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A Characterization of C'-Homogeneous
Subsets of the Plane.

D. REPOVS(*) - A. B. SKOPENKoOV - E. V. SCEPIN

Sunto. - Si dimostra che se K é un sottoinsieme k-dimensionale localmente
compatto e C-omogeneo del piano R2, allora: () se k = 0, allora K & un
insieme al pit numerabile di punti isolati; (i) se k = 1, allora K ¢ una
collezione al pit. numerabile di curve C ! in R? con intorni a due a due di-
sgiunti; (i) Se k =2, allora K ¢ un aperto di R2

Introduction.

In a well-known book by V. I. Arnol'd{1] there is the follow-
ing interesting problem: given a one-parameter group &=
{rt: RE—>R?}, (0,1 of diffeomorphisms of R? continuously depend-
ing on the parameter ¢, show that the group G actually depends on ¢
smoothly. Arnol’'d’s idea was to gemeralize the standard argument
used for the 1-dimensional case {h‘: R— R}, (0,1 where continuity
implies linearity. However, one of Arnol'd’s students, I. YaS€enko,
pointed out in late 1970°’s that such an approach doesn’t work.

As it turns out, Arnol'd’s idea works only if the orbits are
smooth curves. A proof for this special case can be found in[4]
and it is based on the following simple geometric idea: given
a smooth orbit KcR? and a point w € K, K locally separates R2,
for some neighborhood U of « in R? we can get points z,y e U\ K
from different components. Now construct tangent circles C,,C,cU
to K, centered at x and y, and use C™-homogeneity of the orbit
K to move C, and C, so that they become tangent at w, hence
«wedging» K at o, giving a tangent to K at «. In order to
get a solution of the Arnol'd problem, it essentially remains to
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observe that the tangents to K change continuously at at least
one point, hence by C~-homogeneity at all points.

The purpose of the present paper is to solve a generalization of
the Arnol'd problem—to arbitrary C!-homogeneous planar com-
pacta. (For related concepts see [2], [6], [7], [8]-{12].) The concept of
C -homogeneity for planar locally compact sets is an analogue of the
earlier concept of C “-homogeneity for Jordan curves which was in-
troduced in [4] and generalized in [3] to the notion of homogeneity of
compact subsets of arbitrary topological manifolds. For related con-
cepts and ideas see[2],[6]-[12].

DEFINITION. - A locally compact subset K of RZ is said to be C'-
homogeneous if for every pair of points x,y « K there exist neighbor-
koods O,,0, cR? of x and y, respectively and a C'-diffeomorphism
h: (0,,0, N K,x)—(0,,0, N K, ).

The main result of this paper is the characterization of C -homo-
geneous subsets of the Euclidean plane R2.

THEOREM. — Let K be a locally compact (possibly nonclosed) sub-
set of R2. Then K is C'-homogeneous if and only if K is a C'-sub-
manifold of R?, ie.

(i) If dim K = 0, then K is at most countable subset of isolat-
ed points in RZ;
(ii) if dim K = 1, then K is at most countable collection of C'-
curves with pairwise disjoint neighborhoods in R?; and
(iii) if dim K = 2, then K i3 an open subset of RZ2.

This result was first presented at the 1989 Peés Colloquim on
Topology and Applications. The preliminary version of this paper
was written during the first author’s visit to the Steklov Mathemat-
ical Institute in Moscow in 1990, on the basis of the long term agree-
ment between the Slovenian Academy of Arts and Sciences and the
Russian Academy of Sciences.

Preliminaries.

Let K be a C'-homogeneous, locally compact subset of the plane.
If dim K = 2 then K must clearly contain an open subset of R?. Since
K is C-homogeneous it follows that for each point p € K, there is an
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open neighborhood O, cK, hence K is an open subset of R2. There-
fore we shall need to consider in the sequel only the cases when
dim K € {0, 1}. Note, that this implies, in particular that K can not
be dense in RZ.

Fix an axis O, in the plane RZ2. Suppose that « € [0, 27), 8 € [0, ),
reR*. Given an arbitrary point Ve R?, denote by T(V,7,qa,) the
interior of the isosceles triangle ABV with the base AB, angle 28 at
the top vertex V, of altitude r and with the angle between VD and O,
being equal to «, where D is the foot of the altitude. Let X, , ;= {ze
T|T(x,r,a,8) N K =@}, ie. the triangle can intersect with K only at
its boundary points (see Fig. 1).

B

O/ 0,

/

Fig. 1.

LEMMA. — There exist 7, «, B, such that X, , ; contains an open
subset of K.

PROOF. — We argue in three steps:
ASSERTION 1. — There exist , «, 8, such that X, , ;= 8.

PROOF. ~ Let ¥ € K be any point and choose UcRZ to be an open
disk containing y, such that CIU N K is compact. Since K is not
dense in R2, it follows that there is a point ze U\ K.

Since CIUN K is compact, it follows that there is a point
pe ClUNK, such that dist(z,p)=dist(z,CIUNK)=d>0. Then
UNO04(z) N K =0, where Oy(2) is the open ball of radius d, centered
at 2, and UNOy(z) contains an open equilateral triangle p as
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the top vertex and z as the foot of the altitude to the triangle’s
basis. So there exist 7, «, 8, such that X, ,,='. ®

ASSERTION 2. - For every x € K, there exist re Q, a € Q, and
B e Q, such that T(x,7,«,8) N K =0.

ProoF. — Take the points %, p € K from the proof of Assertion 1.
Let z € K. By hypothesis, there exist neighborhoods 0,,0,cR? of p
and z, respectively and a C'-diffeomorphism k: (0,,0,NK,p)—
(0,,0.N K, ). Since O, is open, there is a small enough isosceles
triangle T with p as the top vertex, such that TcO, and
TNK=4.

Inside T we can find a triangle 4p AB such that k(pA) and h(pB)
are Cl-curves, meeting at x and having tangents at x which inter-
sect at an angle greater than 0. There is therefore a triangle
T(x,r,a,B) between these two tangents of h(pA) and h(pB) inside
h(ApAB) with rational values for «, 3, r. Since k& is injective and
ApAB N K = @, it follows that T'(x,r,«,8) N K =0. So T(x, r, «, B) is the
required triangle (see Fig. 2). =

T(x, 7, «, )
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Fig. 2.

ASSERTION 3. - X, , 5 is closed in K.

PRroOF. — Let p € K, such that p= Jim p,, where pyeX, .5 We

need to show that peX,,,. There are triangles 4p,A,B,=
T(p,,r,a,B), such that 4p, A, B, N K =0. We may assume that the se-
quences {A,},.n and {B,},.n converge to some points A and B, re-
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spectively. Then ApABc lglApnAnB,,. Hence 4pAB N K = @. This
shows that peX, ,;, ie. that X, ,; is closed. =

We now complete the proof of the lemma. By Assertion 2
U{Xr,a,ﬁlreoy an’ﬂEO} =K7

and by Assertion 3, X, , ; is closed. Since K is localfy compact, using
Baire category argument, we obtain that there are 7, «,8 € Q, such
that X, , ; contains an open subset of K. ™

Proof of the Theorem.

By lemma, we can find an open subset VcR2, and 7, a, 8 such
that VN KcX,,, We can find an open square UcV, such that
UNK =@, ClUN K is compact, diam U < r and two sides of U are
parallel to the altitude of T(x,7,«,8), where zeX, ;. Let [ be a
straight line, parallel to the other two sides of U, situated below the
square U. Let n: U—1 be the orthogonal projection (see Fig. 3).

Fig. 3.

Denote T(x,7,2,8) by T, and the reflection of T, with respect
tox by T;. If yeUNT; NK, then xeT,, which is a contradiction.
Hence UN(T,UT,)NK=¢. Since diamU <r it follows that
abr: UN K — 1 is an injection. We must distinguish two cases.
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Case 1. n(U N K) contains an open subset W of .

Let : W— R be the map such that ¢(t) =dist (¢, = ~(t) N K).

Since for each ze UNK, (T,UT,)NUNK=0 and since
diam U < r, it follows that ¢ € Lip, i.e. ¢ is a Lipschilz function.
By [5], Theorem (3.1.6), there is a point t, € W such that ¢(t) is differ-
entiable at £,. Since K is C'-homogeneous, ¢ is therefore differen-
tiable at each point t ¢ W. For each te W, ¢'(f) = Jim (p(t+1/m) -

o(t)) /(1 /n). So ¢'(t) is the pointwise limit of continuous functions.
Therefore there is a point £, ¢ W, such that ¢'(f) is continuous at ¢;.
Since K is C-homogeneous it follows that ¢'(t) is continuous at each
point ¢ e W, and K is a C'-submanifold of RZ.

Case 2. n(U N K) is nowhere dense in L.

If U N K = {x} then « is an isolated point of K. Since K is C'-ho-
mogeneous, it follows that every point of K is then isolated so in this
case K is at most countable set of isolated points.

Suppose now that there are at least two points z,ye UN K.
Since n(U N K) is nowhere dense in [, it follows that there is a
point p e IN=(U N K) between =n(x) and n(y). Since x(UNK)N
[ (x); =(y)] is compact (where [x(x); ~(y)] denotes the segment of !
between rn(x) and n(y)), there is a point n(z) e x(U N K), such that
dist (z(2),p) =dist (=(U N K),p) =p.

Fig. 4.




A CHARACTERIZATION OF C !-HOMOGENEOUS ETC. 443

For an arbitrary xeR2, r > 0, y € [0,27), 8e (—x /,n /2) denote by
S(x,7,v,4) an open pentagon defined in the similar manner as
T(x,7,a,8) (see Fig. 4). If 3 <0 then S(z,7,7,6) is symmetric to
S(z, r, v, — 8) with respect to vertices.

Take z and ¢ as above. Then there are y € [0, 27), de (—= /2,7 /2),
such that S(z,0,7,6)NK=0. There exist r>0, yel0,2n),
de(—n/2,n/2),suchthaty, ;= {reK|S(x,7,v,8) N K=0}isdense
in K (the proof of this fact is the same as the proof of Lemma). Hence
we can find an open square UcR?, suchthat UN K = 8, UNKcY,,;
and diamU<». If xz,yeUNK, then xeS(y,ra p or
y € S(x, r,«, B), which is a contradiction. Hence, U N K is an isolat-
ed point of K. This shows that also in this case K is at most countable
set of isolated points. ®
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