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C1-HOMOGENEOUS COMPACTA IN Rn

ARE C1-SUBMANIFOLDS OF Rn

DUŠAN REPOVŠ, ARKADIJ B. SKOPENKOV, AND EVGENIJ V. ŠČEPIN

(Communicated by James E. West)

Abstract. We give the characterization of C1-homogeneous compacta in Rn:
Let K be a locally compact (possibly nonclosed) subset of Rn. Then K is
C1-homogeneous if and only if K is a C1-submanifold of Rn.

1. Introduction

Several years ago, in his traditional course on ordinary differential equations at
the Moscow State University, V. I. Arnol′d assigned to his students the following
problem: given a one-parameter group G = {ht : R2 → R2}t∈[0,1] of diffeomor-

phisms of R2, continuously depending on the parameter t, show that the group
G actually depends on t smoothly (cf. [1]). Arnol′d originally expected that the
students would try to generalize the standard argument for the 1-dimensional case
{ht : R → R}t∈[0,1] where continuity implies linearity. As it turned out, such a
generalization didn’t work and the exercise became an unsolved problem.

One can show that such an approach works only if the orbit consists of smooth
curves. A proof for this special case can be found in [6] and it is based on a very
simple geometric idea, a short description of which we quote from [20], where a gen-
eralization of the Arnol′d problem to arbitrary C1-homogeneous planar compacta
was treated (for related concepts see [4], [10], [11], [13]–[17]): given a smooth orbit
K ⊂ R2 and a point ω ∈ K, K locally separates R2, for some neighborhood U of
ω in R2 we can get points x, y ∈ U\K from different components. Now construct
tangent circles Cx, Cy ⊂ U to K, centered at x and y, and use C∞-homogeneity of
the orbit K to move Cx and Cy so that they become tangent at ω, hence “wedging”
K at ω, giving a tangent to K at ω. In order to get a solution of the Arnol′d prob-
lem, it essentially remains to observe that the tangents to K change continuously
at at least one point, hence by C∞-homogeneity at all points.

We begin by recalling from [20] that a subset K ⊂ Rn is said to be C1-
homogeneous if for every pair of points x, y ∈ K there exist neighborhoods Ox, Oy ⊂
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Rn of x and y, respectively, and a C1-diffeomorphism

h : (Ox, Ox ∩K,x)→ (Oy, Oy ∩K, y),

i.e. h and h−1 have continuous first derivatives.
The purpose of this paper is to generalize the characterization of C1-homoge-

neous compacta in R2 given in [20] to those which lie in Rn, n ≥ 1:

Theorem 1.1. Let K be a locally compact (possibly nonclosed ) subset of Rn. Then
K is C1-homogeneous if and only if K is a C1-submanifold of Rn.

Notice that without the condition of local compactness Theorem 1.1 fails to be
true—just consider the case when K = Q and n = 1. It is also clear that the C1-
homogeneity cannot be replaced by the topological homogeneity, as the example of
the Antoine wild Cantor set in R3 demonstrates. On the other hand, observe that
Theorem 1.1 remains valid if one replaces Rn by any n-dimensional C1-manifold
Mn. It will also be clear from the proof that one can weaken the C1-homogeneity
condition to the requirement that the map h : (Ox, Ox∩K,x)→ (Oy, Oy ∩K, y) be
differentiable in Ox and its derivative h′ be continuous at the point x. Finally, we
remark that Theorem 1.1 remains valid if one replaces “C1-homogeneity” and “C1-
submanifold of a C1-manifold Mn” by “Cn-homogeneity” and “Cn-submanifold of
a Cn-manifold Mn”, respectively.

In conclusion we explain how our work is related to the classic Hilbert-Smith
Conjecture, which asserts that only Lie groups can act freely on an n-manifold or,
equivalently, that the p-adic integers Ap cannot act freely on any n-manifold Mn

(cf. [3], [7], [18]). Recall that S. Bochner and D. Montgomery [2] have proved that if
a topological groupG acts on an n-manifoldMn with diffeomorphisms, then G must
be a Lie group. Their result now follows immediately from our theorem. Indeed,
in this case every orbit of the group G is diffeomorphic to G and is a smoothly
homogeneous subset of the manifold Mn. Therefore, the orbits of G are themselves
smooth submanifolds of Mn and thus, in particular, cannot be diffeomorphic to the
p-adic integers Ap; hence neither can G.

The next possible step in an attack on the Hilbert-Smith Conjecture would be
to answer the following question:

Question 1.1. Can the p-adic integers Ap act freely on any n-manifold Mn by
LIP-homeomorphisms?

Namely, an LIP-homeomorphism h : Mn → Mn will always have a point of
differentiability ([9], Theorem (3.1.6)). One should then try to get a dense collection
of such h’s and apply our theorem above to get a contradiction. (For more on the
relationship between the C1-homogeneity and the Hilbert-Smith Conjecture, see
the survey [21].)

2. A reduction of Theorem 1.1

Definition 2.1. Let U ⊂ Rk be an open subset andK ⊂ Rn, k ≤ n. An embedding
f : U → K is called a chart in K if f(U) is open in K.

Definition 2.2. Let X and Y be metric spaces. A map f : X → Y is said to be
Lipschitz, f ∈ Lip, if there exists M > 0 such that for every pair of points x, y ∈ X ,
distY (f(x), f(y)) ≤M · distX(x, y).
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In the if direction, the proof of Theorem 1.1 is straightforward: Suppose
that K ⊂ Rn is a C1-submanifold of Rn and pick any two points x, y ∈ K.
Then there exist open neighborhoods Ox, Oy ⊂ Rn of x and y, respec-
tively and C1-diffeomorphisms hx : (Ox, Ox ∩ K,x) → (Rn,Rk × 0, 0) and
hy : (Oy , Oy ∩K, y)→ (Rn,Rk×0, 0), where k = dimK. Consequently, the compo-
sition h−1

y hx : (Ox, Ox ∩K,x)→ (Oy, Oy ∩K, y) is then also a C1-diffeomorphism,

and so K is indeed C1-homogeneous in Rn.
In order to prove the only if direction of Theorem 1.1, it suffices to prove that

K has a Lipschitz chart, since then, by Proposition 2.1, K has a point of differen-
tiability.

Propositon 2.1 (H. Rademacher). Every Lipschitz map f : Rm → Rm is almost
everywhere differentiable.

Proof. See for example [9], Theorem (3.1.6).

By virtue of C1-homogeneity, K is then a differentiable k-manifold, and by
Proposition 2.2 it has a point of continuous differentiability, so again by virtue
of C1-homogeneity, K is continuously differentiable at every point and is thus a
C1-submanifold of Rn.

Propositon 2.2 (R. Baire). For every differentiable map f : Rm → Rn, the set of
points of continuity of f ′ is an everywhere dense Gδ-set.

Proof. See for example [19], Theorem (15.3.3).

3. The Lipschitz charts

We begin this section by a (very) nonrigorous description of an idea how to
construct a Lipschitz chart. (The real argument is yet to come, in all details.) We
shall illustrate this in the case when K ⊂ R2. Observe first, that if K is not nowhere
dense in R2, then it follows by the C1-homogeneity that K is an open subset of R2.
So assume now that K is nowhere dense in R2. Apply the local compactness of K
to get an open triangle in R2\K, one of whose vertices x belongs to K.

Since K is C1-homogeneous, such a triangle can be found for all points x ∈ K.
Invoking the Baire Category Theorem, one then concludes that there exists an open
square in R2 whose intersection K ′ with K is nonempty and such that every point
x ∈ K ′ is a vertex of an isosceles triangle, the interior of which misses K, and all
the triangles are parallel to one another (see Figure 1).

We may also assume that the length of the side of the square is smaller than
the altitude of the isosceles triangles and that one of the sides of the square AB is
parallel to the basis of the triangles.

The triangles, symmetric to the ones above and denoted by a dotted line in
Figure 1, also do not intersect K ′, since the length of the side of the square was
chosen to be less than the altitude of the triangles. Therefore, if the projection of
K ′ onto AB is not nowhere dense, then its inverse is well defined and turns out to
be a Lipschitz chart.

On the other hand, if the projection of K ′ onto AB is nowhere dense, then we
apply the local compactness of find a point in K ′ which is a vertex of an open
nonconvex sector which does not intersect K ′.

Since K is C1-homogeneous, every point of K is a vertex of an open nonconvex
sector not intersecting K. Applying the Baire Category Theorem, we can conclude
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that there exists an open square whose intersection K ′ with K is nonempty, that
every point of K ′ is a vertex of a nonconvex sector which does not intersect K, and
that all the sectors are parallel to one another. We may also assume that the radius
of the sector is greater than the side of the square. Then the centrally symmetric
sectors (denoted by dotted lines in Figure 2) also do not intersect K ′.

Hence K ′ has an isolated point, so K must consist of isolated points only. (End
of the nonrigorous introduction.)

For the purpose of a precise construction of a Lipschitz chart, we introduce
some conventions and notations. Hereafter we shall denote by K a locally compact
subset of Rn; by Sn−1 ⊂ Rn the unit (n − 1)-sphere, centered at the origin 0 ∈
Rn; by π : Rn\{0} → Sn−1 the radial projection of Rn\{0} onto Sn−1; by Bk =
{(x1, . . . , xn) ∈ Sn−1|xk+1 ≥ 0, xi = 0 for k + 2 ≤ i ≤ n} the k-dimensional closed
semisphere in Sn−1, k ∈ {0, 1, . . . , n−1}; and by OεY the closed ε-neighborhood of
Y in Sn−1 (or Rn—this will be seen from the context). On Sn−1 we shall use the
angular metrics. Finally, we shall assume that A ∈ O(n), 0 < ε < π

2 , and r > 0,
and we shall denote by | | the norm, and by + and − the obvious linear operators
in Rn.



C1-HOMOGENEOUS COMPACTA IN Rn 1223

We define the geometric derivative of K at a point x ∈ K to be the set

DxK =
⋂
δ>0

Cl π{y − x | y ∈ K, 0 < |y − x| < δ}.

The points of k-dimensional Lipschitz property are the members of the set

Xk = {x ∈ K | for some A and ε : DxK ⊆ OεABk}

where k < n and Xn = K.
Define

T kε (A, r) =

{
y ∈ Rn | 0 < |y| < r,

y

|y| 6∈ OεAB
k

}
,

and let

Xk
ε (A, r) = {x ∈ K |K ∩ (x+ T kε (A, r)) = ∅}

where k < n, Xn
ε (A, r) = K.

Lemma 3.1. Xk
ε (A, r) is closed in K.

Proof. For k = n this is obvious. So let k < n, and choose any x ∈ K such that
x = limn→∞ xn, where xn ∈ Xk

ε (A, r). If y ∈ (x+ T kε (A, r)) ∩K, then there exists
δ > 0 such that Oδy ⊂ (x+ T kε (A, r)) (since T kε (A, r) is open). Choose now n such
that |xn − x| < δ. For such n, we have that y ∈ (xn + T kε (A, r)). However, y ∈ K
and (xn + T kε (A, r)) ∩K = ∅, which yields a contradiction. Hence x ∈ Xk

ε (A, r),
and thus Xk

ε (A, r) is indeed a closed subset of K.

Lemma 3.2. If Xk = K, then there exist ε,A, and r such that Xk
ε (A, r) is not

nowhere dense in K.

Proof. For k = n this is obvious. So let k < n. Since by hypothesis Xk =
K, it follows by the definition of Xk that for any x ∈ K there exist A and ε
such that DxK ⊂ OεAB

k. Choose δ ∈ (ε, π2 ). Since DxK ⊂ OεAB
k, it follows

from the definition of the geometric derivative that there exists N ∈ N such that
(x + T kδ (A, 1

N )) ∩ K = ∅. Choose inside O(n) an everywhere dense sequence
{Am}m∈N. Then there exists M > N such that

T kπ/2−1/M

(
AM ,

1

M

)
⊂ T kδ

(
A,

1

N

)
;

therefore,(
x+ T kπ/2−1/M

(
AM ,

1

M

))
∩K = ∅, i.e. x ∈ Xk

π/2−1/M

(
AM ,

1

M

)
;

hence
∞⋃
M=1

Xk
π/2−1/M

(
AM ,

1

M

)
= K.

The assertion of the lemma now follows by an application of Lemma 3.1 and the
Baire Category Theorem [8].

Lemma 3.3. If Xk = K, then either K has a k-dimensional Lipschitz chart or
k ≥ 1 and Xk−1 6= ∅.
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Proof. Since Xk = K, it follows by Lemma 3.2 that there exists Xk
ε (A, r) which

is not nowhere dense in K. Therefore there exist a point x ∈ Xk
ε (A, r) and a

neighborhood Ox of x such that Ox ∩ K ⊂ Xk
ε (A, r). Inside Ox choose an open

n-dimensional cube B of diameter less than r and centered at x, such that one of
its k-dimensional sides L is parallel to a hypersurface through ∂ABk and O (for
k = n,L = B) (see Figure 3 for n = 3, k = 2). Then K ′ = B ∩K ⊂ Xk

ε (A, r).
For every point y ∈ K ′,

[(y + T kε (A, r)) ∪ (y − T kε (A, r))] ∩K ′ = ∅.

Indeed, since y ∈ Xk
ε (A, r), we have that (y + T kε (A, r)) ∩K ′ = ∅. On the other

hand, if z ∈ (y−T kε (A, r))∩K ′, then y ∈ (z+T kε (A, r))∩K ′, which contradicts the
fact that z ∈ Xk

ε (A, r). Therefore (and since diam B < r), p |K′ : K ′ → L is one-
to-one, where p |K′ is the restriction onto K ′ of the parallel projection p : B → L.
We must distinguish between two cases:

Case 1: p(K ′) is not nowhere dense in L. (This is certainly true for k = 0, since
L is then a point.) Then p(K ′) contains an open set U ⊂ L, and hence q : U → K is
a k-dimensional Lipschitz chart, where p(q(u)) = u. Indeed, since p is one-to-one, q
is well defined and is clearly an embedding; q(U) = p−1(U)∩K is open in K. That
q is Lipschitz follows due to the existence of sets y + T kε (A, r) and y − T kε (A, r), in
every point y ∈ K ′, disjoint with K ′.
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Case 2: p(K ′) is nowhere dense in L. Then k ≥ 1. Since K is locally compact,
such must also be K ′; hence p(K ′) is also locally compact [8]. Therefore there exists
a closed k-dimensional ball V ⊂ L, centered at p(x), such that p(K ′)∩V is compact.
Since p(K ′) is nowhere dense, there exists y ∈ L\p(K ′) such that dist(y, p(x)) <
diam V

4 . Since p(K ′) ∩ V is compact, it follows that dist(y, p(K ′) ∩ V ) > 0, and so
there exists p(z) ∈ p(K ′) ∩ V such that dist(y, p(z)) = dist(y, p(K ′) ∩ V ). Since
dist(y, p(x)) < diam V

4 , it follows that

dist(p(z), p(x)) ≤ dist(p(z), y) + dist(y, p(x)) ≤ 2 dist(y, p(x)) <
diam V

2
;

hence p(z) ∈ V . Let C = {u ∈ B | dist(y, p(u)) < dist(y, p(z))}. Since dist(y, p(x))
< diam V

4 , it follows that for every u ∈ C

dist(p(u), p(x)) ≤ dist(p(u), y) + dist(y, p(x)) ≤ 2 dist(y, p(x)) <
diam V

2
;

hence p(u) ∈ V , and so p(C) ⊂ V .
Since dist(y, p(z)) = dist(y, p(K ′)∩V ), it follows that the open ball in L, centered

at y and of radius dist(y, p(z)), does not intersect p(K ′) ∩ V . But, since this ball
lies in V , it does not intersect p(K ′) either. Consequently, C ∩K ′ = ∅.

Therefore,

DzK ∩ π[T kε (A, r) ∪ (−T kε (A, r)) ∪ (C − z)] = ∅,

i.e. DzK ⊂ OεABk−1 and hence Xk−1 6= ∅.

4. Proof of Theorem 1.1

By definition Xn = K. Therefore there is the minimal k such that Xk =
K. By Lemma 3.3, either there exists a k-dimensional Lipschitz chart (in which
case we are done) or k ≥ 1 and Xk−1 6= ∅, i.e. there exist x ∈ K,A, and ε
such that DxK ⊂ OεAB

k−1. For every y ∈ K, there exists a diffeomorphism
h : (Ox, Ox ∩K,x)→ (Oy, Oy ∩K, y).

Therefore DyK = πh′xDxK ⊂ πh′xOεAB
k−1, where h′x denotes the derivative

of h at x, and πh′xAB
k−1 is a (k − 1)-semisphere in Sn−1 and πh′xOεAB

k−1 is its
closed neighborhood, contained in the δ-neighborhood for some δ ∈ (0, π2 ). Hence

y ∈ Xk−1, and thus Xk−1 = K. This is a contradiction, so the latter case cannot
occur.
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5. D. Dimovski and D. Repovš, On homogeneity of compacta in manifolds, Atti. Sem. Mat. Fis.
Univ. Modena 43 (1995), 25–31. CMP 95:14
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