a graded identity of G(L̃). Since
˜̃
h = h for any h ∈ Pq,n−q,

we see that f̃ is not a graded identity of L and μ′ ∈ H(l, 0) by Lemma 3. In
other words, the number of rows of the Young diagram Dμ′ does not exceed l.
This number equals the number of columns of Dμ; hence μ ∈ H(0, l), and we are
done. �

Using the previous lemma we restrict the shape of the non-graded cocharacter
of G(L).

Lemma 5. Let L = L0 ⊕ L1 be a finite dimensional Lie algebra, dimL0 =
k, dimL1 = l, and let

χ(L̃) =
∑
λ�n

mλχλ

be the n-th (non-graded) cocharacter of L̃ = G(L). Then mλ 
= 0 only if λ ∈ H(k, l).
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4146 D. REPOVŠ AND M. ZAICEV

Proof. Suppose f ∈ Pn is not an identity of L̃. Since f is multilinear we may

assume that f(x1, . . . , xq, y1, . . . , yn−q) ∈ Pq,n−q is not an identity of L̃ for some
0 ≤ q ≤ n. Moreover, we can consider only the case when a graded polynomial
f generates in Pq,n−q an irreducible Sq × Sn−q-submodule M with the character
(χλ, χμ), λ � q, μ � n− q.

Now we lift the Sq×Sn−q-action up to an Sn-action and consider a decomposition
of FSnM into irreducible components:

χ(FSnM) =
∑
ν�n

mνχν .

Since by Lemma 4 λ lies in the hook H(k, 0), i.e. the horizontal strip of height k,
and μ lies in H(0, l), the vertical strip of width l, it follows from the Littlewood-
Richardson rule for induced representations ([13, 2.8.13]; see also [10, Thm. 2.3.9])
that mν = 0 as soon as ν 
∈ H(k, l), and we have completed the proof. �

Lemma 6. Let G(L) = L̃ = L̃0 ⊕ L̃1 be the Grassmann envelope of a finite di-
mensional Lie algebra L = L0 ⊕ L1 with dimL0 = k, dimL1 = l. Then its colength

sequence {ln(L̃)} is polynomially bounded.

Proof. We use the notation {z1, z2, . . .} for non-graded indeterminates here since
{x1, x2, . . .} were even variables in the previous statements.

Let

(9) χ(L̃) =
∑
λ�n

mλχλ

be the n-th cocharacter of L̃. By Lemma 5 we have λ ∈ H(k, l) as soon as mλ 
= 0
in (9). Fix λ � n with mλ = m 
= 0 and consider the FSn-submodule

(10) W1 ⊕ · · · ⊕Wm ⊆ Pn(L̃)

with χ(Wi) = χλ, for all i = 1, . . . ,m.
We shall prove that

(11) m ≤ (k + l)22klnk2+l2

in (10). Denote by λ′
1, . . . , λ

′
l the heights of the first l columns of the Young diagram

Dλ. Clearly, it suffices to prove inequality (11) only for λ with λk > l and λ′
l > k.

Otherwise, λ ∈ H(k′, l′) with k′ ≤ k, l′ ≤ l and k′ + l′ < k + l.
Denote

μ1 = λ′
1 − k, . . . , μl = λ′

l − k.

Then λ1 + · · ·+ λk + μ1 + · · ·+ μl = n.
It is well-known (see, for example, [29]) that one can choose multilinear f1 ∈

W1, . . . , fm ∈ Wm such that FSnf1 = W1, . . . , FSnfm = Wm and each fi, i =
1, . . . ,m, is symmetric on k sets of indeterminates of orders λ1, . . . , λk and is alter-
nating on l sets of orders μ1, . . . , μl.

According to this decomposition into symmetric and alternating sets we rename
z1, . . . , zn as follows:

(12) {z1, . . . , zn} = {z11 , . . . , z1λ1
, . . . , zk1 , . . . , z

k
λk
, z̄11 , . . . , z̄

1
μ1
, . . . , z̄l1, . . . , z̄

l
μl
},

where each fi is symmetric on any set {zj1, . . . , z
j
λj
}, j = 1, . . . , k, and is alternating

on any set {z̄s1, . . . , z̄sμs
}, s = 1, . . . , l.
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IDENTITIES OF INFINITE DIMENSIONAL LIE SUPERALGEBRAS 4147

We shall find δ1, . . . , δm ∈ F such that

f = δ1f1 + · · ·+ δmfm

is an identity of L̃ if (11) does not hold. Note that for any δ1, . . . , δm ∈ F a poly-
nomial f is also symmetric on each subset {zi1, . . . , ziλi

}, 1 ≤ i ≤ k, and alternating
on each subset {z̄s1, . . . , z̄sμs

}, s = 1, . . . , l.
LetE = {e1, . . . , ek+l} be a homogeneous basis of L withE0 = {e1, . . . , ek} ⊂ L0,

E1 = {ek+1, . . . , ek+l} ⊂ L1. Then f is an identity of L̃ if and only if ϕ(f) = 0 for

any evaluation ϕ : Z → L̃ such that ϕ(zi) = gi ⊗ ai, 1 ≤ i ≤ n, where ai is a basis
element from E and gi ∈ G has the same parity as ai and g1 · · · gn 
= 0 in G.

Note also that ϕ(f) = 0 implies ϕ′(f) = 0 for any evaluation ϕ′ such that
ϕ′(zi) = g′i ⊗ ai, 1 ≤ i ≤ n, provided that g1 · · · gn 
= 0.

Using these two remarks we shall find an upper bound for the number of evalu-

ations for asking the question whether f is an identity of L̃ or not.
First consider one symmetric subset Z1 = {z11 , . . . , z1λ1

}. If ϕ(z1i ) = g⊗e, ϕ(z1j ) =
h ⊗ e, for some i 
= j with e ∈ E1, then ϕ(f) = 0, as follows from the symmetry
on Z1. Hence we need to check only evaluations with at most r ≤ l odd values
ϕ(z1i1) = g1 ⊗ et1 , . . . , ϕ(z

1
ir
) = gr ⊗ etr , where et1 , . . . , etr ∈ E1 are distinct. Since

Z1 is the symmetric set of variables, the result of evaluation ϕ does not depend (up

to the sign) on the choice of i1, . . . , ir. Hence we have
(
l
r

)
possibilities.

Given 0 ≤ r ≤ l, we estimate the number of evaluations of remaining λ1 − r

variables in the even component of L̃. First, let r = 0 and ϕ(z1i ) = gi ⊗ ai, ai ∈
E0, 1 ≤ i ≤ λ1. If e1 appears in the row (a1, . . . , aλ1

) exactly α1 times, e2 appears
α2 times, and so on, then the result of such substitution depends only on α1, . . . , αk

since f is symmetric on Z1. Hence we have no more than (λ1 + 1)k variants since
0 ≤ α1, . . . , αk ≤ λ1. In particular, we need at most (n+ 1)k evaluations if r = 0.

Now let r = 1. We can replace by an odd element an arbitrary variable from Z1

and get (up to the sign) the same value ϕ(f) since f is symmetric on Z1. Suppose,
say, that ϕ(z1λ1

) = h⊗e, e ∈ E1, and ϕ(z11) = g1⊗a1, . . . , ϕ(z
1
λ1−1) = gλ1−1⊗aλ1−1,

where all aj are even. If α1, . . . , αk are the same integers as in the case r = 0, then
the result of the substitution also depends only on α1, . . . , αk. Hence for r = 1 we
have at most (

l

1

)
λk
1 ≤

(
l

1

)
(n+ 1)k

variants for ϕ since 0 ≤ α1, . . . , αk ≤ λ1 − 1.
Similarly, for general 0 ≤ r ≤ l we have at most(

l

r

)
(λ1 + 1− r)k ≤

(
l

r

)
(n+ 1)k

variants. Therefore, for evaluating all variables from Z1 it suffices that

l∑
r=0

(
l

r

)
(n+ 1)k = 2l(n+ 1)k

substitutions and for all symmetric variables we need at most

(2l(n+ 1)k)k

substitutions.
Now consider the alternating set Z ′

1 = {z̄11 , . . . , z̄1μ1
}. If ϕ(z̄1i ) = g ⊗ e, ϕ(z̄1j ) =

h ⊗ e, for some i 
= j with the same e ∈ E0, then ϕ(f) = 0. Hence we can choose
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4148 D. REPOVŠ AND M. ZAICEV

only 0 ≤ r ≤ k distinct basis elements b1, . . . , br ∈ E0 for values of z̄1i1 , . . . , z̄
1
ir

of
the type gi ⊗ bi. Up to the sign, the result of the substitution does not depend on
i1, . . . , ir, and we have only

(
k
r

)
options.

Suppose now that all ϕ(z̄1i ), 1 ≤ i ≤ r, are fixed even values. Let

ϕ(z̄1r+1) = g1 ⊗ b1, . . . , ϕ(z̄
1
μ1
) = gμ1−r ⊗ bμ1−r, b1 . . . , bμ1−r ∈ E1.

Then (up to the sign) the result of ϕ depends only on the number of entries of
ek+1, . . . , ek+l into the row (b1, . . . , bμ1−r). Hence we have at most (μ1 − r + 1)l

variants for the substitution of odd variables. As in the symmetric case we have
the following upper bound:

k∑
r=0

(
k

r

)
(n+ 1)l = 2k(n+ 1)l

for one subset and (2k(n+ 1)l)l for all skew variables.

We have proved that one can find T ≤ 2kl(n + 1)l
2+k2

evaluations ϕ1, . . . , ϕT

such that the relations

(13) ϕ1(f) = · · · = ϕT (f) = 0

imply ϕ(f) = 0 for any evaluation ϕ; that is, f is an identity of L̃. Recall that
f = δ1f1 + · · · + δmfm. Therefore for any evaluation ϕ the equality ϕ(f) = 0 can

be viewed as a system of k + l homogeneous linear equations in the algebra L̃ on
unknown coefficients δ1, . . . , δm. If (11) does not hold, then the system (13) has a

non-trivial solution δ̄1, . . . , δ̄m, and f = δ̄1f1 + · · · + δ̄mfm is an identity of L̃, a
contradiction.

We have proved the inequality (11). From this inequality it follows that all

multiplicities in (9) are bounded by (k+ l)22klnk2+l2 . Finally, note that the number
of partitions λ ∈ H(k, l) is bounded by nk+l. Hence

ln(L̃) < (k + l)22klnk2+l2+kl,

and we have thus completed the proof. �

As a corollary of previous results we obtain the following:

Proposition 1. Let L = L0 ⊕ L1 be a finite dimensional Z2-graded Lie algebra

with dimL0 = k, dimL1 = l and let L̃ = G(L) be its Grassmann envelope. Then
there exist constants α, β ∈ R such that

cn(L̃) ≤ αnβ(k + l)n.

In particular,

exp(L̃) = lim sup
n→∞

n

√
cn(L̃) ≤ k + l.

Proof. By [10, Lemma 6.2.5], there exist constants C and r such that∑
λ∈H(k,l)

dλ ≤ Cnr(k + l)n

for all n = 1, 2, . . . . In particular,

max{dλ|λ � n, λ ∈ H(k, l)} ≤ Cnr(k + l)n.

Now Lemma 6 and the inequality (6) complete the proof. �
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4. Existence of PI-exponents

Proposition 2. Let L be a finite dimensional simple Lie algebra over an alge-
braically closed field of characteristic zero with some Z2-grading, L = L0 ⊕ L1,

dimL0 = k, dimL1 = l. Also let L̃ = G(L) be its Grassmann envelope. Then there
exist constants γ > 0, δ ∈ R such that

cn(L̃) ≥ γnδ(k + l)n.

In particular,

exp(L̃) = lim inf
n→∞

n

√
cn(L̃) ≥ k + l.

Proof. Denote d = k + l = dimL. By [19, Theorem 12.1], for the adjoint represen-
tation of L there exists a multilinear asssociative polynomial h = h(u1

1, . . . , u
1
d, . . . ,

um
1 , . . . , um

d ) alternating on each subset of indeterminates {ui
1, . . . , u

i
d}, 1 ≤ i ≤ m,

such that under any evaluation ϕ : ui
j → ad bij , b

i
j ∈ L, the value ϕ(h) is a scalar

linear transformation of L and ϕ(h) 
= 0 for some h. It follows that for any integer
t ≥ 1 there exists a multilinear Lie polynomial

ft = ft(u
1
1, . . . , u

1
d, . . . , u

mt
1 , . . . , umt

d , w)

alternating on each set {ui
1, . . . , u

i
d}, 1 ≤ i ≤ mt, such that ϕ(ft) 
= 0 for some

evaluation ϕ : {u1
1, . . . , u

mt
d , w} → L0 ∪ L1. Since ft is multilinear and alternating

on each set {ui
1, . . . , u

i
d} and d = dimL0 + dimL1, it follows that for any t ≥ 1 we

get a graded multilinear polynomial

ft = ft(x
1
1, . . . , x

1
k, . . . , x

mt
1 , . . . , xmt

k , y11 , . . . , y
1
l , . . . , y

mt
1 , . . . , ymt

l , w)

which is not a graded identity of L and is alternating on each subset {xi
1, . . . , x

i
k}

and on each subset {yi1, . . . , yil}, 1 ≤ i ≤ mt, where xi
j ’s are even and yij ’s are odd

variables. The latter indeterminate w can be taken of arbitrary parity; say, w = x0

is even.
Consider an Sp × Sq-action on

Pp+1,q = Pp+1,q(x0, x
1
1, . . . , x

mt
k , y11 , . . . , y

mt
l ),

where p = mtk, q = mtl and Sp, Sq act on {xi
j}, {yij}, respectively. It follows from

Lemma 3 that the Sp×Sq-character of the submodule generated by f in Pp+1,q lies
in the pair of strips H(k, 0), H(l, 0), that is,

χ(F [Sp × Fq]f) =
∑
λ�p
μ�q

mλ,μχλ,μ

with mλ,μ = 0, unless λ ∈ H(k, 0), μ ∈ H(l, 0). Hence λ is a partition of mtk
with at most k rows. On the other hand, f depends on mt alternating subsets of
even indeterminates of order k each. It is well-known that in this case mλ,μ = 0 if
λ = (λ1, λ2, . . .) and λ1 ≥ mt+ 1. It follows that only the rectangular partition

(14) λ = (mt, . . . ,mt︸ ︷︷ ︸
k

)

can appear in F [Sp × Fq]f with non-zero multiplicity. Similarly,

(15) μ = (mt, . . . ,mt︸ ︷︷ ︸
l

)
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if mλ,μ 
= 0. Hence we can assume that f has the form

f = eTλ
eTμ

g(x1
1, . . . , y

mt
l , w)

with λ and μ of the types (14), (15), respectively.

By Lemma 2, the polynomial f̃ is not an identity of the Lie superalgebra

L̃ = G(L), and by Lemma 4.8.6 from [10], the graded polynomial f̃ generates

in Pp+1,q(L̃) an irreducible Sp × Sq-submodule with the character (χλ, χμ′), where

μ′ = (l, . . . , l︸ ︷︷ ︸
mt

)

is conjugated to a μ partition of mtl.
First we apply the Littlewood-Richardson rule and induce this Sp×Sq-module up

to an Sn-module. Then we induce the obtained Sn-module up to an Sn+1-module,
where n = p+ q = mt(k + l). It follows from the Littlewood-Richardson rule that
the induced Sn+1-module can contain only a simple submodule corresponding to
partitions ν � n+ 1 such that the Young diagram Dν contains a subdiagram Dν0

,
where

ν0 = h(k, l, t0) = (l + t0, . . . , l + t0︸ ︷︷ ︸
k

, l, . . . , l︸ ︷︷ ︸
t0

)

is a finite hook with t0 ≥ l − k,mt − kl. Since we are interested in an asymptotic
of codimensions, we may assume that mt − kl > l − k and then t0 = mt − kl. In
particular, ν0 is a partition of n0 = (k+ l)t0+kl. Then n+1−n0 = (k+ l−1)kl+1,
and by [10, Lemma 6.2.4]

dν0
≤ dν ≤ ncdν0

,

where c = (k + l − 1)kl + 1 and

dh(k,l,t0) � anb
0(k + l)n0 if n0 → ∞

for some constants a, b by Lemma 6.2.5 from [10]. Here the relation f(n) � g(n)

means that limn→∞
f(n)
g(n) = 1. Since cn+1(L̃) ≥ dν we get the inequality

(16) cn+1(L̃) ≥ α(n+ 1)β(k + l)n+1

for all n = m(k + l)t, t = 1, 2, . . ., for some constants α > 0 and β.

Since the Lie algebra L is simple, the Grassmann envelope L̃ is a centerless Lie

superalgebra. It is not difficult to see that in this case cr+1(L̃) ≥ cr(L̃), for all
r ≥ 1. Hence by (16) we have

cn+j(L̃) ≥ α(n+ 1)β(k + l)n+1

for any 1 ≤ j ≤ m(k + l). Since n = m(k + l)t one can find constants γ > 0 and δ
such that

cr(L̃) ≥ γrδ(k + l)r

for all positive integers r, and we have completed the proof. �

Theorem 1 now easily follows from Propositions 1 and 2.
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Proof of Theorem 2. First we obtain an upper bound for cgrn (L̃):

cgrn (L̃) =
n∑

q=0

(
n

q

)
cq,n−q(L̃),

where

(17) cq,n−q(L̃) =
∑
λ�q

μ�n−q

mλ,μdλ,μ

and dλ,μ = degχλ,μ = degχλ · degχμ = dλdμ. Moreover, λ ∈ H(k, 0), μ ∈ H(0, l)
by Lemma 4. Applying Lemma 6.2.5 from [10], we obtain∑

λ∈H(k,0)
λ�q

dλ ≤ Cnrkq,
∑

μ∈H(0,l)
μ�n−q

dμ ≤ Cnrln−q

for some constants C, r, and hence

(18)
∑

λ∈H(k,0),λ�q
μ∈H(0,l),μ�n−q

dλdμ ≤ C2n2rkqln−q.

On the other hand, the graded colength

lq,n−q(L̃) =
∑
λ�q

μ�n−q

mλ,μ

is not greater than the non-graded colength ln(L̃). Since ln(L̃) is polynomially
bounded by Lemma 6, one can find a polynomial ϕ(n) such that

(19) mλ,μ ≤ ϕ(n)

for any mλ,μ in (17). It now follows from (17), (18) and (19) that for ψ(n) =
C2n2rϕ(n) we have

(20) cgrn (L̃) ≤ ψ(n)

n∑
q=1

(
n

q

)
kqln−q = ψ(n)(k + l)n,

and we have obtained an upper bound for cgrn ((L̃)).
On the other hand, it was proved in [2, Lemma 3.1] that for any associative

G-graded algebra A, where G is a finite group, an ordinary n-th codimension is less
than or equal to the graded n-th codimension, for any n. Proof of this lemma does
not use associativity. Hence

(21) cgrn (L̃) ≥ cn(L̃),

and Theorem 2 now follows from (20), (21) and Proposition 2. �
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