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Obstructions for Seifert fibrations
and an extension of the Bolsinov–Fomenko
theorem on integrable Hamiltonian systems

D. Repovš and A. B. Skopenkov

In 1994, Bolsinov and Fomenko [1] proved a theorem on the topological orbital classification

of non-degenerate integrable Hamiltonian systems with two degrees of freedom on 3-dimensional
constant-energy manifolds. For the motivations and for a short survey, see [2], §1 and [1], §1. It

was shown that two such systems are equivalent if a particular invariant is the same for each.
This invariant is a graph with some additional labels on its vertices and edges. A necessary

condition was that the Hamiltonian system under consideration does not have unstable periodic
orbits with a non-orientable separatrix. Since orbits of this type occur in examples, for instance,

in the Kovalevskaya top, it is of interest to remove the above condition. We show that the
Bolsinov-Fomenko theorem holds without this condition.

Theorem (cf. [1], Theorem 4.1). Let X be the set of non-degenerate integrable Hamiltonian sys-

tems with two degrees of freedom on constant-energy orientable 3-manifolds, up to an orientation-

preserving topological orbital equivalence. Then there is an injection of X into the set of t-labelled

graphs W regarded up to t-equivalence.

The definitions of a t-labelled graph and of t-equivalence are as in [1]; see also [2], [4]. In fact,
the more general situation needs no additions or corrections with respect to [1], except for the new

condition that the P -labels can be atoms with stars. We note that the image of the injection in the
theorem and the dependence of t-labels on the orientation of the constant-energy 3-manifold are

described in [1], §12.3 and §13.5. Moreover, in §13 of [1] another labeling on W was constructed,
the so-called t-molecule, which is simpler in a sense. These phenomena can also be extended to

our more general situation; we recall that the P -labels can now be atoms with stars.

Our proof is based upon the following general observation, which could possibly be applied

to other problems. A bifurcation of Liouville tori in a Bott integrable Hamiltonian system can
be described by a neighbourhood of F−1(c), where F is an additional integral and c is a critical

value of it. If the critical submanifold of F corresponding to c is a circle, then this neighbourhood
is a Seifert fibration Q over a (non-closed) 2-surface P [3]. More precisely, by a double P∗ we

mean a 2-surface with boundary and with an involution χ on P∗ that has finitely many fixed
points, which are called stars. We set P = P∗/χ (P∗ is called the double of the surface P ).

Let p : P∗ → P be the projection. By N we denote the p-image of the set of fixed points of
χ (that is, of the stars). By P̃ we denote the closed surface obtained by attaching discs to the

boundary circles of P . A 3-atom is a fibre bundle over S1 with fibre P∗ and sewing map χ, that
is, Q(P∗) ∼= P∗ × I/{(a,0) ∼ (χa,1)} (cf. [2], Definition 2.2). By this definition, Q(P∗) depends

only on P and not on P∗. Therefore, in what follows we write Q(P ) or simply Q instead of Q(P∗).
Let us define a map π : Q → P by π[(a, t)] = p(a) (a Seifert fibration having singular fibres only
over stars and only of type (2,1)).

To study the bifurcation of Liouville tori, we construct a Poincaré section of the flow on Q [1].

If the critical circle has an orientable separatrix diagram (or, equivalently, P has no stars), then
Q ∼= P × S1, and the Poincaré section can be chosen to be a cross-section. Therefore, Poincaré

sections can be classified by the methods of classical obstruction theory. If the critical circle has
a non-orientable separatrix diagram (or, equivalently, P has stars), then the Seifert fibration is

not locally trivial. Nevertheless, a Poincaré section is a Seifert analogue of a cross-section. An
embedding f : P∗ → Q is called a Seifert section if π ◦ f = p. In the smooth category, we must

assume in addition that f is transversal to the fibres of the map π. In [1] the Seifert sections were
called transversal platforms. The main part of our proof is the classification of the Seifert sections
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of a Seifert fibration. The proof of the theorem modulo the classification theorem stated below is
similar to that in [1]; for a detailed proof, see [4]. We omit the Z-coefficients in the notation for

cohomology groups. For a space with involution, the symmetric (co)homology groups are denoted
by adding the subscript S to the standard notation.

Classification Theorem. For a �xed double P∗, the set X of Seifert sections regarded up to

isotopy over π is in one-to-one correspondence with H1(P ).

Proof. Let us define a map

q : P∗ × S1 ∼= P∗ × I/{(a,0) ∼ (a, 1)} → P∗ × I/{(a,0) ∼ (χa,1)} ∼= Q

by the formula

q[(a, t)] =

(
[(a,2t)], 0 ≤ t ≤ 1

2
,

[(χa,2t− 1)], 1
2
≤ t ≤ 1 .

Since χ is an involution, it follows that q is well defined and continuous.

Let f : P∗ → Q be a Seifert section. For each x ∈ P∗\N , there is a unique point f ′(x) ∈
P∗ × S1 such that qf ′(x) = f(x). For each x ∈ N there are two points s, t ∈ S1 such that

q(x, s) = q(x, t) = f(x). Since a small punctured disc neighbourhood of x in P∗ is connected,
we can choose f ′(x) to be either (x, s) or (x, t) so that the map f ′ : P∗ → P∗ × S1 becomes

continuous. This map f ′ is a classical section of the trivial bundle P∗ × S1 → P∗ . Since f
is an embedding, it follows that p2f ′(x) and p2f ′(χx) are not antipodes for any point x ∈ P∗ .
Here p2 : P∗ × S1 → S1 stands for the projection. Therefore, there is a canonical homotopy
between f ′ and a symmetric section f ′′ (that is, a section f ′′ such that p2f ′′(x) = p2f ′′(χx) for

any x ∈ P∗). Moreover, the map q ◦ F is a Seifert section and (q ◦ F )′′ = F for any symmetric
section F : P∗ → P∗ × S1. Obviously, Seifert sections f and g are isotopic over π if and only if

the corresponding symmetric sections f ′′ and g′′ are symmetrically homotopic (or, equivalently,
isotopic). Then X is in one-to-one correspondence with the set X ′′ of symmetric sections of the

trivial bundle P∗ × S1 → P∗ regarded up to a symmetric homotopy. In turn, the latter set is in
one-to-one correspondence with H1

S(P∗;Z). We can readily see that H1
S(P∗;Z)∼= H1(P ;Z). �

We would like to thank A. V. Bolsinov and A. T. Fomenko for useful discussions of the topic.
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