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a b s t r a c t

In this paper, we prove an existence result for a general class of hemivariational inequality
systems using the Ky Fan version of the KKM theorem Fan (1984) [10] or Tarafdar fixed
points Tarafdar (1987) [11]. As application, we give an infinite-dimensional version for
the existence result of Nash generalized derivative points introduced recently by Kristály
(2010) [5]. We also give an application to a general hemivariational inequality system.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In the last few years, many papers have been dedicated to the study of the existence and multiplicity of solutions for
hemivariational inequality systems or differential inclusion systems defined on bounded or unbounded domains; see [1–6].
In these papers, the authors use the critical point theory for locally Lipschitz functions, combined with the Principle of
Symmetric Criticality and different topological methods. For a comprehensive treatment of hemivariational inequality and
hemivariational inequality systems on bounded domains using the critical point theory for non-smooth functionals, we refer
the reader to themonographs of Motreanu and Rădulescu [7] andMotreanu and Panagiotopoulos [8]. For very recent results
concerning variational inequalities and elliptic systems using the critical point theory and different variational methods, see
also the book by Kristály et al. [9].

The aim of this paper is to prove the existence of at least one solution for a general class of hemivariational inequality
systems on a closed and convex set (either bounded or unbounded), without using the critical point theory. We apply a
version of the well-known theorem of Knaster–Kuratowski–Mazurkiewicz due to Ky Fan [10] or the Tarafdar fixed point
theorem [11]. We start the paper by giving in Section 2 the assumptions and by formulating the hemivariational inequality
system problem that we study. The main results concerning the existence of at least one solution for the hemivariational
inequality systems that we study are given in Section 3. Section 4 contains applications to Nash and Nash generalized
derivative points and existence results for some abstract class of hemivariational inequality systems.

2. Assumptions and formulation of the problem

Let X1, X2, . . . , Xn be reflexive Banach spaces and Y1, Y2, . . . , Yn, Z1, . . . , Zn Banach spaces, such that there exist linear
operators Ti : Xi → Yi, Ti : Xi → Zi for i ∈ {1, . . . , n}. We suppose that the following condition holds:
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(TS) Ti : Xi → Yi and Si : Xi → Zi are compact for i = 1, n.
We denote by X∗

i the topological dual of Xi and ⟨·, ·⟩i denotes the duality pairing between X∗

i , whereas Xi for i = 1, n. Also,
let Ki ⊂ Xi be closed, convex sets for i = 1, n and we consider Ai : Y1 × · · · × Yi × · · · × Yn → R the continuous functions
which are locally Lipschitz in the ith variable and we denote by A◦

i (u1, . . . , ui, . . . , un; vi) the partial Clarke derivative in the
directional derivative in the ith variable, i.e., the Clarke derivative of the locally Lipschitz function Ai(u1, . . . , ui, . . . , un) at
the point ui ∈ Yi in the direction vi ∈ Yi, that is

A◦

i (u1, . . . , ui, . . . un; vi) = lim sup
w→ui
τ↘0

Ai(u1, . . . , w + τvi, . . . un) − Ai(u1, . . . , w, . . . , un)

τ
.

We suppose that for every i = 1, n the following condition holds:
(A) the functions A◦

i : Y1 × · · · × Yn × Yi → R are upper semi-continuous.
We also consider the following nonlinear operators Fi : K1 × · · · × Ki × · · · × Kn → X⋆

i , i = 1, n. We suppose that the
operators Fi satisfy the following condition:
(F) the functions (u1, . . . , un) → ⟨Fi(u1, . . . , un), vi⟩i are weakly upper semi-continuous for every vi ∈ Xi and i = 1, n.

Definition 2.1 (See [12]). Let Z be a Banach space and j : Z → R a locally Lipschitz function. We say that j is regular at u ∈ Z
if for all v ∈ Z the one-sided directional derivative j′(u; v) exists and j′(u; v) = j◦(u; v). If j is regular at every point u ∈ Z
we say that j is regular.

We have the following elementary result.

Proposition 2.1. Let J : Z1 × · · · × Zn → R be a regular, locally Lipschitz function. Then the following assertions hold:
(a) ∂ J(u1, . . . , un) ⊆ ∂1 J(u1, . . . , un) × · · · × ∂nJ(u1, . . . , un) (see [12, Proposition 2.3.15]), where ∂i J, i = 1, n denotes the

Clarke subdifferential in the ith variable;
(b) J◦(u1, . . . , un; v1, . . . , vn) ≤

∑n
i=1 J

◦

i (u1, . . . , un; vi), where J◦i denotes the Clarke derivative in the ith variable; and
(c) J◦(u1, . . . , un; 0, . . . , vi, . . . , 0) ≤ J◦i (u1, . . . , un; vi).

We introduce the following notations:
• K = K1 × · · · × Kn,
• u = (u1, . . . , un)
• Tu = (T1u1, . . . , Tnun)
• Su = (S1u1, . . . , Snun)
• A(Tu, Tv − Tu) =

∑n
i=1 A

◦

i (Tu, Tivi − Tiui)

• F(u, v − u) =
∑n

i=1⟨Fiu, vi − ui⟩i.

In this paper we study the following problem:
Find u = (u1, . . . , un) ∈ K1 × · · · × Kn such that for all v = (v1, . . . , vn) ∈ K1 × · · · × Kn and i ∈ {1, . . . , n} we have:

A◦

i (Tu; Tvi − Tui) + ⟨Fi(u), vi − ui⟩i + J◦i (Su; Sivi − Siui) ≥ 0. (QHS)
In this case we say that u = (u1, . . . , un) is a Nash equilibrium point for the system (QHS).

To prove our main result we use the FKKM theorem due to Ky Fan [10] and the Tarafdar fixed point theorem [11].

Definition 2.2. Suppose that X is a vector space and E ⊂ X . A set-valued mapping G : E → 2X is called a KKM mapping, if
for any x1, . . . , xn ∈ E the following holds

conv{x1, . . . , xn} ⊂

n
i=1

G(xi).

The following version of the KKM theorem is due to Ky Fan [10].

Theorem 2.1. Suppose that X is a locally convex Hausdorff space, E ⊂ X and that G : E → 2X is a closed-valued KKM map. If
there exists x0 ∈ E such that G(x0) is compact, then


x∈E G(x) ≠ ∅.

Theorem 2.2. Let K be a non-empty, convex subset of a Hausdorff topological vector space X. Let G : K ↩→ 2K be a set-valued
map such that
(i) for each u ∈ K , G(u) is a non-empty convex subset of K ;
(ii) for each v ∈ K, G−1(v) = {u ∈ K : v ∈ G(u)} contains an open set Ov which may be empty;
(iii) ∪v∈K Ov = K; and
(iv) there exists a non-empty set K0 contained in a compact convex subset K1 of K such that D = ∩v∈K0 O

c
v is either empty or

compact (where Oc
v is the complement of Ov in K).

Then there exists a point u0 ∈ K such that u0 ∈ G(u0).

Tarafdar in [11] proved the equivalence of Theorems 2.1 and 2.2.
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3. Main results

Theorem 3.1. Let Ki ⊂ Xi, i = 1, n be non-empty, bounded, closed and convex sets. Let Ai : Y1 × · · · × Yi × · · · × Yn → R
be a locally Lipschitz function in the ith variable for all i ∈ {1, . . . , n} satisfying condition (A). We suppose that the operators
Ti : Xi → Yi, Si : Xi → Zi and Fi : K1 ×· · ·×Kn → X⋆

i (i = 1, n) satisfy the condition (TS) respectively (F). Final we consider the
regular locally Lipschitz function J : Z1 × · · · × Zn → R. Under these conditions the problem (QHS) admits at least one solution.

Before proving Theorem 3.1, we make two remarks.

Remark 3.1. We observe that for every v ∈ K the function

u → A(Tu, Tv − Tu) + F(u, v − u) + J◦(Su; Sv − Su)

is weakly upper semi-continuous. Indeed, from the condition (A) and from the fact that the operators Ti are compact follows
that A(Tu, Tv − Tu) is weakly upper semi-continuous. From (F) it follows that F(u, v − u) is weakly upper semi-continuous.
The third term, i.e., J◦(Su; Sv − Su) is weakly upper semi-continuous, because J◦(·; ·) is upper semi-continuous and the
operators Si : Xi → Zi are compact.

Remark 3.2. If there exists u ∈ K , such that for every v ∈ K we have:

A(Tu, Tv − Tu) + F(u, v − u) + J◦(Su; Sv − Su) ≥ 0, (3.1)

then u ∈ K is a solution of the problem (QHS). Indeed, if we fix an i = {1, . . . , n} and put vj := uj, j ≠ i in the above
inequality and using (iii) Proposition 2.1 we get that

A◦

i (Tu; Tvi − Tui) + ⟨Fi(ui), vi − ui⟩i + J◦i (Su; Sivi − Sivi) ≥ 0. (QHS)

for all i ∈ {1, . . . , n}.

In what follows we give two proofs, using Theorems 2.1 and 2.2.
First proof : Let G : K ↩→ 2K be the set-valued map defined by

G(v) = {u ∈ K : A(Tu, Tv − Tu) + F(u, v − u) + J◦(Su; Sv − Su) ≥ 0}.

For every v ∈ K , we have G(v) ≠ ∅ because v ∈ G(v) and taking into account that the function

u → A(Tu, Tv − Tu) + F(u, v − u) + J◦(Su; Sv − Su)

is weakly upper semi-continuous, it follows that the set G(v) is weakly closed. Now we prove that G is a KKMmapping. We
argue by contradiction, let v1, . . . , vk ∈ K and w ∈ conv{v1, . . . , vk} such that w ∉ ∪

k
i=1 G(vi). From this it follows that

A(Tw, Tvi − Tw) + F(w, vi − w) + J◦(Sw; Svi − Sw) < 0, (3.2)

for all i = {1, . . . , k}. Because of w ∈ conv{v1, . . . , vk} the existence of λ1, . . . , λk ∈ [0, 1] with
∑k

i=1 λi = 1 such that
w =

∑k
i=1 λivi follows. If we multiply the inequalities (3.2) with λi and adding for i = {1, . . . , k} we obtain

A(Tw, Tw − Tw) + F(w, w − w) + J◦(Sw; Sw − Sw) < 0 (3.3)

because the functions A(·, ·), F(·, ·) and J◦(·, ·) are positive homogeneous and convex in the second variable. From inequality
(3.3) it follows that 0 = A(Tw, Tw − Tw)+ F(w, w −w)+ J◦(Sw; Sw − Sw) < 0, which is a contradiction. Because the set
K is bounded, convex and closed, it follows that it is weakly closed and by the Eberlein–Smulian theoremwe have is weakly
compact. Because G(v) ⊂ K is weakly closed, we have that G(v) is weakly compact and from Theorem 2.1 it follows that
∩v∈K G(v) ≠ ∅, therefore from Remark 3.2 it follows that the problem (QHS) has a solution.
Second proof : Using Remark 3.2 we prove the existence of an element u ∈ K such that for every v ∈ K we have

A(Tu, Tv − Tu) + F(u, v − u) + J◦(Su; Sv − Su) ≥ 0.

In this case u ∈ K will be the solution of systems (QHS).
We argue by contradiction. Let us assume that for each u ∈ K , there exists v ∈ K such that

A(Tu, Tv − Tu) + F(u, v − u) + J◦(Su; Sv − Su) < 0. (3.4)

Now, we define the set-valued mapping G : K ↩→ 2K by

G(u) = {v ∈ K : A(Tu, Tv − Tu) + F(u, v − u) + J◦(Su; Sv − Su) < 0}. (3.5)

From (3.4) it follows that the set G(u) ≠ ∅ for every u ∈ K . Because the function A(·, ·) + F(·, ·) + J◦(·; ·) is convex in the
second variable, we get that G(u) is a convex set. Now, we prove that for every v ∈ K , the set G−1(v) = {u ∈ K : v ∈ G(u)}
is weakly open. Indeed, from weakly upper semi-continuity of the function

u → A(Tu, Tv − Tu) + F(u, v − u) + J◦(Su; Sv − Su)
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it follows that

[G−1(v)]c = {u ∈ K : A(Tu, Tv − Tu) + F(u, v − u) + J◦(Su; Sv − Su) ≥ 0}

is weakly closed, therefore G−1(v) is weakly open.
Now we verify (iii) from Theorem 2.2, i.e.,


v∈K G−1(v) = K . Because for every v ∈ K we have G−1(v) ⊂ K , it follows that

v∈K G−1(v) ⊂ K . Conversely, let u ∈ K be fixed. Since G(u) ≠ ∅ there exists v0 ∈ K such that v0 ∈ G(u). In the next
step we verify (iv) Theorem 2.2. We assert that D =


v∈K [G−1(v)]c is empty or weakly compact. Indeed, if D ≠ ∅, then D

is a weakly closed set of K since it is the intersection of weakly closed sets. But K is weakly compact hence we get that D
is weakly compact. Taking Ov = G−1(v) and K0 = K1 = K we can apply Theorem 2.2 to conclude that there exists u0 ∈ K
such that u0 ∈ G(u0). This give

0 = A(Tu0, Tu0 − Tu0) + F(u0, u0 − u0) + J0(Su0; Su0 − Su0) < 0,

which is a contradiction. Therefore the system (QHS) has a solution.

Remark 3.3. If in Theorem 3.1 the sets Ki, i = 1, n are only convex and closed but not bounded we impose the following
coercivity condition.
(CC) there exist K 0

i ⊂ Ki compact sets and v0
i ∈ K 0

i such that for all v = (v1, . . . , vn) ∈ K1 × · · · × Kn \ K 0
1 × · · · × K 0

n we
have

A(Tv, Tv0
− Tv) + F(v, v0

− v) +

n−
i=1

J0i (Sv, Siv0
i − Sivi) < 0,

where v0
= (v0

1, . . . , v
0
n). In this case the problem (QHS) has a solution.

4. Applications

In this section we are concerned with two applications. In the first application we study the relation between Nash
equilibrium and Nash generalized derivative equilibrium points for a hemivariational inequality system and in the second
application we give an existence result for an abstract class of hemivariational inequality systems.

Let X1, . . . , Xn be Banach spaces and Ki ⊂ Xi and the functions fi : K1 × · · · × Ki × · · · × Kn → R for i ∈ {1, . . . , n}. The
following notion was introduced by Nash [13,14]:

Definition 4.1. An element (u0
1, . . . , u

0
n) ∈ K1 × · · · × Kn is Nash equilibrium point of functions f1, . . . , fn if for each

i ∈ {1, . . . , n} and (u1, . . . , un) ∈ K1 × · · · Kn we have

fi(u0
1, . . . , ui, . . . , u0

n) ≥ fi(u0
1, . . . , u

0
i , . . . , u

0
n).

Now letDi ⊂ Xi be open sets such thatKi ⊂ Di for all i ∈ {1, . . . , n}.We consider the function fi : K1×· · ·×Di×· · · Kn → R
which are continuous and locally Lipschitz in the ith variable. The next notion was introduced recently by Kristály [5] and
is a little bit different form for functions defined on Riemannian manifolds.

Definition 4.2. If (u0
1, . . . , u

0
n) ∈ K1 × · · · × Kn is an element such that

f 0i (u0
1, . . . , u

0
n; ui − u0

i ) ≥ 0,

for every i = {1, . . . , n} and (u1, . . . , un) ∈ K1 × · · · × Kn we say that (u0
1, . . . , u

0
n) is a Nash generalized derivative points

for the functions f1, . . . , fn.

Remark 4.1. If the functions fi, i ∈ {1, . . . , n} are differentiable in the ith variable, then the above notion coincides with the
Nash stationary point introduced in [15].

Remark 4.2. It is easy to observe that any Nash equilibrium point is a Nash generalized derivative point.

The following result is an existence result for Nash generalized derivative points and is an infinite-dimensional version of
a result from the paper [5]. Therefore, if in Theorem 3.1 we choose Fi = 0, i ∈ {1, . . . , n} and J = 0 we obtain the following
result.

Theorem 4.1. (i) Let Y1, Y2, . . . , Yn and X1, X2, . . . , Xn, be a reflexive Banach spaces and Ti : Xi → Yi compact, linear operators.
We consider the closed, convex, bounded sets Ki ⊂ Xi and the functions Ai : Y1 × · · · × Yn → R, i = 1, . . . , n which
are locally Lipschitz in the ith variable and satisfies the condition (A). In these conditions, there exists (u0

1, . . . , u
0
i , . . . , u

0
n) ∈

K1 × · · · × Ki × · · · × Kn such that for all i ∈ {1, . . . , n} and (u1, . . . , ui, . . . , un) ∈ K1 × · · · × Ki × · · · × Kn we have

A0
i ((T1u

0
1, . . . , Tiu

0
i , . . . , Tnu

0
n); Tiui − Tiu0

i ) ≥ 0,

i.e., (u0
1, . . . , u

0
i , . . . , u

0
n) is a Nash generalized derivative points for the function Ai, i ∈ {1, . . . , n}.
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(ii) If the sets Ki, i = {1, . . . , n} are only closed and convex we suppose that there exists the bounded, closed sets K 0
i ⊂ Ki and

v0
i ∈ K 0

i , i = {1, . . . , n} such that for every (u1, . . . , un) ∈ K1 × · · · × Kn \ K 0
1 × · · · × K 0

n we have

A(Tu, Tv0
− Tu) < 0.

Then there exist u0
= (u0

1, . . . , u
0
i , . . . , u

0
n) ∈ K1 × · · · × Ki × · · · × Kn such that for all i ∈ {1, . . . , n} and u =

(u1, . . . , ui, . . . , un) ∈ K1 × · · · × Ki × · · · × Kn we have

A0
i (Tu0; Tiui − Tiu0

i ) ≥ 0,

i.e., u0
= (u0

1, . . . , u
0
i , . . . , u

0
n) is a Nash generalized derivative points for the functions Ai, i ∈ {1, . . . , n}.

In the next stepwegive an existence result for a general systemof hemivariational inequalities. In this case in Theorem3.1
we choose Yi = Zi, i ∈ {1, . . . , n} and we suppose that the functions Ai : Y1 × · · · × Yi × · · · × Yn → R are differentiable
in the ith variable for i ∈ {1, . . . , n}. In this case we suppose that the functions A′

i : Y1 × · · · × Yi × · · · × Yn × Yi → R are
continuous for i ∈ {1, . . . , n}. Let also J : Y1 × · · · × Yi × · · · × Yn → R a locally Lipschitz regular function.

Under these conditions we have the following result.

Corollary 4.1. Let J, Ai : Y1 × · · · × Yi × · · · × Yn → R be the function as above and suppose that the condition (TS)
holds and let Ki ⊂ Xi, i = {1, . . . , n} be bounded, closed and convex sets. Under these conditions there exist an element
u0

= (u0
1, . . . , u

0
n) ∈ K1 × · · · × Kn such that for every u = (u1, . . . , un) ∈ K1 × · · · × Kn and i ∈ {1, . . . , n} we have:

A′

i(Tu
0
; Tiui − Tiu0

i ) + J0i (Tu
0
; Tiui − Tiu0

i ) ≥ 0.

If in Theorem 3.1 we take Ai = 0 then we obtain the following existence result for a general class of hemivariational
inequality systems.

Corollary 4.2. Let Ki ⊂ Xi bounded, closed and convex subsets of the reflexive Banach spaces Xi for i ∈ {1, . . . , n}. We suppose
that Fi : K1 × · · · × Kn → X⋆

i satisfies the condition (F) and J : Z1 × · · · × Zn → R is a regular locally Lipschitz function
and the condition (TS) holds. Then there exists u0

= (u0
1, . . . , u

0
i , . . . , u

0
n) ∈ K1 × · · · × Ki × · · · Kn such that for every

u = (u1, . . . , ui, . . . , un) ∈ K1 × · · · × Ki × · · · Kn and i ∈ {1, . . . , n} we have

⟨Fi(u0); ui − u0
i ⟩i + J0i (Su

0
; Siui − Siu0

i ) ≥ 0.

The above result generalizes the main result from the paper of Kristály [16].
Indeed, let Ω ⊂ RN be a bounded, open subset. Let j : Ω × Rk

× · · · Rk  
n

→ R a Carathéodory function such that

j(x, ·, . . . , ·) is locally Lipschitz for every x ∈ Ω and satisfies the following assumptions for all i ∈ {1, . . . , n}:
(ji) there exists hi

1 ∈ L
p

p−1 (Ω, R+) and hi
2 ∈ L∞(Ω, R+) such that

|zi| ≤ hi
1(x) + hi

2(x)|y|
p−1
Rkn

for almost x ∈ Ω and every y = (y1, . . . , yn) ∈ Rk
× · · · × Rk  

n

and zi ∈ ∂ij(x, y1, . . . , yn).

In this case let S = (S1, . . . , Sn) : X1 ×· · ·× Xn → Lp(Ω, Rk)×· · · Lp(Ω, Rk) and J ◦ S : K1 ×· · ·×Kn → R is defined by

J(Su) =

∫
Ω

j(x, S1u1(x), . . . Snun(x))dx.

Using a result from Clarke [12] we have:

J0i (Su; Sivi) ≤

∫
Ω

j0i (x, S1u1(x), . . . Snux; Sivi(x))dx, (I)

for every i ∈ {1, . . . , n} and vi ∈ Xi.
Therefore we have the following existence result obtained by Kristály [16].

Corollary 4.3. Let Ki ⊂ Xi bounded, closed and convex subsets of the reflexive Banach spaces Xi for i ∈ {1, . . . , n}. We suppose
that Fi : K1 × · · · × Kn → X⋆

i satisfies the condition (F) and j : Ω × Rk
× · · · Rk  

n

→ R a Carathéodory function such

that j(x, ·, . . . , ·) is a regular, locally Lipschitz function satisfying condition (ji) and the condition (TS) holds. Then there exists
u0

= (u0
1, . . . , u

0
i , . . . , u

0
n) ∈ K1 × · · · × Ki × · · · Kn such that for every u = (u1, . . . , ui, . . . , un) ∈ K1 × · · · × Ki × · · · Kn and

i ∈ {1, . . . , n} we have

⟨Fi(u0); ui − u0
i ⟩i +

∫
Ω

j0i (x, S1u
0
1(x), . . . , Snu

0
n(x); Siui(x) − Siu0

i (x))dx ≥ 0.
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Remark 4.3. If n = 1 we obtain a similar result from the paper of Panagiotopoulos, Fundo and Rădulescu [17].

Remark 4.4. If the Banach spaces Xi, i ∈ {1, . . . , n} are separable and the domain Ω ⊂ RN is unbounded then a similar
inequality to (I) was proved in the paper Dályai and Varga [18]. Therefore, we can state a similar result as Corollary 4.3 in
the case when Ω ⊂ RN is an unbounded domain.
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