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New results on embeddings of polyhedra

and manifolds in Euclidean spaces

D. Repovš and A. B. Skopenkov

Abstract. The aim of this survey is to present several classical results on embed-
dings and isotopies of polyhedra and manifolds in Rm. We also describe the revival
of interest in this beautiful branch of topology and give an account of new results,
including an improvement of the Haefliger–Weber theorem on the completeness of
the deleted product obstruction to embeddability and isotopy of highly connected
manifolds in Rm (Skopenkov) as well as the unimprovability of this theorem for
polyhedra (Freedman, Krushkal, Teichner, Segal, Skopenkov, and Spież) and for
manifolds without the necessary connectedness assumption (Skopenkov). We show
how algebraic obstructions (in terms of cohomology, characteristic classes, and equi-
variant maps) arise from geometric problems of embeddability in Euclidean spaces.
Several classical and modern results on completeness or incompleteness of these
obstructions are stated and proved. By these proofs we illustrate classical and mod-
ern tools of geometric topology (engulfing, the Whitney trick, van Kampen and
Casson finger moves, and their generalizations).
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Introduction

Many theorems in mathematics state that an arbitrary space of a given abstractly
defined class is a subspace of a certain ‘standard’ space of this class. Examples
include the Cayley theorem on embeddings of finite groups in symmetric groups,
the theorem on the representation of compact Lie groups as virtual subgroups of
GL(V ) for a certain linear space V , the Urysohn theorem on embeddings of nor-
mal spaces with countable base in Hilbert space, the general position theorem for
embeddings of finite polyhedra in Rm, the Menger–Nöbeling–Pontryagin theorem
on embeddings of finite-dimensional compact spaces in Rm, the Whitney theorem
on embeddings of smooth manifolds in Rm, the Nash theorem on embeddings of
Riemannian manifolds in Rm, the Gromov theorem on embeddings of symplectic
manifolds in R2n, and so on. The Kolmogorov–Arnold solution of Hilbert’s 13th
problem can also be stated in terms of embeddings (§ 5). Being of interest in them-
selves, these embeddability theorems also prove to be powerful tools for solving
other problems. Subtler problems of embeddability and classification (up to iso-
topy) of embeddings of a given space in Rm for a given m are among the most
important classical problems in topology.

In this survey, from the vast variety of methods and results concerning embed-
dability and isotopy problems, we have chosen the deleted product method. (We
also consider the van Kampen and Whitney methods, which are earlier-known spe-
cial cases of it.) The deleted product method is a demonstration of the general
mathematical idea of ‘complements of diagonals’ (Borsuk, Lefschetz, Shapiro, and
Wu). The classical Haefliger–Weber theorem (1963–1967) states that the deleted
product condition is sufficient for embeddability of polyhedra and manifolds (respec-
tively, isotopy of embeddings of polyhedra and manifolds) under the ‘metastable’

dimension restriction m > 3(n+1)
2 (respectively, m > 3n

2 + 2). In 1995–1998, the
second author completely solved the well-known problem as to whether it is pos-
sible to weaken the metastable restriction in these theorems for piecewise linear
manifolds and polyhedra (for details, see §§ 2–4). This result was obtained by
combining and sharpening methods and results from various branches of topology:
theory of immersions, homotopy theory, engulfing, the generalized Whitney trick,
and generalized van Kampen and Casson finger moves. In this survey, we present
the Haefliger–Weber theorem, the above-mentioned results of the second author
together with some corollaries, and the connections between the embedding prob-
lem and other fields of mathematics (in particular, algebraic topology and functional
analysis).

The first part opens with the statement and discussion of these problems (§ 1).
The van Kampen and Whitney methods and related results are presented in §§ 2
and 3. We state in § 4 the classical Haefliger–Weber result on the sufficiency of
the deleted product criterion for embeddability of n-dimensional spaces in Rm
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for m > 3(n+1)
2 (and for the isotopy of embeddings for m > 3(n+1)

2 ) without
additional high-connectedness assumptions. Here we also present the sufficiency

theorem for this criterion under the condition m < 3(n+1)
2 and additional high-

connectedness assumptions. A variety of corollaries are given in §§ 2–4. We also
state the Haefliger–Hirsch theorem on immersions of manifolds in Rm and a piece-
wise linear analogue of it due to Harris and the second author. In § 5, we discuss
recent results in the theory of basic embeddings, which emerged at the junction
of functional analysis and topology in the course of investigation of Hilbert’s 13th
problem. This section is independent of the other parts of the survey.

The second part deals with proofs of completeness theorems (Haefliger, Weber,
and Skopenkov)and incompleteness theorems (Freedman, Krushkal, Teichner, Segal,
Skopenkov, and Spież) for the deleted product obstruction. These proofs are used
to illustrate classical and modern methods of geometric topology: the Whitney
trick, engulfing, and van Kampen finger moves (as well as their generalizations).
The theory of embeddings is not the only area where these methods apply. In § 6,
we construct examples (announced in §§ 2 and 4) of incompleteness of the van Kam-
pen and deleted product obstructions for 4 6 m 6 3n

2
+ 1. The construction of

these examples involves higher-dimensional Casson finger moves. The proofs of
completeness of the deleted product criterion are carried out in the piecewise lin-
ear case (studied by Weber and the second author). For the reader’s convenience,
we use the historical approach in the exposition of proofs: each method is first
illustrated in a simple particular case and then applied in its full strength. The
Whitney trick and van Kampen finger moves are exemplified in § 7 by the proofs of
Theorem 2.1.a (van Kampen–Shapiro–Wu) for n > 3 and Theorem 4.1.e (Weber)
for m = 2n + 1. The engulfing method is illustrated in § 8 by the proof of Theo-
rem 3.2.a (Penrose–Whitehead–Zeeman–Irwin). In §§ 9 and 10, the methods of §§ 7
and 8 are applied to the proof of Theorem 4.1.e in the general case m > 3(n+1)

2 .
The exposition of the second part of the proof in § 10 is based on a method from
[136]. It is substantially simpler than the original proof [153] and does not resort to
the Freudenthal suspension theorem. In § 11, we outline the proof of a sharpening
of Theorem 4.1.e in the piecewise linear case (Theorem 4.2.e) and a piecewise linear
version of the Haefliger–Hirsch Theorem 4.1.i (Theorem 4.2.i). In § 12, the idea is
given for proofs of isotopic versions of the above-mentioned results.

I. Obstructions to embeddability and isotopy

§1. Problems of embeddability and isotopy

A compactum, a polyhedron, or a smooth manifoldK is said to be topologically,
piecewise-linearly, or smoothly embeddable in Rm if there is a continuous, piecewise-
linear, or smooth injective map f : K → Rm. (In the smooth case, it is additionally
required that df be a monomorphism at each point.) Such a map f is called an
embedding of K in Rm. The first main problem dealt with in this survey is to find
conditions under which a given polyhedron K is embeddable in Rm for a given m.
In most of this survey (except for § 5), the piecewise linear case is considered; in
particular, all maps are assumed to be piecewise linear, unless stated otherwise.
We recall that a map f : K → Rm is said to be piecewise linear if it is linear on
each simplex of some triangulation of K. The results and references for the smooth
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case in §§ 3 and 4 are given in parentheses. By a polyhedron we always understand
a finite polyhedron. For a beautiful survey on smooth embeddings, see [35]. For
m > 2 dimK+1, a polyhedron K can always be embedded in Rm. This follows by
a general position argument. (Moreover, even K×I can be embedded in Rm [122].)
Thus, the problem is of interest only for m 6 2 dimK.

The similar notions of immersions and quasi-embeddings are of interest in them-
selves and prove useful in the study of embeddings. Their definitions can be
obtained by weakening the injectivity condition in the definition of an embed-
ding in two dual ways. A polyhedron K is said to be immersible (respectively,
quasi-embeddable) in Rm if for each ε > 0 there is a map f : K → Rm such that
f(x) 6= f(y) whenever dist(x, y) < ε (respectively, dist(x, y) > ε). For m− n > 3,
any piecewise linear embedding of a piecewise linear n-manifold in Rm is locally
flat; hence, our definition coincides with the usual one for piecewise linear mani-
folds [54]. Many results of this survey have their counterparts for immersions and
quasi-embeddings.

Another interesting problem is how to determine whether two given embeddings
f, g : K → Rm are ‘of the same type’. The best-known example is the classifica-
tion of knots in R3. More precisely, two topological, piecewise linear, or smooth
embeddings f, g : K → Rm are said to be (ambient-) isotopic if there is a topolog-
ical, piecewise linear, or smooth surjective homeomorphism F : Rm × I → Rm × I
such that F (y, 0) = (y, 0) for each y ∈ Rm, F (f(x), 1) = g(x) for each x ∈ K,
and F (Rm × {t}) = Rm × {t} for each t ∈ I. Such a homeomorphism F is called
an (ambient) isotopy. The same term is used for the homotopy Rm × I → Rm
or the family of maps Ft : Rm → Rm generated by F in an obvious manner. The
second classical topological problem considered in this survey is to find conditions
under which two embeddings f, g : K → Rm are isotopic. (Just as for the embed-
ding problem, we mostly consider the piecewise linear case.) If m > 2 dimK + 2,
then any two embeddings of a polyhedron K in Rm are isotopic by a general posi-
tion argument. Likewise, two topological, piecewise linear, or smooth immersions
f, g : K → Rm are said to be regularly homotopic if there is a topological, piecewise
linear, or smooth immersion F : K × I → Rm × I such that F (x, 0) = (f(x), 0),
F (x, 1) = (g(x), 1) for each x ∈ K, and F (K × {t}) ⊂ Rm × {t} for each t ∈ I.

Obviously, (ambient) isotopy is an equivalence relation on the set of embeddings
of K in Rm. It is a stronger equivalence relation than non-ambient isotopy, isoposi-
tion, concordance, bordism, and so on. Two embeddings f, g : K → Rm are said to
be (non-ambient-) isotopic if there is an embedding F : K × I → Rm × I such that
F (x, 0) = (f(x), 0), F (x, 1) = (g(x), 0) for each x ∈ K, and F (K×{t}) ⊂ Rm×{t}
for each t ∈ I. In the smooth category, or, for m − dimK > 3, in the topologi-
cal and piecewise linear categories, isotopy implies ambient isotopy ([4], [26], § 7,
[66], and [74]). For m − dimK 6 2, this is not the case. (For example, any
knot S1 → S3 is piecewise-linearly isotopic to the trivial knot but need not be
ambient-isotopic to it.) Two embeddings f, g : K → Rm are said to be (orientation-
preserving) isopositioned if there is an (orientation-preserving) homeomorphism
h : Rm → Rm such that h ◦ f = g. The Alexander–Guggenheim theorem asserts
that orientation-preserving isoposition is equivalent to isotopy [125]. Two embed-
dings f, g : K → Rm are said to be ambient-concordant if there is a surjective
homeomorphism F : Rm × I → Rm × I (which is called a concordance) such that
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F (y, 0) = (y, 0) for each y ∈ Rm and F (f(x), 1) = (g(x), 1) for each x ∈ K. The
definition of non-ambient concordance can be obtained from that of non-ambient
isotopy in a similar way by dropping the last condition of level preservation. In the
smooth category, or, for m − dimK > 3, in the topological and piecewise linear
categories, concordance implies ambient concordance and isotopy [70], [73], [165].
(This is not the case in codimensions 1 and 2.) This result allows one to reduce the
isotopy problem to the relative embeddability problem (see § 12 for details).

We give a list (by no means complete) of references on closely related questions
of geometric topology. In embeddability and isotopy problems, Rm can be replaced
by an arbitrary space Y . The cases in which Y is a manifold or a product of
trees have been studied most widely ([145], Theorem 4.6 and Remark, [33], [34],
and [167]). For embeddings of products, twisted products, and Lie groups, see [2],
[116], [117], [121], and references therein. For embeddings up to cobordism, see [11].
For embeddings up to homotopy, see [152], § 11. For the classification of link maps,
see [40], [138], and references therein. For embeddings of polyhedra in certain
manifolds see [10], [97], [108], [133], [150], [151], and references therein. For the
problem of embeddability of compacta and the close problem of approximability by
embeddings, see [3], [16], [17], [23], [104], [105], [118], § 9, [119], [129], and references
therein. For the problem of intersection of compacta, see [25], [140], and references
therein. For basic embeddings, see § 5 of the present paper.

§2. The van Kampen obstruction

As shown in § 1, the first non-trivial case of the embeddability problem is the
investigation of embeddability of n-polyhedra in the Euclidean space R2n. For
n = 1, the solution is given by the Kuratowski criterion [89] (see also [118], § 2 and
references therein). However, for n > 1 there is no simple criterion. (For example,
there are infinitely many closed non-orientable 2-surfaces that cannot be embedded
in R3, none containing any other; see also [128].) In [80], an obstruction to embed-
dability of n-polyhedra in R2n was constructed for arbitrary n, and some steps were
made towards proving that the obstruction is complete. (See Theorem 2.1.a below
and the historical remark in the end of this section.)

Figure 2.1
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To explain the idea of the construction of the van Kampen obstruction, we sketch
the proof of the fact that the complete graph K5 with five vertices is non-planar
(Fig. 2.1). We take an arbitrary generic map f : K5 → R2. For any two edges σ
and τ , the intersection fσ ∩ fτ consists of finitely many points. Let vf be the sum
mod 2 of the numbers |fσ ∩ fτ | over all unordered pairs {σ, τ} of disjoint edges
ofK5. For the map f shown in Fig. 2.1, vf = 1. Every generic map f : K5 → R2 can
be transformed to any other such map through isotopies of R2 and Reidemeister
moves for graphs on the plane (Fig. 2.2). The proof of this assertion, which is
similar to that of the Reidemeister theorem for knots, is omitted here, since the
assertion itself is needed only for sketching the idea but not for the rigorous proof.
For each edge of K5 with vertices a and b, the graph K5 − {a, b} obtained from
K5 by deleting the vertices a and b and the interiors of edges adjacent to a and b
is a circle. (It is this property of K5 that is needed in the proof.) Therefore, vf
is invariant under the Reidemeister moves, and hence vf = 1 for each generic map
f : K5 → R2. It follows that K5 is non-planar.

Figure 2.2

Now let us discuss some generalizations of this proof; they will be used later.
This proof actually implies a stronger assertion. Let e be an edge of K5 and Σ the
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Figure 2.3

cycle in K5 formed by the edges non-adjacent to e. Let
◦
e = Int e. Then K5 −

◦
e is

embeddable in R2 (Fig. 2.3), and for each embedding g : K5−
◦
e→ R2, the g-images

of the ends of e (the 0-sphere) lie on different sides of gΣ. Likewise, one can prove
that the graph K33 (three houses and three wells) is not embeddable in R2 and
the 2-skeleton K of the 6-simplex is not embeddable in R4. Moreover, let e be a

2-simplex of K, and let P = K − ◦e. Then P is embeddable in R4 and contains two
disjoint spheres Σ2 and Σ1 = ∂e such that for each embedding P → R4 the images
of these spheres link with a non-zero linking coefficient [28]. (More precisely, the
linking coefficient is ±1.)

Let us introduce the main definition of this section. We choose a triangulation T
of a polyhedron K. The space

T̃ =
⋃
{σ × τ ∈ T × T | σ ∩ τ = ∅}

is called the simplicial deleted product of K. Since the equivariant homotopy type

of T̃ depends only on K ([132], Lemma 2.1 and [63], § 4), we replace T̃ by K̃ in this

section. The group Z2 acts on K̃ by the transposition of factors. Let K∗ = K̃/Z2.
Now we are in a position to define the van Kampen obstruction v(K) for n = 1.

Throughout this section we omit Z2 coefficients from the notation of (co)chain and
(co)homology groups. For any generic piecewise linear map f : K → R2 and disjoint
edges σ and τ of T , the intersection f(σ)∩f(τ) consists of finitely many points. Let
vf (σ, τ) = |f(σ) ∩ f(τ)| mod 2. Then vf ∈ C2(K∗). The cochain vf is invariant
under isotopy of R2 and the first four Reidemeister moves (Fig. 2.2.a–d). The fifth
Reidemeister move (Fig. 2.2.e) alters vf by adding the cochain that is equal to 1
on the class of the 2-simplex α × β for v ∈ α and is zero on the other 2-simplices.
This cochain is the coboundary δ[v × β] of the elementary cochain in B2(K∗) that
is equal to 1 on the class of the 1-simplex v×β and is zero on the other 2-simplices.
Then the equivalence class

v2(K) = [vf ] ∈ H2(K∗) = C2(K∗)/B2(K∗)

is independent of f . (Since dimK∗ = 2, it follows that C2(K∗) = Z2(K∗).) The
resulting cohomology class v2(K) is the van Kampen obstruction to embeddability
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of K in R2 (more precisely, the mod 2 analogue of this obstruction). It is clear that
v2(K) = 0 for all planar graphs K.

Following [132], Lemma 3.5, let us prove that [vf ] is independent of f without
using the fact concerning the Reidemeister moves (not proved here). For given
generic maps f0, f1 : K → R2, we consider an arbitrary generic homotopy f : K ×
I → R2 and define a cochain vf ∈ C2n−1(K∗) by the formula vf [σ

n × τn−1] =
|f(σ×I)∩f(τ ×I)| mod 2. Then the fact that vf is independent of f follows from
the relation vf0 − vf1 = δvf , which is easy to check.

Likewise, one defines the mod 2 van Kampen obstruction v2(K) ∈ H2n(K∗) to
embeddability of an n-polyhedron K in R2n. The genuine van Kampen obstruction
v(K) (with integer coefficients) is constructed as follows. We choose a triangulation

of K and define K̃ and K∗ as above. Next, we choose an orientation of R2n and of
n-simplices of K. For any generic map f : K → R2n and any two disjoint oriented
n-simplices σ, τ ∈ K, the intersection f(σ) ∩ f(τ) consists of finitely many points.

We define a cochain vf ∈ C2n(K̃,Z) (the intersection cochain) by the formula
vf (σ, τ) = fσ · fτ =

∑
P∈fσ∩fτ signP , where signP = +1 if the positive n-bases

of fσ and fτ (in this order) constitute a positive 2n-basis in R2n and signP = −1
otherwise. Clearly, vf (σ × τ) = (−1)nvf(τ × σ). Here vf lies in the subgroup

C2n
s (K̃,Z) ⊂ C2n(K̃,Z) of cochains assuming equal values on 2n-cells σ × τ and

τ × σ (for even n) or opposite values (for odd n). The cohomology class

v(K) = [vf ] ∈ H2n
s (K̃,Z) = C2n

s (K̃,Z)/B2n
s (K̃,Z)

(like v2(K), it is independent of f) is the van Kampen obstruction to embeddability

of K in R2n. We note that H2n
s (K̃,Z) ∼= H2n(K∗,Z) for even n [29]. One can

readily show that v(K) is independent of the choice of the orientations in R2n and

on the n-simplices of K, up to an automorphism of H2n
s (K̃,Z).

The above constructions can be generalized in several ways. For a subpolyhedron
A of a polyhedronK, one can define the obstruction to extending a given embedding
A ⊂ ∂Bm to an embedding K → Bm in a similar way [29]. Likewise, one can con-

struct the difference class u(f) ∈ H2n
s (K̃,Z) of an embedding f : K → R2n+1 [147].

For the van Kampen obstruction to approximation by embeddings, see [15], § 4,
[119], [3], and [121].

Theorem 2.1. a) ([80], [132], [159], [127], [29]) For the embeddability of a finite
n-polyhedron K in R2n, it is necessary that v(K) = 0. For n 6= 2, this condition is
sufficient, whereas for n = 2 it is not.

b) [160]. If two embeddings f, g : K → R2n+1 of a finite n-polyhedron K are
isotopic, then u(f) = u(g). For n > 2, this condition is sufficient for isotopy,
whereas for n = 1 it is not. (However, for n = 1, embeddings f, g such that
u(f) = u(g) are homologous [147].)

The relative van Kampen obstruction is complete for n 6= 2 (for n > 3, see [160],
while for n = 1 this follows from the relative version of the Kuratowski criterion)
and is incomplete for n = 2 (see § 6). Theorem 2.1.a implies the piecewise linear
case of Theorem 3.1 below (which was proved earlier than Theorem 2.1.a). For
n > 3, Theorem 2.1.a has an interesting corollary: every acyclic n-polyhedron
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is piecewise-linearly embeddable in R2n ([159]; see also [60]). For n = 2, it was
proved independently of Theorem 2.1.a that any acyclic 2-polyhedron is topo-
logically embeddable in R4 [85]. The van Kampen obstruction can possibly be
applied to find the minimalm such that a polyhedron that is a product of graphs is
embeddable in Rm ([2], [32]).

In this paper, we do not present the proof of Theorem 2.1.b. (For n > 2, it
can be proved by analogy with Theorem 2.1.a with the use of ideas from § 12; for
n = 1, see [147].) The necessity part in Theorem 2.1.a was actually proved in the
construction of the van Kampen obstruction. The sufficiency in Theorem 2.1.a for
n > 3 is proved in § 7, while for n = 1 it is a consequence of the Kuratowski graph
planarity criterion. The incompleteness of the van Kampen obstruction for n = 2
is proved in § 6.

§3. The Whitney obstruction

Theorem 3.1 ([80], [158]). Every piecewise linear (smooth) n-manifold is piece-
wise-linearly (smoothly) embeddable in R2n.

The proof of Theorem 3.1 for the piecewise linear (smooth) case is given in § 8
(§ 7). The dimension 2n in Theorem 3.1 is the best possible for n = 2k (since
RP n cannot be embedded in R2n−1) and is not the best possible for other n (see
Corollary 3.4). There is a celebrated and difficult conjecture saying that every
closed n-manifold can be embedded in R2n+1−α(n), where n = 2k1 + · · · + 2kα(n)

and k1 < · · · < kα(n). (For the solution of a similar conjecture for immersions, see

[21] and [93].) We note that the n-manifold N = RP 2k1 × · · · × RP 2
kα(n)

is not
embeddable in R2n−α(n).

Theorem 3.2. a) ([42], [112], [78]) Every closed (2n − m)-connected piecewise
linear (smooth) n-manifold N is piecewise-linearly (smoothly) embeddable in Rm

provided that m > n+ 3 (m > 3(n+1)
2 ).

b) ([42], [78]) Suppose that N and M are closed (2n −m)- and (2n −m + 1)-
connected piecewise linear (smooth) n-manifolds (with or without boundary) and
f : N →M is a map such that f |∂N is an embedding in ∂M . Then f is piecewise-
linearly (smoothly) homotopic rel ∂N to an embedding provided that m > n + 3

(m > 3(n+1)
2

).

The proof of the piecewise linear case of Theorem 3.2 is given in § 8. We note
that the piecewise linear case of Theorem 3.2.a is not interesting for m < 3n

2
+ 1.

Indeed, then 2n−m > n
2 −1 and every (2n−m)-connected manifold is a homotopy

sphere. Since 3n
2 + 1 > m > n + 3, it follows that n > 6. Thus N ∼= Sn, and

Theorem 3.2.a obviously holds. We note that the smooth case of Theorem 3.1 is
false for m < 3n

2
+ 1, although N is a homotopy sphere [61]. For generalizations of

Theorem 3.2, see [57], [65], [67], [41], [72], [38], [81], [13], [71], [95], [163], and also
below in this section.

Let us introduce some notation, which will be used in §§ 3 and 4. For a group G,
let G(l) (respectively, G[l]) be G for even l and G/2G (respectively, the subgroup
of G formed by elements of order 2) for odd l. To any homomorphism ϕ : G→ H,
we assign homomorphisms ϕ(l) : G(l) → H(l) and ϕ[l] : G[l] → H[l] defined in an
obvious way. If G is a finite Abelian group, then, clearly, G(l)

∼= G[l].
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We recall the following definitions. A closed manifold N (respectively, a pair
(N, ∂N)) is said to be homologically k-connected if N is connected and Hi(N) = 0
for each i = 1, . . . , k (respectively, Hi(N, ∂N) = 0 for each i = 0, . . . , k). In both

cases, this condition is equivalent to H̃i(X) = 0 for each i = 0, . . . , k, where X

is either N or (N, ∂N) and the H̃i are the reduced homology groups. We note
that if H0(N, ∂N) = 0, then the manifold N has no closed connected compo-
nents. We adopt the following conventions: 0-connectedness is equivalent to homo-
logical 0-connectedness and to connectedness, and k-connectedness for k 6 0 is
0-connectedness.

In 1934, Whitney proved that for any orientable manifold N and any generic
immersion f : N → Rm, the homology class

Wm−n(N) ∈ H2n−m(N,Z(m−n)) ∼= Hm−n(N,Z(m−n))

of the projection of the singular submanifold

∆̃(f) =
{
(x, y) ∈ N ×N | x 6= y, fx = fy

}
on N is independent of f . This class is called the Whitney obstruction to embed-

dability of N in Rm: if N can be embedded in Rm, then W
k
(N) = 0 for k > m−n

([156]; see also [107], [114], [124], and [157]).

Theorem 3.3 ([53], [153]; for the case m < 3(n+1)
2 , see [69], § 11, [135], and

[137]). Suppose that N is a closed (2n−m−1)-connected piecewise linear (smooth)

n-manifold. For m > n + 3 (m > 3(n+1)
2 or (m, n) = (12l − 1, 8l − 1)), N is

piecewise-linearly (smoothly) embeddable in Rm if and only if Wm−n(N) = 0.

For m > 3n+1
2 , the condition of homotopy (2n −m − 1)-connectedness in The-

orem 3.3 can be weakened to homology (2n−m− 1)-connectedness. Theorem 3.3
follows from Theorems 4.1.e and 4.2.e and Corollary 4.3. Just as for Theorem 3.2,
the piecewise linear case of Theorem 3.2 is not interesting for m < 3n

2
, since it

follows from [83] that every piecewise linear homology n-sphere can be embedded
in Rn+1 (piecewise-linearly if n 6= 3, and only topologically if n = 3). The follow-
ing assertion is a consequence of Theorem 3.3 and [100], [101] for n 6= 3, 4. (For
n = 3, 4, this was proved separately.)

Corollary 3.4. The following assertions hold.
1) ([109], [53], [58], [150], [153], [8], [24], [27], [123]) Every closed, orientable

(for n = 2k), piecewise linear (smooth) n-manifold is piecewise-linearly (smoothly)
embeddable in R2n−1.

2) ([46], [153]; for n = 6, see [135]) If n > 6 (n > 8) is even and n 6= 2k(2h + 1)
for any integers k, h ≥ 2, then every piecewise linear (smooth) n-manifold N such
that H1(N) = 0 is piecewise-linearly (smoothly) embeddable in R2n−2.

3) ([135], [137]) Every closed homologically 2-connected smooth 7-manifold is
smoothly embeddable in R11.

Let us complete this section by stating the isotopy analogues of the above results.
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Theorem 3.5 ([163], [42], [142], [36]). Every piecewise linear (respectively, smooth,
topological locally flat) embedding Sn → Sm is piecewise-linearly (respectively,

smoothly, topologically) unknotted if m − n > 3 (respectively, m > 3(n+1)
2 , m >

n+ 3).

In Theorem 3.5, the dimension restrictions are sharp, and the local flatness
assumption in the topological case is necessary ([43], [47], [126]).

Theorem 3.6. Suppose that N is a closed connected piecewise linear (smooth)
n-manifold and m− n > 3 (m > 3n

2 + 2).
1) ([42], [166]) If N is (2n − m + 1)-connected, then any two piecewise linear

(smooth) embeddings N → Rm are piecewise-linearly (smoothly) isotopic.

2) ([53], [153], [69], [7], [8]; for m 6 3(n+1)
2 , see [135]) If N is orientable and

(2n−m)-connected, then the piecewise linear (smooth) isotopy classes of embeddings
N → Rm are in a one-to-one correspondence with Hm−n−1(M,Z(m−n)).

3) ([53], [153]; for n = 3, see [135]) If n 6= 2 and N is non-orientable, then
the piecewise linear (smooth) isotopy classes of embeddings N → R2n are in a
one-to-one correspondence with Hn−1(M,Z(n))⊗ Z(n−1).

Form > 3n+1
2 , the condition of homotopy (2n−m)-connectedness in Theorem 3.6

can be replaced by homology (2n−m)-connectedness ([135], [137]).

§4. The deleted product condition

The ‘complements of the diagonal’ idea plays an important role in various
branches of mathematics ([31], [37], [149]). The deleted product necessary con-
dition for embeddability and isotopy is a manifestation of this idea in the theory
of embeddings. In fact, it originates from two celebrated theorems: the Lefschetz
fixed point theorem and the Borsuk antipodes theorem [9].

Before stating the above-mentioned necessary condition, we consider the follow-
ing example. Let us prove that Sn cannot be embedded in Rn. Although this fact is
obvious, the method of the proof given here admits a wide generalization. Suppose

the contrary: there is an embedding f : Sn → Rn. We define a map f̃ : Sn → Sn−1

by setting f̃(x) =
f(x) − f(−x)
‖f(x) − f(−x)‖ . Here by −x we denote the antipode of the

point x ∈ Sn. Since f is an embedding, it follows that f̃ is well defined. Obviously,

f̃ is equivariant with respect to the antipodal involutions on Sn and Sn−1. The

restriction f̃ |Sn−1 extends to Sn and hence is homotopic to zero. However, by the
Borsuk–Ulam theorem, every equivariant map Sn−1 → Sn−1 is not null-homotopic.
This contradiction proves the non-embeddability of Sn in Rn. We have actually
proved that there is a pair of points x and −x such that f(x) = f(−x).

To state the deleted product necessary condition, we need the following defini-
tion. The deleted product Ñ of a topological space N is the product of N by itself
minus the diagonal:

Ñ = {(x, y) ∈ N ×N | x 6= y}.

Now suppose that f : N → Rm is an embedding of a polyhedron N in the Euclidean

spaceRm. Then the map f̃ : Ñ → Sm−1 given by the formula f̃(x, y) =
f(x) − f(y)
‖f(x) − f(y)‖
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is well-defined. This map is equivariant with respect to the involution t(x, y) =
(y, x) on N and the antipodal involution on Sm−1. Thus the deleted product nec-
essary condition for embeddability of N in Rm is the existence of at least one

equivariant map Ñ → Sm−1. The existence of an equivariant map Ñ → Sm−1 is

equivalent to the existence of a section of the bundle Ñ × Sm−1/(t× a) S
m−1

→
g

Ñ/t,

where t is the involution (x, y) ↔ (y, x) on Ñ , a is the antipodal involution on
Sm−1, and the map g is given by the formula g[(x, y), α] = [(x, y)]. If X is a poly-
hedron or a smooth manifold, then one can check the deleted product necessary
condition by using methods of obstruction theory ([22], [160], [44]). In particular,
the van Kampen and Whitney obstructions defined above are the first obstructions
to the existence of a section of g, that is, can be derived from the deleted product
necessary condition in a purely algebraic way. Since the simplicial deleted prod-

uct T̃ (§ 2) is an equivariant retract of Ñ [63], it follows that the deleted product

condition is equivalent to the existence of an equivariant map T̃ → Sm−1.
The deleted product necessary condition for isotopy is constructed as follows.

For isotopic embeddings f, g : N → Rm and an isotopy F : N × I → Rm between

them, we define a map Φ: Ñ × I → Sm−1 by the formula

Φ(x, y, t) =
F (x, t)− F (y, t)

‖F (x, t)− F (y, t)‖ .

This map is an equivariant homotopy between f̃ and g̃. Thus the deleted prod-
uct necessary condition for isotopy of embeddings f, g : N → Rm is an equivariant

homotopy of f̃ and g̃. This condition is equivalent to the equivalence of sections

of the bundle Ñ × Sm−1/(t × a) S
m−1

→
g

Ñ/t ([160], [147]). We note that this condi-

tion (and its generalizations in terms of isovariant maps or deleted p-fold products
[50], [88]) detects neither the ambience of isotopy nor the distinction between the
smooth, piecewise linear, and topological categories. Therefore, this condition (and
its generalizations) cannot be used to distinguish knots in R3. Nevertheless, the
deleted product condition works well in codimension > 3 (see below).

The deleted product necessary condition to immersibility is constructed as fol-
lows. For a sufficiently small neighbourhood O∆ of the diagonal ∆ ⊂ N ×N , let
SN = O∆−∆. If N is a polyhedron, then the equivariant homotopy type of SN

is independent of O∆. For an immersion h : N → Rm, the map h̃ is well defined
on SN . Thus the deleted product necessary condition for immersibility of N in Rm
is the existence of an equivariant map SN → Sm−1. The deleted product necessary
condition for regular homotopy of immersions f and g is the equivariant homotopy

of f̃ and g̃ on SN .

Thus, let us consider the following assertions for a polyhedron (a smooth mani-
fold) N . The converses of these assertions have just been proved.

(EXI.ε) If there is an equivariant map Φ: Ñ → Sm−1, then N is piecewise-
linearly (smoothly) embeddable in Rm.

(EXI.e) If there is an equivariant map Φ: Ñ → Sm−1, then there is a piecewise

linear (smooth) embedding f : N → Rm such that f̃ 'eq Φ.
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(EXI.i) If there is an equivariant map Φ: SN → Sm−1, then there is a piecewise

linear (smooth) immersion h : N → Rm such that h̃ 'eq Φ on SN .

(CLA.e) If f0, f1 : N → Rm are two piecewise linear (smooth) embeddings and

f̃0 'eq f̃1, then f0 and f1 are piecewise-linearly (smoothly) isotopic.

(CLA.i) If h0, h1 : N → Rm are piecewise linear (smooth) immersions and h̃0 'eq

h̃1 on SN , then h0 and h1 are piecewise-linearly (smoothly) regularly homotopic.

To state the sufficiency theorems for the deleted product conditions, let us intro-
duce the following notation. First, we set d = 3n − 2m + 2. Further, every-
where in this section we omit Z-coefficients in the notation of (co)homology groups.
For n 6 k + 2, the stable suspension mapping is denoted by Σ∞ : πn+k(S

n) →
π2k+2(S

k+2) = πSk .

Theorem 4.1. For an n-polyhedron (respectively, a smooth n-manifold) N , asser-
tions EXI are true under the following conditions:

ε) m− n > 3 (respectively, m > 3(n+1)
2 ), and the piecewise linear n-manifold N

is such that the pair (N, ∂N) is [ d3 ]-connected and π1∂N = 0;

e) m > 3(n+1)
2

(respectively, either m > 3(n+1)
2

, or (N, ∂N) is (d− 2)-connected,
π1∂N = 0, and m > 6);

i) m > 3(n+1)
2 (respectively, eitherm > 3n+1

2 , or (N, ∂N) is homologically (d−2)-
connected).

Theorem 4.2. For an n-polyhedron N , the piecewise linear cases of assertions
EXI are true under the following conditions:

e) N is a piecewise linear manifold and either m > n + 3 and N is closed and
d-connected, or (N, ∂N) is (d− 1)-connected, π1∂N = 0, and m > 6;

i) either m > 3n
2 + 1, or N is a piecewise linear manifold, (N, ∂N) is (d − 1)-

connected, π1∂N = 0, and n > 6.

For d 6 1 it suffices in the closed case of Theorem 4.2.e to require only homo-
logical simple connectedness [137]. Theorem 4.1.ε is a folklore result (see the proof
in [137]). Theorem 4.1.e was proved in [46], Theorems 1′ and 6.4, and [153], The-
orem 1; see also [55], [136], and [146]. Theorem 4.1.i was proved in [52] and [55],
Theorem 2. Theorem 4.2 was proved in [135] and [137]. In this paper we only

prove Theorem 4.1.e in the piecewise linear case for m > 3(n+1)
2

, sketch the proof
of Theorem 4.2.e assuming that Theorem 4.2.i is valid, and present the idea of a
possible proof of Theorem 4.2.i. We shall also construct Example 4.5.ε (see below).

Theorem 4.2.e is most interesting for closed N , since for this case assertion
(EXI.i) is not proved (we conjecture that it is false) and the smooth case of Theo-
rem 4.2.e is false (by Examples 4.4.ε and e′).

An interesting corollary of [18] and [19] was derived in [136]: a Peano contin-

uum K is embeddable in R2 if and only if there is an equivariant map K̃ → S1.

It follows from the smoothing theory ([51], §1.6 and [50], §11.1) that if N is a
smooth manifold, then smoothing of the embedding in the closed case of Theo-
rem 4.2.e encounters a single obstruction in Hn(N,Cm−nn−1 ). Since C4k

8k−2 = 0 (see

[47], §8.15, where this relation is, however, misprinted as C3k
4k−2 = 0), we see that

the following assertion holds.
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Corollary 4.3. The smooth case of (EXI.e) (and its corollaries) is true for any
homologically simply connected closed smooth (8l−1)-manifold N and m = 12l−1.

All results of § 3 except for Theorem 3.2.b are also corollaries of Theorems 4.1.e,
4.2.e, 4.6.e, and 4.7.e (although most of them can be proved independently) [42]. It
follows from Theorems 4.1.e and 4.2.e that under the hypotheses of these theorems

1) the piecewise linear (smooth) embeddability of N in Rm is independent of the
piecewise linear (smooth) structures on N ;

2) If N is topologically embeddable in Rm, then N is piecewise-linearly embed-
dable in Rm;

3) If N is quasi-embeddable in Rm, then N is embeddable in Rm.
Theorems 4.1.i, 4.2.i, 4.6, and 4.7 have similar corollaries (see [137] for details).
The proof of Theorem 4.2.e [137] does not give its relative and approximation

versions (which are true for Theorem 4.1.e; see [153], Theorems 7 and 3). In contrast
with this, the proof of the case m > 3n

2 + 1 of Theorem 4.2.i [137] does give the
approximation version (in which the immersion obtained is arbitrarily close to a
given piecewise linear map g) and the relative version (if g : N → Rm is a piecewise
linear map, A ⊂ N a subpolyhedron, and Φ: SN → Sm−1 an equivariant map
such that g|A is an immersion and g̃ 'eq Φ on SA, then there is an immersion

h : N → Rm such that h = g on A and h̃ 'eq Φ on SN). For the smooth case,
the approximation version is true even without the assumption m > 3n

2 + 1, in
the following form: if N is immersible in Rm, then every map N → Rm can be
approximated by immersions [39].

Obviously, the restriction on the connectedness of N can be eliminated from
Theorem 4.2.e for d = 0 if we require only (EXI.ε) but not (EXI.e). For m < 5n+6

4
,

Theorem 4.2.e is not interesting: we have d > n
2
− 1 and n > 6, and hence N

is a homotopy sphere, N ∼= Sn, and Theorem 4.2.e is true (cf. the remark after
Theorem 3.2). But the proof cannot be simplified for m > 5n+6

4 , and it also can
be considered as a step towards the proof of an analogue of Theorem 4.2.e for
embeddings in manifolds.

Example 4.4. ε) The smooth case of assertion (EXI.ε) is false for (m, n) = (19, 16)
and a homotopy sphere N .

e) If l > 3 and Σ∞ : πq(S
l)→ πSq−l is not epimorphic, then neither the piecewise

linear nor the smooth case of assertion (EXI.e) is true for the disconnected manifold
N = Sq t Sq and m = q + l+ 1.

e′) The smooth case of assertion (EXI.e) (even in Theorem 3.6.2) is false for the
closed (and even (2n−m)-connected) manifold N = S2k × S2k and m = 3n

2 + 1 =
6k + 1.

Example 4.5. ε) The polyhedral case of assertion (EXI.ε) is false for each pair
(m, n) such that 4 6 m 6 3n

2 + 1.

e) If l > 3 and Σ∞[l−1] : πq(S
l)[l−1] → πSq−l,[l−1] is not epimorphic, then neither the

piecewise linear nor the smooth case of assertion (EXI.e) is true for N = S1 × Sq
and m = q + l + 1.

e′) (conjecture) If l > 2, Σ∞(l) : πq(S
l)(l) → πSq−l,(l) is not epimorphic, and

Σ∞ : πq(S
l+1) → πSq−l−1 is monomorphic, then neither the piecewise linear nor

the smooth case of assertion (EXI.e) is true for N = S1 × Sq and m = q + l+ 2.
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e′′) The 3-adic solenoid Σ (that is, the intersection of an infinite sequence of solid
tori each of which is inscribed in the previous one with degree 3) is not embeddable

in R2, although there is an equivariant map Σ̃→ S1.
e′′′) (conjecture) There is a non-planar tree-like continuum K for which there

are no equivariant maps K̃ → S1.
i) The piecewise linear case of (EXI.i) is false for each m such that 5 6 m 6 3n+1

2
and for m = n = 4.

Example 4.4.ε was constructed in [61] (see also [109] and [117]). The assertion of
Example 4.4.e follows from [47]. The assertion of Example 4.4.e′ follows from [8],
Theorems 1.5 and 1.6 and [7], Theorem 4.2; see the proof in [137]. Example 4.5.ε
was constructed in [29], [77], [99], [130], and [131]. Examples 4.5.e, e′, and i were
constructed in [137]. Example 4.5.e′′ was constructed in [136]; cf. [119], Exam-
ple 1.5.

Examples 4.5.e and e′ show that the connectedness assumption in the closed case
of Theorem 4.2.e cannot be significantly weakened. Indeed, using these examples
and the tables in [148], we see that (EXI.e) is false for N = Sq t Sq , q = 6, 14,
and m = 3q

2
+ 1 (by Example 4.4.e) and for N = S1 × Sq in the following cases.

(The first seven cases are obtained from Example 4.5.e, and the last three, from
conjectural Example 4.5.e′; see also [137].)

q = 6 14 12 13 26 29 28 13 11 12

m = 10 22 18 19 38 43 40 21 17 18

m = 3n−1
2

3n−1
2

3n−3
2

3n−4
2

3n−5
2

3n−4
2

3n−7
2

3n
2

3n−2
2

3n−3
2

Let us now state the classification versions of the above results.

Theorem 4.6. If N is an n-polyhedron (respectively, a smooth n-manifold), then
assertions CLA are true under the following conditions:

e) m > 3n
2

+ 2 (respectively, either m > 3n
2

+2, or (N, ∂N) is (d− 1)-connected,
π1∂N = 0, and m > 7);

i) m > 3n
2 + 2 (respectively, either m > 3n

2 + 1, or (N, ∂N) is homologically
(d− 1)-connected).

Theorem 4.7. If N is an n-polyhedron, then the piecewise linear cases of asser-
tions CLA are true under the following conditions:

e) N is a piecewise linear n-manifold, m > n + 3, and either N is closed and
(d+ 1)-connected, or (N, ∂N) is d-connected and π1∂N = 0;

i) either m > 3(n+1)
2 , or N is a piecewise linear n-manifold, (N, ∂N) is

d-connected, π1∂N = 0, and n > 6.

For d = 0, it suffices to require homological 1-connectedness in Theorem 4.7 [137].
Theorem 4.6.e was proved in [46], Theorem 1′, and [156], Theorem 1′; see also [55],
Corollary 1, and [135], § 3. Theorem 4.6.i was proved in [52] and [55], footnote
on p. 3. Theorem 4.7 was proved in [135] and [137].

An interesting corollary of [103] was proved in [160] for graphs and in [136]
for the general case: two embeddings f, g : K → R2 of a Peano continuum K are

isotopic if and only if f̃ 'eq g̃.
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The remarks on smoothing of the embedding in Theorem 4.2.e, the connected-
ness assumptions in Theorem 4.2.e, and the relative and approximation versions
of Theorem 4.2 remain valid for Theorem 4.7.e, Theorem 4.7.e, and Theorem 4.7,
respectively.

Corollary 4.8. 1) The smooth case of assertion (CLA.e) is true for a homologically
1-connected closed smooth (8l − 2)-manifold N and m = 12l− 2.

2) If p 6 q and m > 3q
2 + p + 2 (m > 3(q+p)

2 + 2), then the set of piece-
wise linear (smooth) embeddings Sp × Sq → Rm is in a one-to-one correspon-
dence, up to piecewise linear (smooth) isotopy, with the set of elements of the
group πq(Vm−q,p+1)⊕ πp(Vm−p,q+1).

Corollary 4.8 was proved in [137]. (For m = 2q + p + 1, Corollary 4.8.2 was
proved in [64].) For the computation of πq(Vab), see [79], [111], and [155].

Example 4.9. e) The piecewise linear case of assertion (CLA.e) is false for the

disconnected manifold N = Sn t Sn t Sn and m = 3(n+1)
2

.
eie) The smooth case of assertion (CLA.e) (and of (CLA.ie) in § 11) is not true

for m = 3(n+1)
2 and N = Sn (which is, of course, (d+ 1)-connected).

e′) The piecewise linear case of assertion (CLA.e) is false for each pair (m, n) such

that n+3 6 m 6 3(n+1)
2 butm−n 6∈ {4, 8} and the polyhedronN = SntS2m−2n−3

(a disconnected piecewise linear manifold for m = 3(n+1)
2

).
i) The case of piecewise linear (smooth) manifolds in assertion (CLA.i) is false

for m = 3n
2

+ 1 (m = 3n+1
2

) and N = Sn.

Example 4.10. e) For each integer l = 2 or l > 4, if Σ3 : π4l+1(S
2l) → πS2l+1

is epimorphic, then neither the piecewise linear nor the smooth case of assertion
(CLA.e) is true for N = S1 × S4l+1 and m = 6l+ 3 = 3n

2 .
e′) The piecewise linear case of assertion (CLA.e) is false for any pair (m, n) such

that n+ 2 6 m 6 3(n+1)
2 and the polyhedron N = Sn ∨ Sn t S2m−2n−3.

Example 4.9.e was constructed in [45] and [102], Proposition 8.3. Example 4.9.eie
was constructed in [43] and [47], §8.14. Example 4.9.e′ actually follows from [45]
and [47] (see the proof in [137]). Example 4.9.i actually follows from [49] and [50]
(see the proof in [137]). Example 4.10 was constructed in [137].

Example 4.10.e shows that the connectedness assumption in Theorem 4.7.e can-
not be significantly weakened: if N = Sp × Sq , then assertion (CLA.e) is true for
m > 3q

2 + p+ 2 but can be false for m = 3q+3
2 . The hypothesis of Example 4.10.e

holds for l 6 15, and we conjecture that it holds for l = 2 or l > 4. We conjecture
that the piecewise linear (smooth) case of assertion (EXI.i) is also false for piecewise
linear (smooth) manifolds and m = 3n+1

2

(
m = 3n

2

)
.

The example of Borromean rings in the beginning of § 6 (cf. [120]) suggests that
one can introduce an obstruction to (relative) embeddability similar to the van
Kampen and deleted product obstructions but obtained from triple (quadruple,...)
intersections. Moreover, the vanishing of this obstruction will be sufficient for
embeddability even if this is not the case for the van Kampen and deleted product
obstructions. A possible candidate for a necessary condition for embeddability for
the case in which the deleted product necessary condition fails to be sufficient is
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the deleted G-product condition. It can be stated as follows. Let G be a subgroup
of the permutation group Sp, and let

ÑG = {(x1, . . . , xp) ∈ Np | xi 6= xσ(i) for each σ ∈ G, i = 1, . . . , p}.

The space ÑG is called the deleted G-product of N . The group G obviously acts on

ÑG. For an embedding f : N → Rm, the map f̃G : ÑG → R̃mG given by the formula

f̃G(x1, . . . , xp) = (fx1, . . . , fxp) is well defined. Clearly, f̃G is G-equivariant. Thus,

the existence of a G-equivariant map Φ: ÑG → R̃mG is the deleted G-product
condition for embeddability of N in Rm. This approach works well in the theory of
link maps [102]. In contrast, Examples 4.4 and 4.5.ε show that not only the deleted
product condition, but also the deleted G-product condition (for any group G) is
insufficient for embeddability.

The deleted G-product conditions for immersibility, isotopy, and regular homo-
topy can be defined in a similar way. Example 4.5.i apparently shows that the
deleted G-product condition is not sufficient for immersibility. Examples 4.9.eie, e′

and 4.10.e′ show the incompleteness of the deleted G-product condition for isotopy
(for any group G). We note that Example 4.9.e does not show the incompleteness.
Example 4.9.i shows that the deleted G-product condition (for any group G) is not
sufficient for regular homotopy.

§5. Appendix. Basic embeddings in the plane

In the papers dealing with the solution of Hilbert’s 13th problem, A. N. Kol-
mogorov [87] and V. I. Arnold [6] proved that any continuous function of n vari-
ables defined on a compact subset of Rn can be represented as a superposition
of continuous functions of one variable and addition (for a popular exposition,
see [5]). Ostrand extended this theorem to arbitrary n-dimensional compacta
[110]. In fact, it is in these papers that the notion of basic embedding, explic-
itly introduced in [144], appeared for the first time. An embedding K ⊂ Rm is
said to be basic if for any continuous function f : K → R there are continuous
functions g1, . . . , gm : R → R such that f(x1, . . . , xm) = g1(x1) + · · ·+ gm(xm) for
any (x1, . . . , xm) ∈ K.

Theorem 5.1 ([87], [6], [110], [145], [94]). Any n-dimensional compact space is
basically embeddable in R2n+1 and is not basically embeddable in R2n for n > 1.

It is of interest to compare this theorem with the Nöbeling–Menger–Pontryagin
theorem [76] on the embeddability of any n-dimensional compact space in R2n+1

and with the example of an n-dimensional polyhedron not embeddable in R2n [28],
[80]. Obviously, K is basically embeddable in R if and only if K is topologically
embeddable in R. It follows from Theorem 5.1 that a compact space K is basically
embeddable in Rm for m > 2 if and only if dimK < m/2. Thus, the only remaining
case to be examined is m = 2. The problem of characterization of compact spaces
basically embedded in the plane was stated as early as in [5] and was solved in [145]:
a compact space K is basically embedded in the plane if and only if En(K) = ∅
for some n. Here

E(Z) =
{
z ∈ Z : |Z ∩ p−1

x pxz| > 2 and |Z ∩ p−1
y pyz| > 2

}
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and px and py are the projections on the coordinate axes in the plane. It is conve-
nient to state the characterization [134] of arcwise connected compact sets basically
embeddable in the plane first for graphs and then for the general case. The con-
jecture about the embeddability of (not necessarily arcwise connected) continua in
the plane can be found in [134].

Theorem 5.2 ([134]; cf. [89], [98], and [118], § 2). A finite graph is basically embed-
dable in the plane if and only if either of the following two equivalent conditions
holds:

(a) it does not contain subgraphs homeomorphic to S, C1, or C2 (Fig. 5.1.a),
that is, a circle, a five-pointed star, or a cross with branched endpoints;

(b) it is contained in one of the graphs Vn (Fig. 5.1.b).

Figure 5.1

Theorem 5.3 ([90]; see also [15] and [91]). A finite graph K admits a basic embed-
ding K ⊂ R × Tn (that is, an embedding such that for any continuous function
f : K → R there are continuous functions g : R → R and h : Tn → R such that
f(x, y) = g(x) +h(y) for any point (x, y) ∈ K) if and only if K is a tree and either
δ(K) < n, or δ(K) = n and K has a horrible vertex with a hanging edge.

Here Ti is an i-od, that is, an i-pointed star; a vertex of K is said to be horrible
if its degree is greater than 4 and awful if its degree is equal to 4 and it is not
an endpoint of a hanging edge. The defect of a graph K is defined as the sum
δ(K) = (degA1 − 2) + · · ·+ (degAk − 2), where A1, . . . , Ak are all horrible and
awful vertices of K.

Let us introduce the notation and definitions needed in the characterization of
arcwise connected continua basically embeddable in the plane. Let I be the segment
[0, 1]. By IntJ we denote an arc J with endpoints deleted. We say that an arc s
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Figure 5.2

connects points A and B if s∩A and s∩B are distinct endpoints of s. A sequence
of sets is called a null sequence if their diameters tend to zero. Let C3 be a cross
with a null sequence of arcs attached to one of its branches and converging to its
centre (Fig. 5.2), let C4 be a cross with a sequence of points converging to its centre
(Fig. 5.3), and let B be the union of I with a null sequence of arcs each having an

endpoint attached to
◦
I (Fig. 5.3). Obviously, the topological type of B is indepen-

dent of possible variations in the construction. Further, suppose that F1 is a triod
and Fn+1 is obtained from Fn by branching each endpoint of Fn (Fig. 5.3); Hn

is the union of I with a null sequence of triods each having an endpoint attached
to I at a point of the set Dn = {3−l1 + · · · + 3−ls | s 6 n, 0 < l1 < · · · <
ls, the li are integers} (Fig. 5.3); F is the union of I with the null sequence of
sets Fn having an endpoint attached to the point 1/n ∈ I (Fig. 5.2); H+ and H−
are the unions of I with the null sequence of continua Hn connected to the points
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1/n ∈ I by arcs that intersect Hn at the points 1 ∈ I ⊂ Hn and 0 ∈ I ⊂ Hn−1,
respectively (Fig. 5.2); h+ and h− are obtained from the null sequence of continua
Hn by pasting together the points 1 ∈ I ⊂ Hn and 0 ∈ I ⊂ Hn−1 (0 ∈ I ⊂ Hn and
1 ∈ I ⊂ Hn−1, respectively) (Fig. 5.2). A sequence I1 ⊂ I2 ⊂ · · · ⊂ In = K such
that Il+1 is obtained by attaching a null sequence of arcs, each at one endpoint, to
Il is called a filtration. These arcs will be called arcs of order l.

Figure 5.3

Figure 5.4

Theorem 5.4 [134]. An arcwise connected compact space K is basically embeddable
in the plane if and only if it is locally connected (that is, is a Peano space) and any
of the following three equivalent conditions holds.

(1) K does not contain S, C2, C4, and B as subcompacta and contains only finitely
many subcontinua Fn and Hn (see Figs. 5.1 and 5.3).

(2) (Cf. [18], [19].) K does not contain any of the continua S, C1, C2, C3, B,
F , H+, H−, h+, and h− (Figs. 5.2 and 5.3) as a subcontinuum.

(3) There is a filtration I1 ⊂ · · · ⊂ In = K and a positive integer M such that
the following properties hold for any arc s of order l − 1 (s = I1 if l = 1), where
{sm} is the set of all arcs of order ≥ l having non-empty intersection with s and
R = s ∩ (

⋃
m sm):
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(I) R ⊂ Int s;
(C) at most two of the arcs sm are attached to each point of s, and if there are

exactly two, then one of them is hanging (that is, none of the arcs of order l+ 1 or
greater has non-empty intersection with it), and the point to which these two arcs
are attached has a neighbourhood in K homeomorphic to the cross;

(B) ClR is nowhere dense in S;
(H) hMQ = ∅, where Q = {x ∈ R | if x ∈ sm, then smis not hanging} and hZ

is the set obtained from Z by removing points isolated in Z.

II. Completeness of the deleted product obstruction

Notation

We use the notation of [125]. A superscript on a polyhedron indicates its dimen-
sion. The simplices of any triangulation T are assumed to be linearly ordered in
ascending order of dimension. The lexicographic ordering is considered on T × T .
For a map f : N → Rm,

∆̃(f) = {(x, y) ∈ N ×N | x 6= y, fx = fy} and Σ(f) = {x ∈ N : |f−1fx| > 2}

denote the singular sets of f . The precise definition of a regular neighbourhood is
given in § 8 (after the proof of the piecewise linear case of Theorem 3.1), but to
understand the ideas of proofs presented, in particular, before § 8, it suffices to treat
a regular neighbourhood as a sufficiently small neighbourhood without ‘unnecessary
holes’. By link( · , · ) we denote the linking coefficient.

§6. The construction of Example 4.5.εεε

In this section, P̃ stands for a copy of P rather than the deleted product of P .
(The copy of a subset A ⊂ P is denoted by Ã ⊂ P̃ .)

Let us illustrate one of the main ideas used in the construction of the Freedman–
Krushkal–Teichner example (Theorem 2.1.a for n = 2 and Example 4.5.ε form = 4,
n = 2) [29]. To this end, let us construct three circles embedded in R3 so that any
two of them are unlinked but all three are linked together. Such triples of circles
in R3 will be called generalized Borromean rings. Our construction is based on the
fact that a fundamental group need not be commutative. We take two unknotted

circles Σ, Σ̃ in R3 far away from each other. In R3 − (Σ t Σ̃), we embed the figure

eight, that is, the wedge of two circles C, so that the inclusion C ⊂ R3 − (Σ t Σ̃)
induces an isomorphism of the fundamental groups. We take the generators a and

b of π1(C) = π1(R3 − (Σ t Σ̃)) represented by the two (arbitrarily oriented) circles
of the figure eight. We consider a map S1 → C ⊂ R3 representing the element
aba−1b−1. By a general position argument, there is an embedding f : S1 → R3

very close to this map. Then Σ, Σ̃, and f(S1) are generalized Borromean rings.

Indeed, Σ and Σ̃ are unlinked by definition. One can readily choose an f such that

Σ and f(S1), as well as Σ̃ and f(S1), are unlinked. (This follows from the fact that
f induces the zero homomorphism of the one-dimensional homology groups.) But

f induces a non-zero homomorphism of the fundamental groups. Therefore Σ, Σ̃,
and f(S1) are linked.
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From the existence of generalized Borromean rings, one can derive the following
counterexample to the relative version of Theorem 2.1.a for n = 2. Let K =
D2 tD2 tD2 and A = ∂D2 t ∂D2 t ∂D2. Next, let A ⊂ S3 ∼= ∂D4 be generalized
Borromean rings. Since all three rings are linked, it follows that the embedding
A→ ∂D4 cannot be extended to an embedding K → D4. But since any two of the
Borromean rings are unlinked, we see that the corresponding relative van Kampen
obstruction to this extension vanishes. Indeed, the van Kampen obstruction takes
account of double intersections but ignores triple intersections.

Now we are in a position to construct the Freedman–Krushkal–Teichner example.
Let P be the 2-skeleton of the 6-simplex minus the interior of some 2-simplex of
this 2-skeleton. We recall (see the third paragraph of § 2) that P contains two
disjoint spheres Σ2 and Σ1 such that for each embedding P → R4 these spheres
are linked with a non-zero linking coefficient (actually equal to ±1). We embed

P and P̃ in R4 in the standard way (thus, Σ2 and Σ̃2 are unknotted, and Σ2 and

Σ1, as well as Σ̃2 and Σ̃1, are standard linked spheres) far away from each other.

Then Σ2 and Σ̃2 are unlinked. We take an arbitrary point x ∈ Σ1, join x to x̃ by
an arc, and pull these points to each other along this arc (Fig. 6.1). We obtain an

embedding P ∨ P̃ ⊂ R4. Let C = Σ1 ∨ Σ̃1 be a figure eight (with base point x = x̃).

Then the inclusion C ⊂ R4− (Σ2t Σ̃2) induces an isomorphism of the fundamental
groups. We take the generators a and b of the group π1(C) represented by the
two (arbitrarily oriented) circles of the figure eight and consider a map h : S1 → C
representing the element aba−1b−1. Let K be the mapping cone of the composition

of h with the inclusion C ⊂ P ∨ P̃ (that is, K = D2 ∪h : ∂D2→C (P ∨ P̃ )).

Figure 6.1

Then K is non-embeddable in R4, although v(K) = 0. For a detailed proof,
see [29]. The reason for the equality v(K) = 0 is that the van Kampen obstruction
takes account of the homology property (the cycle aba−1b−1 is null-homologous)
but fails to recognize the finer homotopy property (the cycle aba−1b−1 is not null-
homotopic). Let us sketch the proof of non-embeddability of K in R4. Suppose the

contrary: there is an embedding g : K → R4. If both gΣ2 and gΣ̃2 are unknotted in
R4, then it follows from the properties of P that the map C → gC ⊂ R4−g(Σ2tΣ̃2)
induces a monomorphism of the fundamental groups. In the general case, this can be
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proved on the basis of the Stallings theorem on lower central series of groups [143],
[29]. But the element aba−1b−1, which is non-zero in π1C, is taken to a loop in

R4 − g(Σ2 t Σ̃2) extendible to gD2 and hence null-homotopic. This contradiction
proves the non-embeddability of K in R4.

Now we present the construction of Example 4.2.ε, which is a higher-dimensional
generalization of the Freedman–Krushkal–Teichner example. A polyhedron K is
said to be quasi-embeddable in Rm if for each triangulation T of K there is a map
f : K → Rm (which is called an almost embedding) such that fσ ∩ fτ = ∅ for

any σ × τ ∈ T̃ . This definition is non-standard but is equivalent to the standard
definition (§ 1). It suffices to construct an n-polyhedron R quasi-embeddable but
not embeddable in Rm. Let l = m− n − 1. It suffices to construct Example 4.2.ε
for m = n+ 2 ≥ 4 and for n+ 3 ≤ m ≤ 3n

2 + 1.

Lemma 6.1 (cf. [29], Lemma 6 and [131], Lemma 1.4). For each l > n
2 , there is

an n-polyhedron K containing two disjoint wedges Σn ∨ Σ̃n and Σl ∨ Σ̃l of spheres
such that:

a) for any piecewise linear embedding K → Rm, the pairs Σn, Σ̃l and Σ̃n,Σl are

not linked and the homological linking coefficients of the pairs Σn,Σl and Σ̃n, Σ̃l

are non-zero (for m = n+ 2, these linking coefficients are odd);

b) there is a piecewise linear embedding K → Rm for which the wedge Σn ∨ Σ̃n

is unknotted in Rm.

Proof. Let ∆k
a0...as be the k-skeleton of the s-simplex with vertices a0 . . . as. We

set

P = ∆n
12...m+2∪Con(∆l

12...m+2, 0) and Q = ∆n
12...m+2∪Con(∆l

12...m+2\
◦
∆l

12...l+1, 0).

Let Σl = ∂∆l+1
01...l+1 and Σn = ∂∆n+1

l+2...m+2 be spheres in Q. We set

K = Q
⋃

0=0̃,m=m̃

Q̃.

The unlinkedness in 6.1.a follows from the fact that Σl (respectively, Σ̃l) bounds

the disc ∆l+1
01...l+1 (respectively, ∆̃l+1

01...l+1) in K − Σ̃n (respectively, in K − Σn).
To prove the second part of 6.1.a for m > n+ 2, it suffices to show that P is not

embeddable in Rm (cf. [131], proof of Lemma 1.4). Hence it suffices to prove that

there are no equivariant maps P̃ → Sm−1. This follows from [131], the construction
before Lemma 1.2 and Lemma 1.2 itself and from [161]. For m = n+2, the second
part of 6.1.a follows from [131], Lemma 1.4.

In the first two paragraphs of the proof of Lemma 1.1 in [131], it was actually
proved that Q is embeddable in Rm. Since m > n + 2, it follows that there is an
embedding K ⊂ Rm. If m > n + 2, then 6.1.b holds for any embedding K ⊂ Rm
([96], Theorem 8). If m = n+ 2, then for our embedding Q ⊂ Rm the sphere Σn is
unknotted in Rm. We can embed two copies of Q in Rm far from each other. Let us

join two points of Σn and Σ̃n by an arc and pull the points of the spheres together
along this arc. By performing the same construction for Σl and Σ̃l, we obtain the
desired embedding.



1172 D. Repovš and A. B. Skopenkov

Lemma 6.2 (cf. [131], § 2). Let K be the polyhedron and K → Rm the embedding

described in Lemma 6.1. Let Dn ⊂ Σn and D̃n ⊂ Σ̃n be piecewise linear discs in the
interiors of some n-simplices of some triangulation of K such that these simplices

contain the unique common point of Σn and Σ̃n. Then there is a piecewise linear
map g : K → Rm such that:

a) g|
K−

◦
Dn

is an inclusion and g
∣∣
K−

◦̃
Dn

is an embedding, but g(Dn)∩g(D̃n) 6= ∅;

b) the Whitehead product of the (arbitrarily oriented) inclusions of Σl and Σ̃l in

Σl ∨ Σ̃l → Rm − g(Σn ∨ Σ̃n) is homotopic to zero.

Proof. We take points a ∈
◦
Dn and ã ∈

◦̃
Dn and a small arc s ⊂ Rm joining a to ã.

By a general position argument, s∩K = {a, ã}. We make a finger move ofDn along
s (that is, we construct a new embedding Dn → Rm obtained from the old one by
pushing an n-dimensional finger from Dn along the arc s; see Fig. 6.1). We obtain a
new piecewise linear map g : K → Rm such that the property in Lemma 6.2.a holds.

By a general position argument, dim(g(Dn)∩D̃n) 6 2n−m and g(Dn) intersects D̃n

transversally. We can represent a regular neighbourhood Bm of an arbitrary point c
of this intersection as the product B2n−m×Bl+1×Bl+1 of balls, where B2n−m×0×0
corresponds to the intersection and B2n−m × Bl+1 × 0 and B2n−m × 0 × Bl+1

correspond to g(Dn) and D̃n, respectively. (We denote the centre of Bk by 0.) In
a neighbourhood of the point c, we have the torus 0 × ∂Bl+1 × ∂Bl+1 (which is

called distinguished or characteristic). By Lemma 6.1.b, Sm − Σn ∨ Σ̃n ' Sl ∨ Sl.
Let α and α̃ be the elements of the group πl(Rm − Σn ∨ Σ̃n) represented by the
homeomorphisms Sl → y ∨ Sl and Sl → Sl ∨ y (y ∈ Sl), respectively (with some
orientations). With appropriate orientations, the inclusions of 0 × ∂Bl+1 × y and

0×y×∂Bl+1 in Rm−Σn∨Σ̃n are homotopic to the spheroids α and α̃, respectively.
Since the map

[α, α̃] : S2l−1 → Sl ∨ Sl ∼= (0× y × ∂Bl+1) ∨ (0× ∂Bl+1 × y)

extends to a map B2l → 0 × ∂Bl+1 × ∂Bl+1 ([14], [86], [30]), it follows that [α, α̃]

is null-homotopic in Rm − g(Σn ∨ Σ̃n). Let p = link(Σl,Σn) and p̃ = link(Σ̃l, Σ̃n).

By Lemma 6.1.a, both p and p̃ are non-zero. The inclusions of Σl and Σ̃l in
Rm−Σn ∨ Σ̃n represent the elements pα and p̃α̃ of πl(Rm−Σn ∨ Σ̃n), respectively.
It follows that the assertion of Lemma 6.2.b holds, since [pα, p̃α̃] = pp̃[α, α̃] = 0 in

Rm − g(Σn ∨ Σ̃n).

Lemma 6.3 (cf. [131], Lemmas 2.1 and 2.2 and [29], §§ 3.2 and 4). Let g : K → Rm

be the map described in Lemma 6.2 and r : B2l → Rm − g(Σn ∨ Σ̃n) a piecewise

linear map such that r|∂B2l : ∂B2l → Σl ∨ Σ̃l represents the Whitehead product of

the inclusions Σl ⊂ Σl ∨ Σ̃l and Σ̃l ⊂ Σl ∨ Σ̃l. We set

Y = (K −
◦
Dn) ∪ r(B2l) ∪ g(Dn) ⊂ Rm and R = (K −

◦
Dn) ∪ r(B2l)

⋃
∂Bn=∂Dn

Bn.

Then dimR = n and R is quasi-homeomorphic to Y (hence, R is quasi-embeddable
in Rm) but is not topologically embeddable in Rm.
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Proof. Since m 6 3n
2 + 1, it follows that 2l 6 n and hence dimY = dimR = n.

We have R ⊃ (K −
◦
Dn)∪Bn ∼= K. Therefore, by the construction of the balls Dn

and D̃n, it follows that the balls Bn and D̃n are contained in the interiors of some
adjacent n-simplices of some triangulation of R. Consequently, there is an obvious

map R→ Y whose singular set is contained in Bn ∪ D̃n and hence in the interiors
of two adjacent simplices of some triangulation of R. Therefore, just as in [131],
Lemma 2.1, R is quasi-homeomorphic to Y .

Suppose that there is an embedding h : R → Sm. For m > n + 2 by [12], and
for m = n + 2 by the remark below, we can assume that h is a piecewise linear

embedding. Let Σn1 = (Σn −
◦
Dn)

⋃
∂Bn=∂Dn B

n ⊂ R. The map h ◦ r|∂B2l can be

extended to the map h◦r : B2l → Sm−h(Σn1∨Σ̃n). Hence h◦r|∂B2l is homotopically

trivial in Sm − h(Σn1 ∨ Σ̃n). Now we shall show the contrary, thus arriving at a
contradiction.

For the case m > n + 2, just as in the proof of Lemma 6.1.b, we have Sm −
h(Σn1 ∨ Σ̃n) ' Sl ∨ Sl. Let q = link(hΣl, hΣn1 ) 6= 0 and q̃ = link(hΣ̃l, hΣ̃n) 6= 0.

By β and β̃ we denote the elements of πl(S
m − h(Σn1 ∨ Σ̃n)) represented by the

homeomorphisms Sl → y ∨ Sl and Sl → Sl ∨ y (y ∈ Sl), respectively (with the
chosen orientations). Hence the homotopy class of the map h ◦ r|∂B2l : ∂B2l →
Sm−h(Σn1 ∨ Σ̃n) can be treated as the element qq̃[β, β̃] of π2l−1(S

m−h(Σn1 ∨ Σ̃n)).
By the Hilton theorem ([115], supplement to Lectures 5 and 6, pp. 231 and 257),

the map ϕ : π2l−1(S
2l−1)→ π2l−1(S

l ∨ Sl) defined by the formula ϕ(γ) = [β, β̃] ◦ γ
is an injection. This can also be proved by using the exact homotopy sequence

([62], §5.3). Hence [β, β̃] has infinite order. It follows that the element qq̃[β, β̃] is
non-trivial.

In the case m = n + 2, just as in [29], Lemma 7, it follows from the property
of Lemma 6.1.a by Stallings’ theorem [143] that the commutator of the maps

Σl⊂Σl ∨ Σ̃l⊂Rm − h(Σn ∨ Σ̃n) and Σ̃l⊂Σl ∨ Σ̃l⊂Rm − h(Σn ∨ Σ̃n) is non-zero.

Remark for n = 2 and topological embeddings (cf. [131], proof of Lemma 2.2).
There are arbitrarily close piecewise linear approximations h′ : R → Rm to the
embedding h such that h′σ ∩ h′τ = ∅ for any two disjoint simplexes σ and τ
of some triangulation of R. By a general position argument, we can assume for
m = n + 2 that h′|Σ1 and h′|Σ̃l are piecewise linear embeddings. Hence, by [131],
Lemma 1.4,

link
mod 2

(h′Σn1 , h
′Σ1) = link

mod 2
(h′Σ̃n, h′Σ̃1) = 1.

The unlinkedness of the pairs Σn, Σ̃l and Σ̃n,Σl can be proved by analogy with the
piecewise linear case. The rest of the proof is similar to the piecewise linear case
(h → h′), since we have used only the property of Lemma 6.1.a but not the fact
that h is an embedding.

§7. The Whitney trick

In this section, we prove smooth embeddability of smooth n-manifolds in R2n

(Theorem 3.1) and the criterion for embeddability of n-polyhedra into R2n (The-
orem 2.1.a) for n > 3. The proofs of these theorems are based on constructions
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that generalize Reidemeister moves (Fig. 2.2). The most important of these con-
structions corresponds to the second Reidemeister move (Fig. 2.2.b) and is called
the Whitney trick. This construction is used not only in the theory of embeddings,
but also in other branches of geometric topology. Let us illustrate the idea of the
Whitney trick by the following example.

Sketch of proof of Theorem 3.1 in the smooth category. Using a higher-dimensional
analogue of the first Reidemeister move (Fig. 2.2.a), we can modify an arbitrary
smooth generic map f : N → R2n so that a single self-intersection point with a
prescribed sign will be added. Hence there is a generic map f : N → R2n such
that its singularities consist of an even number of isolated double points with zero
algebraic sum.

Figure 7.1

To complete the proof of Theorem 3.1, we ‘kill’ these double points pair by pair.
This procedure is called the Whitney trick. We take double points x1, y1, x2, y2 ∈ N
such that f(x1) = f(x2) and f(y1) = f(y2). Next, we join x1 to y1 and x2 to y2 by
arcs l1 and l2 so that these double points will have ‘opposite signs’ (Fig. 7.1). By
a general position argument (n > 2), the restrictions f |l1 and f |l2 are embeddings,
and l1 and l2 do not contain other double points of f . Since 2n > 4, we can embed
a 2-disc D in R2n so that ∂D = f(l1) ∪ f(l2). By a general position argument
(n > 3), we have D∩f(N) = ∂D. Now we can move the image under f of a regular
neighbourhood of l1 in N along D so that the double points f(x1) = f(x2) and
f(y1) = f(y2) cancel out (see the details in [84], [92]).

Let us introduce some notation needed below. Let K be an n-polyhedron with
a triangulation T . A map f : K → Rm is an embedding if and only if the following
conditions hold:
f |α is an embedding for each α ∈ T ; (7.1.a)

fα ∩ fβ = ∅ for each α× β ⊂ T̃ ; (7.1.b)
fα ∩ fβ = f(α ∩ β) for any α, β ∈ T such that α ∩ β 6= ∅. (7.1.c)

Proof of Theorem 2.1.a for n > 3. We take a generic map ϕ : K → Rm that is linear
on the simplices of some triangulation T of K. Then (7.1.a) holds with f replaced
by ϕ. By a general position argument, (7.1.b) and (7.1.c) hold with f replaced
by ϕ unless dimα = dimβ = n. The proof of Theorem 2.1.a consists of three
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parts, which are described in Lemmas 7.1, 7.2, and 7.3. The proof of Lemma 7.1
is based on the van Kampen finger moves, which generalize the fifth Reidemeister

move (Fig. 2.2.e). Lemma 7.2 is proved by induction over pairs of n-simplices of T̃
with an application of the Whitney trick. (We omit the details, which can be found
in [29].) The proof of Lemma 7.3 is based on a higher-dimensional generalization
of the fourth Reidemeister move (Fig. 2.2.d).

Lemma 7.1 (cf. [29], Lemma 2). Let K be an n-polyhedron with a triangulation
T such that v(K) = 0. Let ϕ : K → R2n be a map such that (7.1.a) holds with f
replaced by ϕ. Then there is a generic map f : K → R2n such that (7.1.a) holds
and

fα · fβ = 0 for each α× β ⊂ T̃ . (7.2)

Proof. The condition v(K) = 0 implies that vϕ is an equivariant coboundary. Hence
vϕ is equal to the sum of some ‘elementary’ equivariant coboundaries δ(σn× νn−1)

(σn×νn−1 ∈ T̃ ). By applying van Kampen finger moves, that is, higher-dimensional
generalizations of the fifth Reidemeister move (Fig. 2.2.e), we obtain the desired
map f .

Lemma 7.2 ([29], Lemma 4). Let n > 3, and let K be an n-polyhedron with a
triangulation T . Next, let ϕ : K → R2n be a map such that (7.1.a) and (7.2) hold
with f replaced by ϕ. Then there is a generic map f : K → R2n such that (7.1.a)
and (7.1.b) hold.

Lemma 7.3 (cf. [29], Lemma 5). Suppose that n > 3, K is an n-polyhedron with a
triangulation T , and ϕ : K → R2n is a map such that (7.1.a) and (7.1.b) hold with
f replaced by ϕ. Then there is an embedding f : K → R2n.

Proof. We can assume by induction that (7.1.c) holds with f replaced by ϕ for each

pair (α, β) except for (σn, τn). Furthermore, we can assume that ϕ
◦
σn ∩ ϕ◦τn is a

point (say, p). Let v be a point of σn∩τn. We take piecewise linear arcs l1 ⊂ v∪
◦
σp

and l2 ⊂
◦
τ q joining v to the inverse images of p and containing no singular points

of ϕ in their interiors (Fig. 7.2). Then ϕ(l1 ∪ l2) is a circle. Since n > 3, it follows
that this circle bounds a piecewise linear embedded 2-disc D ⊂ R2n. By a general

position argument (n + 2 < 2n),
◦
D ∩ ϕK = ∅. A regular neighbourhood of D in

Rm relϕv is a piecewise linear 2n-ball D2n. The inverse image ϕ−1D2n is a regular
neighbourhood of l1 ∪ l2 in K rel v and is homeomorphic to the wedge Dn ∨Dn

of two piecewise linear n-balls with a common point on their boundaries. By [96],
the restriction ϕ : ∂Dn ∨ ∂Dn → ∂D2n is unknotted. Hence it can be extended to
an embedding h : Dn ∨Dn → D2n. To complete the proof, we set f equal to ϕ on
K − (Dn ∨Dn) and to h on Dn ∨Dn.

Van Kampen invented finger moves for the proof of Lemma 7.1. We need a
modification of his construction, which we demonstrate by proving the case m =
2n+1 of Theorem 4.1.e. Let us introduce some notation. For mapsE,G : Dp×Dq →
Sm−1 and a homotopy h : ∂(Dp ×Dq) × I → Sm−1 such that h0 = E and h1 = G
on ∂(Dp ×Dq), we define a map HEhG : ∂(Dp ×Dq × I)→ Sm−1 by setting

HEhG

∣∣
Dp×Dq×0

= E, HEhG

∣∣
Dp×Dq×1

= G, HEhG

∣∣
∂(Dp×Dq)×I = h.
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Figure 7.2

If E = G on ∂(Dp × Dq), then HEG = HEiG, where i stands for the constant
homotopy. For any maps f, f ′ : Dp tDq → Dm such that f ′Dp ∩ f ′Dq = ∅ and
f ′ = f on Dp t ∂Dq , we define a map

hff ′ : S
q ∼= Dq

⋃
∂Dq=∂Dq+

Dq
+ → Dm − fDp

by setting

hff ′(x) =

{
f(x), x ∈ Dq ,

f ′(x), x ∈ Dq
+.

Here Dq
+ is a copy of Dq . If f |Dp = f ′|Dp is an embedding and fDp is unknotted in

Dm (say, for m−p > 3), then Dm−fDp ' Sm−p−1. Indeed, let us take an embed-
ding g : Dm−p → Dm such that gDm−p intersects fDp transversally at exactly one
point. Then g|Sm−p−1 : Sm−p−1 → Dm − fDp is a homotopy equivalence, and the
induced isomorphism of homotopy groups is independent of g (up to a factor of
±1). We have [hff ′ ] ∈ πqSm−p−1. Since f ′ = f on Dp t ∂Dq , it follows that there

is a homotopy ft : D
p tDq → Dm relDp t ∂Dq from f to f ′. Let f̃ , f̃t, and f̃ ′ be

the restrictions of these maps to Dp ×Dq , ∂(Dp ×Dq), and Dp ×Dq , respectively.
By [153], Lemma 1,

[H
f̃f̃tf̃ ′

] = (−1)m−pΣp[hff ′ ] ∈ πp+qSm−1. (7.3)

Proof of the case m = 2n + 1 of Theorem 4.1.e. We present the proof for n = 1.
(The general case can be proved in a similar way.) By a general position argument,
every graph K can be embedded in R3, and we only need to prove that any map

Φ: K̃ → Sm−1 can be realized by an embedding, that is, that there is an embedding

f : K → R3 such that f̃ 'eq Φ. This assertion does not follow by a general position
argument. Let T be a triangulation of K. Let us prove that for each pair (σ, τ) of

edges of T such that σ 6 τ there is an embedding f : K → R3 such that f̃ 'eq F
on

J =
⋃
{α× β ∪ β × α ⊂ T̃ | (α, β) < (σ, τ)}.

Theorem 4.1.e will then follow by taking σ = τ to be the last simplex of T .
We prove the desired assertion by induction on (σ, τ). If σ and τ are the first

edges of T , then dimJ = 1, and hence the assertion holds by a general position
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argument. Now suppose by induction that f̃ |J 'eq F |J for an embedding f : K →
R3. If σ∩ τ 6= ∅, then there is nothing to prove, so we suppose that σ∩ τ = ∅. Let

us take points a ∈ ◦σ and b ∈ ◦τ and join their images fa and fb by an arc l ⊂ R3

such that l ∩ fK = {fa, fb}. Let D3 be a small regular neighbourhood of l in R3.

Then f−1D3 is the disjoint union of some arcs u ⊂ ◦σ and v ⊂ ◦τ that are regular
neighbourhoods of a and b in K. We can assume that fu is unknotted in D3. To
carry out the inductive step, we shall wind the arc f |v several times around fu
in D3 (Fig. 7.3).

Figure 7.3

By the equivariant analogue of the Borsuk homotopy extension theorem, there is

an equivariant extension Ψ: K̃ → S2 of f̃ |
J∪(σ×τ−◦u×◦v) such that Ψ 'eq Φ. Hence

Ψ = f on ∂(u× v).
We consider an embedding f+ : u t v → D3 such that f+ = f on ut ∂v and an

arbitrary homotopy ft rel ut ∂v between f and f+. By (7.3), it follows that

[H
Ψf̃tf̃+ ] = [H

Ψf̃
] + [H

f̃f̃tf̃+ ] = [H
Ψf̃

] + Σ[hff+ ] ∈ π2(S
2).

(All maps in the subscripts in this formula are restricted to u × v or ∂(u × v).)
For every element β ∈ π1(S

1), there is an embedding f+ : v → D3 − fu such that
[hff+ ] = β. Therefore, by the Freudenthal suspension theorem, there is a map
f+ : v → D3 − fu such that [HΨf̃tf̃+ ] = 0. We extend this f+ to the whole of K

by f . We obtain a map f+ : K → R3 for which f̃+ 'eq Ψ 'eq Φ on the whole of
J ∪ σ × τ . This completes the inductive step and proves the desired assertion.

§8. Engulfing

The idea of engulfing was first introduced by Zeeman and Stallings to prove the
Poincaré conjecture for n > 4 in the piecewise linear and topological categories [141],
[164]. This idea has become one of the most important tools of geometric topology,
particularly in the theory of embeddings and isotopy. Engulfing from a polyhedron
C can be visualized as follows: tentacles protrude from C and engulf a polyhe-
dron K; the dimension of a tentacle is only one greater than that of K. In the
proof of Theorem 3.1, the role of the union of these tentacles will be played by the
trace of K upon collapse to C. The dimension of new intersections of K with the
tentacles is lower than the original dimension, and so the new intersections can be
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dealt with by induction (see the proof of Theorem 3.1 below). We shall illustrate
the idea of engulfing by the proofs of Theorems 3.1 and 3.2.a in the piecewise linear
case. Further discussion can be found in [59].

Proof of Theorem 3.1 in the piecewise linear case. Since each 2-manifold is a con-
nected sum of tori and projective planes, it is embeddable in R4. Now we assume
that n > 3. Without loss of generality, we can assume that N is connected. Con-
sider a generic piecewise linear map f : N → R2n. Then f has only finitely many
double points, that is, points x, y ∈ N such that f(x) = f(y) but x 6= y. We
denote these points by x1, y1, . . . , xp, yp. Then f(xi) = f(yi) and f is an embed-
ding outside {x1, y1, . . . , xp, yp}. To ‘kill’ x1 and y1, we take an arc l ⊂ N joining
x1 to y1 and containing no other points xi, yi. Thus f(l) is a simple closed curve in
R2n. Consider a 2-disc D ⊂ R2n such that ∂D = f(l) (Figs. 2.2.a and 8.1). Since
n + 2 < 2n, we find by a general position argument that D ∩ f(N) = f(l). We
take a regular neighbourhood B of D in R2n. It is a 2n-ball. If it is sufficiently
small, then B0 = f−1(B) is a regular neighbourhood of l in N . Hence B0 is an
n-ball. Since each ball is a cone over its boundary, it follows that the embedding
f : ∂B0 → ∂B can be conically extended to an embedding F : B0 → B that agrees
with f on ∂B0. Using a similar argument for i = 1, . . . , p, we ‘kill’ all double points
xi, yi and obtain an embedding of N in R2n.

To prove Theorem 3.2.a in the piecewise linear category, we generalize the above
argument. To this end, let us introduce several important notions. We say that
a polyhedron Y is obtained from a polyhedron K by an elementary collapse if
K = Y ∪ Bn and Y ∩ Bn = Bn−1, where Bn−1 is a face of the ball Bn. This
elementary collapse is said to be made from Cl(∂Bn−Bn−1) along Bn to Bn−1. A
polyhedron K collapses to Y (in this case, we write K ↘ Y ) if there is a sequence
of elementary collapses K = K0 ↘ K1 ↘ K2 ↘ · · · ↘ Kn−1 ↘ Kn = Y .
A polyhedron K is collapsible if it collapses to a point. Clearly, the ball Bn is
collapsible, since it collapses to the face Bn−1 and so on by induction. Moreover,
the cone cK over a compact polyhedron K is collapsible (to its vertex). Indeed, for
each simplex A ⊂ K, the cone cA collapses from A to c(∂A), and hence cK ↘ ∗
by induction on the dimension of the simplices.

A collapse K ↘ Y generates a deformation retraction r : K → Y given by the
deformation of each ball Bn to the corresponding face Bn−1. There is a homotopy
Ht between the identity map K → K and the deformation retraction r : K → Y ;
it is induced by the collapse K ↘ Y . The trace of a subpolyhedron S of K under
the collapse K ↘ Y is the union of Ht(S) over t ∈ [0, 1].

Suppose that an embedding of a polyhedron K into a piecewise linear manifold
M is given. A neighbourhood N of K in M is said to be regular if N is a compact
bounded manifold and N ↘ K. A polyhedron can have several distinct regular
neighbourhoods. But a regular neighbourhood is unique up to a homeomorphism
[154] and even up to an isotopy equal to the identity on K [75]. The regular
neighbourhood of a collapsible polyhedron is a ball [154]. The converse (if K ⊂ Bn
and K ↘ ∗, then B ↘ K) is true only in codimension > 3 [68]. We adopt the
following convention. The first occurrence of the symbol RM(K) stands for ‘a
sufficiently small regular neighbourhood of K in M ’. All subsequent occurrences
of the same symbol refer to the same neighbourhood.
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Proof of Theorem 3.2.a in the piecewise linear category. Let k = 2n − m be the
degree of connectedness of N and f : N → Rm a generic map. We need to ‘kill’ the
singular set Σ(f). We have dimΣ(f) ≤ 2n−m = k. For the most part, the proof
deals with the construction of collapsible polyhedra C ⊂ N and D ⊂ Rm such that
Σ(f) ⊂ C and f−1(D) = C. The polyhedra C and D are analogues of the arc l and
the disc D in the above argument. Once these polyhedra are constructed, the proof
can be completed as follows. We choose regular neighbourhoods Bn = RN(C) and
Bm = RRm(D) such that f−1Bm = Bn. Since C and D are collapsible, Bn and
Bm are balls. We define a new map g : N → Rm as the cone over f |∂Bn on Bn

and by the formula g = f outside
◦
Bn. Since f is an embedding outside Bn and

Bm ∩ f(N) = f(Bn), it follows that g is an embedding.

Engulfing Lemma 8.1 ([141], [112]). Suppose that N is a (2k+ 2− n)-connected
closed n-manifold and K ⊂ N is a k-polyhedron such that n − k > 3 and the
inclusion K ⊂ N is null-homotopic. Then K can be engulfed in N , that is, is
contained in an n-ball B ⊂ N .

Relative Engulfing Lemma 8.2. Suppose that N is a k-connected closed piece-
wise linear n-manifold, K ⊂ N is a k-polyhedron, and C ⊂ N is a collapsible
polyhedron. If n− k > 3, then K can be engulfed from C in N , that is, there is an
RN(C) ⊃ K.

The construction of the polyhedra C and D. Since dimΣ(f) 6 k = 2n − m, we
have n − dimΣ(f) > n − k = m − n > 3. We also note that any embedding of a
k-polyhedron in a k-connected manifold is homotopic to a constant map. Hence, by
the engulfing lemma, there is an n-ball B ⊂ N containing Σ(f). If dimΣ(f) < n

2 ,
then we take a generic cone C over Σ(f) in B. If dimΣ(f) is arbitrary, then we
define C to be the trace of Σ(f) under a collapse of B to a point x 6∈ Σ(f). In this
case, C is called a singular cone over Σ(f), and the point x is referred to as the
vertex of C (Fig. 8.2). Likewise, we take a singular cone D ⊂ Rm over f(C). Let
S′ = f−1(D) − C.

Figure 8.1

If m > 3(n+1)
2 , then we have (k+2)+n < m and, by a general position argument,

D ∩ f(N) = f(C), that is, S′ = ∅. By definition, the singular cones C and D are
collapsible.

If m > 3n
2

+ 1, then S′ need not be empty, but the dimension of S′ does not
exceed (k + 2) + n −m = 0 by a general position argument. Thus, before ‘killing’
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Figure 8.2

Σ(f) in the same way as in the preceding, we must ‘kill’ the set S′ of dimension 0.
Let S′ = {x1, . . . , xp}. We take an arc l1 joining x1 to an arbitrary point y1 ∈ C
and an arc l′1 ⊂ D joining f(x1) to f(y1). Then f(l1) ∪ l′1 is a circle in Rm. We
choose a 2-disc D1 bounded by this circle (Fig. 8.2). Since 2 + n < m, we have
D1 ∩ f(N) = ∂(D1) by a general position argument. By constructing such pairwise

disjoint arcs li ⊂ N and discs Di ⊂ Rm for every xi, we find that f−1(D̃) = C̃,

where C̃ = C ∪ l1 ∪ · · · ∪ lp and D̃ = D ∪D1 ∪ · · · ∪Dp. Let us show that C̃ and

D̃ are collapsible. Indeed, a collapse of C̃ to a point is obtained by first collapsing
each li to yi and then collapsing the singular cone C to its vertex. Likewise, D̃↘ ∗.
We have constructed the desired collapsible polyhedra C̃ and D̃.

The above transition fromm > 3n+3
2 to m > 3n+2

2 is the first step of an inductive
procedure that allows us to construct the polyhedra C and D for m > n + 3. At
the jth inductive step, we have m > 3n+3−j

2 , and hence dimS′ 6 j − 1. To ‘kill’
the polyhedron S′, it suffices to find a ‘membrane’ of dimension ≤ j ‘joining’ S′

to C. By the Relative Engulfing Lemma 8.2, there is a regular neighbourhood
B = RN(C) ⊃ S′. Let C ′ be the trace of S′ under the collapse B ↘ C. Then
C ′ collapses to C ′ ∩ C. (Here C ′ plays a role similar to that of l1 ∪ · · · ∪ ln in
the first step.) We choose a similar membrane D′ of dimension ≤ j + 1 joining
f(C ′) to D (Fig. 8.2). Then D′ collapses to D′ ∩ D. However, the intersection
of D′ with f(N) need not be contained in f(C ′). Let S′′ = f−1(D′) − C ′. Then
dimS′′ 6 j+1+n−m 6 j−2, since m−n > 3. We note that we have reduced the
‘singular dimension’: dimS′′ 6 dimS′ − 1. Hence, by analogy with the previous
inductive step, we can ‘kill’ S′′, that is, construct a polyhedron C ′′ containing S′′

and collapsible to C ′′∩(C ′∪C) and a polyhedronD′′ collapsible toD′′∩(D′∪D) such

that f−1(D′′) = C ′′. Then the polyhedra C̃ = C∪C ′∪C ′′ and D̃ = D∪D′∪D′′ are

collapsible, and f−1(D̃) = C̃. This way we ’kill’ S′ and complete the jth inductive
step. This argument remains valid for each j 6 k = 2n−m, since 3n+3−k

2 = n+ 3.

§9. The first part of the proof of Theorem 4.1.e

The proof of Theorem 4.1.e in the piecewise linear case consists of two steps,
namely, Theorem 9.1 (an analogue of Lemmas 7.1 and 7.2) and Theorem 10.1 (an
analogue of Lemma 7.3). Theorem 9.1 is proved by induction. It follows from
Proposition 9.2 with σp = σq = (the last simplex of T ).
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Theorem 9.1 [156]. Suppose that K is an n-polyhedron with a triangulation T ,

m ≥ 3(n+1)
2 , and Φ: K̃ → Sm−1 is an equivariant map. Then there is a piecewise

linear map f : K → Rm such that properties (7.1.a) and (7.1.b) hold and

f̃
∣∣
T̃
'eq Φ

∣∣
T̃
. (9.1)

Proposition 9.2. Under the hypotheses of Theorem 9.1, for each σp × σq ∈ T̃
such that σp 6 σq there is a piecewise linear map f : K → Rm such that (7.1.a)
holds, (7.1.b) holds for (α, β) < (σp, σq), and

f̃ 'eq Φ on Jσpσq = ∪{α× β ∪ β × α ⊂ T̃ | (α, β) < (σp, σq)}. (9.2)

First Ball Lemma 9.3. If the conclusion of Proposition 9.2 holds, then there are

piecewise linear balls Dm ⊂ Rm, Dp ⊂ ◦σp, and Dq ⊂ ◦σq such that:
a) f |Dp and f |Dq are proper embeddings in Dm;

b) fσp ∩ fσq ⊂
◦
Dm;

c) Dp = σp ∩ f−1Dm and Dq = σq ∩ f−1Dm;
d) Dm ∩ fP = ∅, where P = K − st σ − st τ .

Proof. We find from (7.1.b) that fσp∩f∂σq = f∂σp∩fσq = ∅ for (α, β) < (σp, σq).
By a general position argument, dim(fσp ∩ fσq) ≤ p+ q −m. Let C1 ⊂ σp be the

trace of the polyhedron σp ∩ f−1σq under the collapse σp ↘ (a point in
◦
σp). In a

similar way, we define C2 ⊂
◦
σq . The polyhedra C1 and C2 are generalizations of the

arcs l1 and l2 in the Whitney trick. They are collapsible, fσp ∩ fσq ⊂ fC1 ∩ fC2,
and dimC1, dimC2 ≤ p + q − m + 1. By (7.1.b), for (α, β) < (σp, σq) we have
C1 ∩ P = ∅. By a general position argument, dim(fP ∩ fσq) 6 n + q −m, and
hence dim(fP ∩ fσq) + dimC2 < q and C2 ∩ P = ∅.

We consider a sequence of collapses from some piecewise linear m-ball Jm ⊂ Rm

containing f(σp ∩σq) in its interior to a point in
◦
Jm. Let C be the trace of C1 ∪C2

under this collapse. The polyhedron C is a generalization of the disc D in the
Whitney trick. It is collapsible, C1 ∪ C2 ⊂ C, and dimC 6 p + q −m + 2. By a
general position argument, C ∩ fσp = C1, C ∩ fσq = C2, and C ∩ fP = ∅. Here

we have used the inequality m ≥ 3(n+1)
2 . Just as in the Whitney trick, we can now

readily verify that the regular neighbourhoods of the polyhedra C, C1, and C2 in
some sufficiently small (consistent) triangulations of Rm, σp, and σq, respectively,
are the desired balls.

Proof of Proposition 9.2. We take a generic map f : K → Rm that is linear on the
simplices of T . The map f already satisfies (7.1.a). By the inductive hypothesis
(about (σp, σq)), we can assume that properties (7.1.a) and (9.2) hold and that
property (7.1.b) holds for (α, β) < (σp, σq). We can also assume that f is in
general position. Suppose that p + q ≥ m− 1. (Otherwise, the inductive step can
be carried out by a general position argument.)

The first part of the proof (a generalization of the Whitney trick) is to obtain
property (7.1.b) for (α, β) = (σp, σq). We take the piecewise linear balls Dm, Dp,
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and Dq from the First Ball Lemma. It follows from (7.1.b) and the property a)
in Lemma 9.3 that f∂Dp ∩ fDq = f∂Dq ∩ fDp = ∅. Since m− p > 3, it follows
that Dm − fDp ' Sm−p−1 (see the remark before (7.3)). The homotopy class in
πq−1S

m−p−1 of the map f |∂Dq : ∂Dq → Dm−fDp is called the intersection number
of f |∂Dp and f |∂Dq and is denoted by I(f |Dq , f |Dq). We have

ΣpI(f |Dp , f |Dq ) = (−1)m−p[f̃ |∂(Dp×Dq)] = [Φ|∂(Dp×Dq)] = 0.

Here the first equality holds by [82] and [153], Proposition 1. The second equality

holds since f̃ ' Φ on ∂(Dp ×Dq) by the inductive hypothesis. The third equality

holds since Φ is defined on T̃ ⊃ Dp ×Dq . By the Freudenthal suspension theorem,
we find that the embedding f |∂Dq extends to a map f ′ : Dq → Dm−fDp . Here we
have used the inequality 2p+ q 6 2m− 3.

Since 2q−m+1 ≤ m−p−2, it follows from Theorem 3.2.a (actually, we need only

the case m > 3(n+1)
2 of this theorem) that f ′ is homotopic rel ∂Dq to an embedding

f+ : Dq → Dm−fDp. Here we have once more used the inequality p+2q ≤ 2m−3.
Sincem−q > 3, it follows that the relative version of Theorem 3.5 ([166], Corollary 1
to Theorem 9) that there is an ambient isotopy ht : D

m → Dm rel ∂Dm between
f |Dq and f+. We extend f+ to K by the formula

f+(x) =

{
h1(f(x)) if f(x) ∈ Dm and x ∈ γ for some γ ⊃ σq,
f(x) otherwise.

One can readily check that f+ satisfies (7.1.b) for (α, β) 6 (σp, σq), (9.2), and (7.1.a).
The second part of the proof (a generalization of van Kampen finger moves) is to

obtain property (9.2) for (α, β) = (σp, σq) assuming properties (7.1.a) and (7.1.b)
for (α, β) 6 (σp, σq) as well as property (9.2). We start from an analogue of the

First Ball Lemma. By a general position argument, we can find points a ∈ ◦σp−Σ(f)

and b ∈ ◦σq − Σ(f) such that the restrictions of f to some small neighbourhoods of
a and b are embeddings. Since x, y 6 m− 2, we can join the points fa and fb by
an arc l ⊂ Rm such that l ∩ fK = {fa, fb}. Let Dm = RRm(l). Then f−1Dm is

the disjoint union of piecewise linear discs Dp ⊂ ◦σp and Dq ⊂ ◦σq that are regular
neighbourhoods in K of a and b, respectively.

By the Borsuk homotopy extension theorem, there is an extension Ψ: T̃ →
Sm−1 of the map f̃ |

J∪(σp×σq−
◦
Dp×

◦
Dq)

such that Ψ ' Φ. It follows that Ψ = f̃ on

∂(Dp×Dq). We can assume that Ψ = Φ. By (7.3), for each map f ′ : DptDq → Dm

such that f ′ = f on Dp t ∂Dq and f ′Dp ∩ f ′Dq = ∅ and for a homotopy ft
relDp t ∂Dq between f and f ′, we have

[HΦf̃tf̃′
] = [HΦf̃ ] + [Hf̃f̃tf̃ ′

] = [HΦf̃ ] + (−1)m−pΣp[hff ′ ] ∈ πp+qSm−1.

(Here Φ, f̃ , f̃+, and f̃t stand for the restrictions of these maps to Dp × Dq and
∂(Dp×Dq), respectively.) Since 2p+q 6 2m−3, we have q 6 2(m−p−1)−1, and Σp

is an epimorphism by the Freudenthal suspension theorem. Since for every element
β ∈ πqSm−p−1 there is a map (not necessarily an embedding) f ′ : Dq → Dm−fDp

such that [hff ′ ] = β and f ′ = f on Dp t ∂Dq , it follows that we can take an f ′

such that [H
Φf̃tf̃ ′

] = 0. Here we have again used the inequality p+ 2q ≤ 2m− 3.

The remaining part of the proof is the same as in the generalization of the
Whitney trick.
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§10. The second part of the proof of Theorem 4.1.e

Theorem 10.1 ([136]; cf. [153]). Suppose that K is an n-polyhedron with a tri-

angulation T , m > 3(n+1)
2 , and ϕ : K → Rm is a piecewise linear map such that

properties (7.1.a) and (7.1.b) hold and
a) for each α, there are homeomorphisms

RN(α, ∂α) ∼= lkα ∗ α and RRm(fα, f∂α) ∼= lk fα ∗ fα

(for some small triangulation of Rm independent of α) such that f lkα ⊂ lkfα and
f |RN (α,∂α) = f |lk α ∗ f |α.

Then there is a piecewise linear embedding f : K → Rm such that

f̃
∣∣
T̃
'eq ϕ

∣∣
T̃
. (10.1)

Here by lk we denote the link of a simplex in a triangulation [125]. The second
(harder) part of the proof in [153] contains a mistake ([153], p. 24, lines 9 and 18),
which is apparently technical and can be eliminated with the help of the same
ideas. The proof in [136] also contains a mistake (property 10.1.a is not stated
explicitly), which is rectified in the present paper. We note that property 10.1.a
(or the property f−1RRm(fη, f∂η) 6= RK(η, ∂η), which follows from 10.1.a) is false
for an arbitrary generic piecewise linear map. But it holds for a map linear on
simplices and is preserved in the course of the proof of Theorem 9.1. Therefore,
Theorem 4.1.ε indeed follows from Theorem 9.1 (more precisely, from the version
of Theorem 9.1 with property 10.1.a added to the assumptions and the conclusion)
and Theorem 10.1. The proof of Theorem 10.1 presented here generalizes the proof
of Lemma 7.3. Theorem 10.1 follows from Proposition 10.2 below with σp = σq =
(the last simplex of T ).

Proposition 10.2. Under the hypotheses of Theorem 10.1, for each σp×σq ∈ T×T
such that σp > σq there is a piecewise linear map f : K → Rm such that

a) fα ∩ fβ = ∅ for each α× β ∈ T̃ ,
b) f |α is an embedding for each α ∈ T ,

c) f̃ |T̃ is equivariantly homotopic to ϕ̃|T̃ ,
d) fα ∩ fβ = f(α ∩ β) for (α, β) < (σp, σq).

Proof. The map ϕ already satisfies 10.2.a–10.2.c. We achieve 10.2.d by induction
on (σp, σq). The base clause ‘σp = (the first simplex of T )’ follows by taking f = ϕ.
Now we suppose that f satisfies 10.2.a–10.2.d. We can assume that f is in general
position. Suppose that p+ q >m− 1, σq 6⊂ σp, and σq ∪ σp is not contained in the
boundary of the same simplex of T . (Otherwise, the inductive step holds either by
a general position argument or by the inductive hypothesis.) Let Dr = f(σp ∩ σq).
By 10.2.b, Dr is a piecewise linear ball.

Second Ball Lemma 10.3. There are piecewise linear-balls Dp, Dq , and Dm ⊂
Rm such that

1) Dp ⊂ Dr ∪ f ◦σp and Dq ⊂ Dr ∪ f ◦σq ;
2) Dp = Dm ∩ fσp and Dq = Dm ∩ fσq are properly embedded in Dm;
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3) Dr = ∂Dp ∩ ∂Dq ;
4) Dr is unknotted in ∂Dp and ∂Dq ;

5) Σ = Cl((fσp ∩ fσq) −Dr) ⊂
◦
Dm ∪Dr ;

6) Dm ∩X ⊂ Dr , where X =
⋃
f{α ∈ T |α∩ σp = ∅ or α < σq}.

Proof of Proposition 10.2 on the basis of Second Ball Lemma 10.3. We take the
piecewise linear balls Dp, Dq, and Dm given by the Second Ball Lemma. We recall
([96], Theorem 9 and the preceding discussion) that if m − 3 > p and q, Sp and
Sq ⊂ Sm, and Sp ∩ Sq = Dr , where Dr is unknotted in Sp and Sq , then Sp ∪
Sq is unknotted in Sm. Hence we can assume that ∂Dp

⋃
Dr ∂D

q ⊂ ∂Dm is a
standard embedding. By the relative version of Theorem 3.5 ([166], Corollary 1 to
Theorem 9), we can assume that (Dq , ∂Dq) ⊂ (Dm, ∂Dm) is a standard embedding.
Hence, the embedding ∂Dp ⊂ ∂Dm can be extended to a new embedding of Dp

in (
◦
Dm −Dq) ∪ ∂Dp. By the relative version of Theorem 3.5, this new embedding

is ambient-isotopic to Dp ⊂ Dm rel ∂Dm. Thus, there is an isotopy ht : D
m →

Dm rel ∂Dm such that Dq ∩ h1D
p = Dr . We define a map f+ : K → Rm by setting

f+(x) =

{
h1(f(x)) if f(x) ∈ Dm and x ∈ α for some α containing σp,

f(x) otherwise.

Obviously, f+ satisfies 10.2.a–10.2.c. Since σq∪σp is not contained in the boundary
of the same simplex of T , Dq∩h1D

p = Dr , and properties 10.3.5 and 10.3.6 hold, it
follows that f+ satisfies 10.2.d for (α, β) 6 (σp, σq). The inductive step is complete.

Collapsing Lemma 10.4. If A and F are regular neighbourhoods of a polyhe-
dron Z in a piecewise linear manifold M rel Y and A ⊂ F , then F ↘ A rel Y .

(This follows from [20], Theorem 3.1 and Addendum 3.4.)

Proof of the Second Ball Lemma. We carry out some preliminary constructions

(cf. [153], § 6a). Let S be the link of some r-simplex ⊂
◦
Dr in some small triangula-

tion of Rm. Then S is a piecewise linear (m− r − 1)-sphere and RRm(Dr , ∂Dr) ∼=
S ∗ Dr. By 10.2.b, RRm(Dr , ∂Dr) ∩ fα = Rfα(Dr , ∂Dr) is taken by this homeo-
morphism to (S ∩ fα) ∗Dr for each α ∈ T . (For α 6⊃ σp ∩ σq, each of these three
sets is empty.) Furthermore, S ∩ fα is a piecewise linear (dimα − r − 1)-ball for
each α ∈ T , α ⊃ σp ∩ σq.

We take distinct points a ∈ (S ∩ f ◦σp) − X and b ∈ (S ∩ f ◦σq) − X. Since
m − r − 1 > 2 and (n − r − 1) + 1 < m − r − 1, it follows by a general position
argument that there is an arc l ⊂ S joining a and b and such that l ∩ X = ∅,
l ∩ fσp = a, and l ∩ fσq = b. Let γ = RS(l) ∗Dr . Then γ ∩ fσp and γ ∩ fσq are
piecewise linear p- and q-balls, respectively (Fig. 10.1).

Let us construct Dp. By the inductive hypothesis, fσp ∩ f∂σq = f∂σp ∩ fσq =

Dr . Hence Σ ⊂ (f
◦
σp∩f ◦σq)∪Dr . Both fσp and (S ∗Dr)∩fσp = (S∩fσp)∗Dr are

regular neighbourhoods of Dr rel ∂Dr in fσp. By Collapsing Lemma 10.4, fσp ↘
(S ∩ fσp) ∗Dr relDr . Both S ∩ fσp and RS∩fσp(a) are regular neighbourhoods of
a in S ∩ fσp. By Collapsing Lemma 10.4, S ∩ fσp ↘ RS∩fσp(a). Hence

(S ∩ fσp) ∗Dr ↘ RS∩fσp(a) ∗Dr = γ ∩ fσp relDr.
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Figure 10.1

Let C1 be the generic trace of Σ under the sequence of collapses (see Fig. 10.2)

fσp ↘ (S ∩ fσp) ∗Dr ↘ γ ∩ fσp relDr.

Let Dp = Rfσp((γ ∩ fσp)∪C1, D
r). Then properties 10.3.1 and 10.3.4 hold for Dp,

and moreover,

1) C1 ⊂ fσp; 4) C1 ∩X = ∅;

2) Σ ⊂ (β ∩ fσp) ∪ C1; 5) Dp ∩X ⊂ Dr ;

3) Dp is a piecewise linear p-ball; 6) C1 ∩ fσq = Σ.

(10.2)

Figure 10.2

Indeed, properties (10.2.1) and (10.2.2) are obvious. Since Σ ⊂ Dr ∪ f ◦σp, it

follows that C1 ⊂ Dr ∪ f ◦σp, and hence 10.3.1 holds. Since fσp is a piecewise
linear manifold and fσp ↘ (γ ∩ fσp) ∪ C1 relDr, we see that fσp is a regular
neighbourhood of (γ ∩ fσp) ∪C1 in fσp relDr ([20], Theorem 9.1). Then, by The-
orem 3.1 in [20], there is an isotopy Gt : fσ

p → fσp rel(γ ∩ fσp) ∪ C1 between
G0 = id and a homeomorphism G1 of fσp onto Dp rel(γ ∩ fσp) ∪C1. This implies
(10.2.3). Moreover, G1|∂fσp is a homeomorphism of ∂fσp onto ∂Dp relDr .



1186 D. Repovš and A. B. Skopenkov

Since Dr is unknotted in ∂fσp , we see that 10.3.4 is true for Dp. By a
general position argument, dimΣ 6 2n − m. Thus dimC1 6 2n − m + 1. By
a general position argument and since n + (2n − m) < m, we have Σ ∩ X = ∅.
Again a general position argument and the inequality n+ (2n−m+ 1) < m imply
(10.2.4). Since l ∩X = ∅, it follows that γ ∩ fσp ∩X = Dr . This, together with
(10.2.4), implies (10.2.5). By the definition of relative collapse, C1 ∩Dr = Σ ∩Dr .
Because of this and by a general position argument (n + (2n −m + 2) < m), we
have (10.2.6).

Likewise, we can construct polyhedra C2 and Dq such that properties 10.3.1,
10.3.4, and (10.2.1)–(10.2.6) hold with C1 → C2 and p→ q.

Let us construct Dm. We take a piecewise linear (m − r − 1)-ball B ⊂ S −
(l ∪ fσp ∪ fσq). Then S −

◦
B is a piecewise linear (m − r − 1)-ball and σm =

(Rm ∪ ∞) − Int(B ∗ Dr) is a piecewise linear m-ball. By (10.2.1) and 10.1.a,

C1∩(S∗Dr) ⊂ (S∩fσp)∗Dr. Then C1∩Int(B∗Dr) = ∅, and hence C1 ⊂
◦
σm∪Dr .

Likewise, C2 ⊂
◦
σm ∪Dr . By analogy with the construction of Dp and Dq , let C

be the generic trace of C1 ∩ C2 under the sequence of collapses

σm ↘ σm ∩ (S ∗Dr) = (S −
◦
B) ∗Dr ↘ RS(l) ∗Dr = γ relDr .

By analogy with (10.2.1)–(10.2.3), we can prove that C ⊂ σm ∪ Dr , C1 ∪ C2 ⊂
γ ∪ C, and Dm = Rσm(γ ∪ C,Dr) is a piecewise linear m-ball. By analogy with
(10.2.4), one can prove that C ∩ X = ∅ by using (10.2.4) and the inequality
n+(2n−m+2) < m. Then 10.3.6 is proved in the same way as (10.2.5). Property
(10.2.6), in conjunction with a general position argument, implies

C ∩ fσq = (C1 ∪C2) ∩ fσq = C2 ∪ (C1 ∩ fσq) = C2 ∪ Σ = C2.

Likewise, C∩fσp = C1. Therefore, (γ∪C)∩fσp = (γ∩fσp)∪C1 and (γ∪C)∩fσq =
(γ∩fσq)∪C2. Because of this and sinceDp, Dq, andDm are regular neighbourhoods
relDr of (γ ∩ fσp) ∪C1, (γ ∩ fσq) ∪C2, and γ ∪C in the restrictions of the same
triangulation of Rm to fσp , fσq , and σm, respectively, 10.3.2 follows. By (10.2.2)
and the definitions of Dp, Dq, and Σ,

(∂Dp −Dr) ∩ (∂Dq −Dr) ⊂ (f
◦
σp −Σ) ∩ (f

◦
σq − Σ) = ∅.

Hence 10.3.3 is true. By (10.2.1), we have Σ ⊂ (γ ∩ fσp)∪C1 ⊂ γ ∪C ⊂
◦
Dm ∪Dr ,

and so 10.3.5 is true.

§11. The idea of the proof of Theorem 4.2.e

The non-closed case of Theorem 4.2.e follows from Theorems 4.2.i and 11.1.a.
The proof of the closed case of Theorem 4.2.e consists of three parts: the con-

struction of an immersion h : N −
◦
Bn → Rm (Theorem 4.2.i), the construction of

a quasi-embedding g : N → Rm (here we prove the weaker Theorem 11.1.b; see
the complete proof in [137]), and the construction of an embedding f : N → Rm
(Lemma 11.2). When applying Lemma 11.2 to the proof of the property f 'eq Φ
in Theorem 4.2.e, we need to take a triangulation T of N such that B is contained in
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a single simplex of T . Then f̃ 'eq g̃ 'eq Φ on T̃ , and Ñ is equivariantly retracted

onto T̃ [63]). The non-closed case of Theorem 4.7.e follows from Theorem 4.7.i and
an analogue of Theorem 11.1.b. The closed case of Theorem 4.7.e can be proved in
the same way as Theorem 4.2.e, on the basis of the ‘Concordance Implies Isotopy’
theorem, and we do not present the proof here (see the complete proof in [137]).

Theorem 11.1. Let N be an n-polyhedron (a smooth n-manifold).
a) ([46], Theorems 2′a and 6.4, [153], Theorem 8, and [55], Corollary 5.(ii).)

Suppose that either m > 3(n+1)
2 or the following properties hold: N is a piecewise

linear (smooth) n-manifold, (N, ∂N) is [ d3 ]-connected, π1∂N = 0, and m > 6. If

h : N → Rm is a piecewise linear (smooth) immersion and Φ: Ñ → Sm−1 is an

equivariant map such that h̃ 'eq Φ on SN , then h is piecewise-linearly (smoothly)
regularly homotopic to a piecewise linear (smooth) embedding f : N → Rm such

that f̃ 'eq Φ.
b) Suppose that m > n+ 3 and N is a closed d-connected piecewise linear man-

ifold. If h : N → Rm is a piecewise linear immersion and Φ: Ñ → Sm−1 is an

equivariant map such that h̃ 'eq Φ on SN , then h is piecewise-linearly regularly
homotopic to a piecewise linear map f : N → Rm such that Σ(g) is contained in

some piecewise linear n-ball B ⊂ N and f̃ 'eq Φ on Ñ − B̃.

The smooth case of Theorem 4.1.e was derived from that of Theorems 4.1.i
and 11.1.a [46]. The piecewise linear case of Theorem 4.1.e was proved in this way
in [137]. (Originally, it was proved in a similar but different way [153], [136].) For
A ⊂ N , we write A∗ = A×N ∪N ×A. The following result was essentially proved
in [58]. We present the proof for completeness.

Lemma 11.2 (cf. [135], Theorem 2.1.2). Suppose that N is a closed homologically
d-connected piecewise linear n-manifold, m−n > 3, and g : N → Rm is a map such
that Σ(g) is contained in some piecewise linear n-ball B ⊂ N . Then there is an

embedding f : N → Rm such that f = g on N −
◦
B.

The idea of a possible proof of Theorems 4.2.i and 4.7.i for piecewise linear mani-
folds. We follow the idea of [52]. The equivariant Stiefel manifold V eq

mn is the space
of maps Sn−1 → Sm−1 equivariant with respect to the antipodal involutions. The
piecewise linear Stiefel manifold V PLmn is the space of equivariant piecewise linear
embeddings Sn−1 → Sm−1. Suppose that we have proved that V PLmn is a retract of
the space of all piecewise linear embeddings Sn−1 → Sm−1.

The set of equivariant maps Φ: SN → Sm−1 up to equivariant homotopy is in a
one-to-one correspondence (up to fibrewise homotopy) with the set of sections of the
V eq
mn-bundle over N associated with TN . By [54], piecewise linear immersions N →
Rm are in a one-to-one correspondence (up to piecewise linear regular homotopy)
with sections of the V PLmn -subbundle of the above bundle. The obstructions to a
deformation of a section of the V eq

mn-bundle to a section of the V PLmn -subbundle lie
in

Hi(N, πi
(
V eq
mn, V

PL
mn )T

) ∼= Hn−i
(
N, ∂N, πi(V

eq
mn, V

PL
mn )

)
.

(The coefficients are twisted in accordance with the orientable double cover of N ;
the case ∂N = ∅ is possible.) By the universal coefficients formula, it suffices
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to prove that πi(V
eq
mn, V

PL
mn ) = 0 for 0 6 i 6 2(m − n) − 2. From the exact

sequence of the triple V eq
mn ⊃ V PLmn ⊃ Vmn, one can see that it suffices to prove

that πi(V
eq
mn, Vmn) = 0 for 0 6 i 6 2(m − n) − 2 and πi(V

PL
mn , Vmn) = 0 for

0 6 i 6 2(m − n) − 3. The former follows by [52], (1.1) (see the complete proof
with misprints corrected in [137]) and the exact homotopy sequence of the pair
V eq
mn ⊃ Vmn (even for 0 6 i 6 2(m− n) − 1). By [50], §§8.15, 10.2, and 11.2, and

[47], πi(V
PL
mn , Vmn) = Cm−ni−1 = 0 for i 6 2(m− n)− 3, i 6 n (even if m− n = 2).

Let us prove the latter fact without using the unpublished results of [50]. By
[47], §4.6, and [106], Theorem 5.1, there are homomorphisms

πi(Vmn)
αi→ πi(Gm, Gm−n)

βi← πi(V
PL
mn )

such that αi is an isomorphism for 0 6 i 6 2(m − n) − 4 and an epimorphism
for i = 2(m − n) − 3, and βi is an isomorphism for 0 6 i 6 2m − n − 4 and
an epimorphism for i = 2m − n − 3. One can readily verify that the inclusion
homomorphism ρPLi : πi(Vmn) → πi(V

PL
mn ) coincides with β−1

i ◦ αi, and hence ρPLi
is an isomorphism for 0 6 i 6 2(m−n)−4 and an epimorphism for i = 2(m−n)−3.
It remains to apply the exact homotopy sequence of the pair V eq

mn ⊃ V PLmn .

The complete proof of Theorems 4.2.i, which is also more direct and shorter (in
the sense that it does not use the results on piecewise linear Stiefel manifolds), is
given in [137]. This proof is in a sense similar both to the proof of the smooth case
of Theorem 4.1.i ([139], [56], [52], [113]) and to the proof of the piecewise linear
case of Theorem 4.1.i [55].

Proof of Theorem 11.1.b. If a triangulation T of a polyhedron N is given, we
write TN =

⋃
σ∩τ 6=∅ σ × τ . We take a triangulation T of N such that h is non-

degenerate (that is, the restriction of h to every simplex of T is an embedding),

∆̃(h) ∩ TN = ∅, and h̃ 'eq Φ on TN ∩ T̃ . By applying the method of the
first part of the proof of Theorem 4.1.e, we can construct a regular homotopy
from h to a T -immersion g : N → Rm such that gσ ∩ gτ = ∅ for any disjoint
simplices σ, τ ∈ T such that dimσ 6 dim τ and dimσ + 2 dim τ 6 2m − 3. Let

K = T (2m−2n−3). Since n+(2m−2n−3) 6 2m−n−3, it follows that ∆̃(g)∩K∗ = ∅.

Since g is a non-degenerate immersion, it follows that ∆̃(g) ∩ R(K∗) = ∅ and

g̃ 'eq Φ on R(K∗) ∩ T̃ . (If h is an immersion, then ∆̃(h) is closed in N × N

and, in general, ClN×N ∆̃(f) ⊂ ∆̃(f) ∪ diagN . If E ⊃ TN , then RT̃ (E) ∩ Ñ
can be equivariantly retracted to E ∩ T̃ for any subpolyhedron E ⊂eq N × N .)

We note that R(K∗) ∩ T̃ ⊃ (R(K))∗ ∩ T̃ . Therefore, Σ(g) ∩ R(K) = ∅. Clearly,
N − R(K) is a regular neighbourhood in N of the skeleton U dual to K. Since
dimU = n − 1 − (2m− 2n − 3) = d and N is d-connected, it follows by Engulfing
Lemma 8.1 that U is contained in some piecewise linear n-ball in N . Therefore,
by the theorem stating the uniqueness of a regular neighbourhood, N − R(K) is
also contained in some (possibly different) piecewise linear n-ball B ⊂ N . We have

Σ(g) ⊂ N−R(K) ⊂ B and g̃ 'eq Φ on (R(K))∗∩ Ñ ⊃ Ñ−(N−R(K))∼ ⊃ Ñ−B̃.

Proof of Lemma 11.2. Let M = Rm − IntR(g(N −
◦
B), g∂B). Since N is homo-

logically d-connected, we have by Alexander duality that

Hi(M) ∼= Hm−1−i(Rm −M) ∼= Hm−1−i(N −
◦
B) ∼= Hn−m+1+i(N) = 0
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for i 6 2n −m + 1. Since m − n > 3, M is simply connected. Therefore, by the
Hurewicz isomorphism theorem, M is (2n −m + 1)-connected. Hence, by Irwin’s
Embedding Theorem 3.3, the embedding g : ∂B → ∂M extends to an embedding
f : B →M . Extending f by g outside B, we complete the proof.

§12. The idea of the proofs of isotopy versions

The isotopy versions of embeddability theorems can be reduced to their boundary
versions (not to relative versions, as stated in [153]) by using the ‘Concordance
Implies Isotopy’ Theorem (§ 1). To illustrate the idea, we present the following
proof.

Proof of the piecewise linear case of Theorem 3.6.1. We consider embeddings
f, g : Nn → Rm and take a generic homotopy H : N × I → Rm × I between f
and g. Using the proof of Theorem 3.2, we modify the map H to obtain an embed-
ding. Since f and g are embeddings, it follows that H is an embedding in some
neighbourhoods of the bases N × 0tN × 1. Therefore, we can make perturbations
of H needed in the proof of Theorem 3.2 in Int(N × I) to obtain an embedding
H ′ coinciding with H in N × {0, 1}. This embedding H ′ : N × I → Rm × I is a
concordance between f = H ′|N×0 and g = H ′|N×1. Hence f and g are isotopic by
the ‘Concordance Implies Isotopy’ Theorem.

For a subpolyhedron A ⊂ K, we set A∗ = Ã ∪ [A× (K − A)] ∪ [(K −A) ×A].

Proof of the piecewise linear case of Theorem 4.6.e. We take a generic homotopy
H : N×I → Rm×I between f and g. Using the Cylinder Lemma 12.2 (see below),

we obtain an equivariant map ΣΦ ◦ p : Ñ × I → Sm such that ΣΦ ◦ p 'eq H̃ on
(N × {0, 1})∗. Using the Theorem 12.1 (which is the piecewise linear case of the
boundary version of Theorem 4.1.e) to K = N × I and A = N × {0, 1}, we obtain
a concordance between f and g. Hence f and g are isotopic by the ‘Concordance
Implies Isotopy’ Theorem.

Theorem 12.1. Suppose that K is an n-polyhedron, m > 3(n+1)
2 , A is a subpoly-

hedron of K, Bm is a piecewise linear m-ball, g : K → Bm is a piecewise linear

map such that g|A is an embedding in ∂Bm, and g(K − A) ⊂
◦
Bm. There is an

embedding f : K → Bm such that f |A = g|A and f(K − A) ⊂
◦
Bm if and only if

the equivariant map g̃ : A∗ → Sm−1 extends homotopically to an equivariant map
Φ: K̃ → Sm−1.

The proof of Theorem 12.1 is similar to that of Theorem 4.1.e.

For a polyhedron N with a given triangulation T , we identify T̃ and Ñ in this
section. This will not lead to a misunderstanding.

Cylinder Lemma 12.2 ([136], Lemma 6.1; cf. [153], Lemma 7.1 and [135],
Lemma 3.3). If a polyhedron N has a given triangulation and N×I is cell-subdivided
as a product, then

Ñ × I
N ×N × 0× 1, N ×N × 1× 0

∼=eq Σ(Ñ × I).
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Let p : Ñ × I → Σ(Ñ × I) be the factor-projection. Then

p−1Σ(Ñ × {0, 1}) = Ñ × I ∩ (N ×N × ∂(I × I)).

Furthermore, suppose that H : N × I → Rm × I ⊂ Rm+1 is a level-preserving

piecewise linear map and ϕ : Ñ×diag I → Sm−1 is an equivariant homotopy between

H̃|N×0 and H̃|N×1. Then H̃ 'eq Σϕ ◦ p on (N × {0, 1})∗.

Proof. We recall that Ñ × I is a cellular deleted product. Therefore, for every

(x, s, y, t) ∈ Ñ × I we have either x 6= y or {s, t} = {0, 1}. We define a map

p : Ñ × I → Σ(Ñ × I) by the formula (Fig. 12.1)

p(x, s, y, t) =

{
[(x, y, s+t2 ), s− t] if x 6= y,

[Ñ × I, s− t] if x = y (and hence |s− t| = 1).

One can readily see that p is well-defined, equivariant, and surjective, and its only
non-trivial inverse images are those of the vertices of the suspension, namely,
N × N × 0 × 1 and N × N × 1 × 0. The assertion about p−1Σ can be verified
easily.

Figure 12.1

To prove the ‘furthermore’ part, we observe that Σϕ ◦ p(x, t, y, t) = ϕ(x, y, t).

Hence Σϕ ◦ p = H̃ on (N × {0, 1})∗ ∩ (Ñ × diag I). For (x, s, y, t) ∈ (N × {0, 1})∗
and s < t (s > t), both points Σϕ ◦ p(x, s, y, t) and H̃(x, s, y, t) are in the northern

(southern) open hemisphere and hence are not antipodal. Therefore, Ψ 'eq H̃ on
(N × {0, 1})∗.
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[130] J. Segal, A. Skopenkov, and S. Spież, “Embeddings of polyhedra in Rm and the deleted
product obstruction”, Topology Appl. 85 (1998), 335–344.
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