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Abstract-—This survey describes recent examples of incompleteness of the Van Kampen and
the deleted product obstructions beyond the metastable case. The construction is an interesting
example of the interplay between algebraic and geometric topology and one of its origins is the
Borromean rings example.

1. INTRODUCTION

A classical problem in topology is to find conditions under which a given polyhedron is embed-
dable into R™ for any given m (see {27]). By general position, every n-polyhedron is embeddable
in R™ for every m > 2n + 1. A nice characterization of graphs, embeddable in R? (in terms of
“prohibited” subgraphs) was obtained by Kuratowski [20] (see also {41, 22]).

However, this approach can only be fruitful in dimension 2 [30]. For the problem of the em-
beddability of an n-dimensional polyhedron K in R?" Van Kampen introduced a cohomological
obstruction [17]. He also initiated a proof of its sufficiency for n > 3, which was then completed by
Shapiro and Wu, using the Whitney trick [34, 44].

Subsequently, their results were generalized to the metastable case m > ﬂ"—;—l—) by Haefliger and
Weber, to smooth and PL embeddings of smooth n-manifolds and n-polyhedra, respectively, in R™
(ih terms of the deleted product obstruction) {12, 42] (see also [13, 35-37]).

' Tile metastable dimension restriction is necessary in the Haefliger theorem [25, 14; 26, §2], and
it is sharp-in the isotopy analog of the Haefliger-Weber theorem [10, 11; 23, Proposition 8.3].

Récently, Freedman, Krushkal, and Teichner have shown that the Van Kampen-Shapiro-Wu
theorem fails for n = 2 [6]. Furthermore, Segal, Skopenkov, and Spiez showed that the metastable
dimension restriction in the Weber theorem (33, 40] is sharp (see also [24, 16]), even if the deleted
product obstruction is replaced by the p-fold deleted product obstruction.

The construction of their examples is an interesting interplay between algebraic and geometric
topology. The purpose of this survey is to show how these examples were conceived. One of their
origins was the Borromean rings example, which was also the origin of the examples in [10, 11; 23,
Proposition 8.3).
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BORROMEAN RINGS AND EMBEDDING OBSTRUCTIONS 315

Fig. 1

2. THE VAN KAMPEN OBSTRUCTION

To explain the idea of the Van Kampen obstruction, we would like to sketch the proof of non-
planarity of K5 (the complete graph with 5 vertices). Take any general position map f: K5 — R2.
Let v be the sum mod 2 of the numbers |fo N fr| of the intersection points of the f-images fo
and f7, over all non-ordered pairs {0, 7} of disjoint edges of K5. For the map f shown in Fig. 1,
v(f) = 1. Every general position map f: K5 — R? can be transformed to any other such map
through isotopies of R? and “Reidemeister moves” for graphs in the plane from Fig. 2. For each
edge of K5 with vertices a and b, the graph K5 — {a, b}, obtained by deleting from K5 vertices
a and b and interiors of the edges adjacent to a and b, is a circle. This is the very property of K5
which is necessary for this proof. Therefore v is invariant under the “Reidemeister moves.” Hence
vs = 1 for each general position map f: K5 — R?, and so K3 is nonplanar.

Now let us discuss some generalizations of the above proof which will be used in the sequel. This
proof actually implies a stronger assertion. Let e be an edge of K5 and ¥ the cycle in K; formed
by the edges of K; disjoint with e. Then K5 — é is embeddable into R? and, for each embedding
g: K5—¢é — R2, the g-images of the ends of e (the 0-sphere) lie on different sides from g¥. Similarly,
one can prove that the graph Kj3; (three houses and three wells) is not embeddable into R? and
that the 2-skeleton K of the 6-simplex is not embeddable into R*. Moreover, let e be a 2-simplex of
K and P = K —é. Then P embeds in R* and P contains two disjoint spheres 2 and X! = de such
that, for each embedding P — R*, the images of these spheres link with a nonzero (actually, 1)
linking number [7].

Now we are in a position to define the Van Kampen obstruction v(K). Throughout this chapter
we shall omit Z,-coefficients from the notation of the (co)chain and (co)homology groups. Fix a
triangulation T of K. For any general position PL map f: K — R? and disjoint edges o and 7 of
T, let vg(o,7) = |f(o) N f(r)| mod 2.

Let K = U{o x7 €T xT | oNT = @} be the simplicial deleted product of K. We denote it
by K , not by T, because its equivariant homotopy type depends only on K, not on T [15]. The
group Zg acts on K by exchanging factors. Let K* = K /Zy. Then vy € C*(K*). This vy is
invariant under isotopy of R? and “Reidemeister moves” from Fig. 2a. The “Reidemeister move”
from Fig. 2b adds to vy the cochain, which is 1 on the class of @ x 3 for v € a, and 0 elsewhere.
This cochain is a coboundary of the elementary cochain from B%(K*) that assume value 1 on the
class of » X B, and 0 elsewhere. Then the equivalence class vo{K) € H3(K*) = C%(K*)/B*(K*)
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of vy does not depend on f. For'a proof of this fact without the use of the “Reidemeister moves”
see [6].

This ve(K) is the mod 2 Van Kampen obstruction for embeddability of K in R?. It is clear
that, for all planar graphs K, one has vo(K) = 0. Analogously one defines the mod 2 Van Kampen
obstruction vo(K) € H?>"(K*) to embeddability of an n-polyhedron K in R?".

The genuine Van Kampen obstruction v(K) (with integer coefficients) is constructed as follows.

Fig. 2

Fix a triangulation of K and define K and K* as above. Choose an orientation of R2® and on
n-simplexes of K. In fact, v(K) depends on this choice, but only up to an automorphism of
the group, in which v(K) is defined. For any general position map f: K — R?" and any two
disjoint oriented n-simplexes o and 7 of K, count an intersection as +1, when the orientation of
fo followed by that of fr agrees with that of R?", and as —1 otherwise. Let vy € CQ"(E WA
be the cocycle which counts the intersection of fo and fr algebraically in this fashion. Clearly,
vi(o x 7) = (=1)"vg(T x g). So vy is in the subgroup Cf"(E,Z) of C?*(K,Z) formed by the
cochains whose components corresponding to symmetric 2-cells ¢ x 7 and 7 x o are equal (for
odd n).or opposite (for even n). Then v(K) € H2(K,Z) = C?*(K,Z)/B¥(K,Z) is the class
of vy.

The above constructions can be generalized in several ways. Given an embedding A C dB™ of a
subpolyhedron A of K, we can define analogously the obstruction to extending the embedding of A
to an embedding K — B™. Analogously, one can construct a difference element u(f) € Hf"(f ,\Z)
of an embedding f: K — R***!. As it was pointed out by Shapiro, when v(K) = 0 (and hence K
is embeddable in R2" for n > 3), one can construct the ‘second obstruction’ to embeddability of K
in R?*~! etc. For a controlled analog of the Van Kampen obstruction see [3, §4; 28; 2, §4].

From the definition we can see that v; “measures” the deviation of f from an embedding.
So it is natural to conjecture that the vanishing of v(K) implies the possibility of removing the
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singularities, and that the condition v(K) = 0 is not only necessary, but also sufficient for K to be
embeddable in R?".

Theorem 2.1 [17, 34, 44, 29, 6]. For a finite n-polyhedron K to be embeddable in R*™ it is
necessary that v(K) = 0. For n # 2 it is also sufficient, whereas for n = 2 it is not.

The relative case of Theorem 2.1 is true for n > 3 and is false for n = 2. It would be interesting
to know if it is true for n = 1.

Using the idea of obstruction, in [17, 43] it was proved that any PL or smooth n-manifold is
PL or smoothly embeddable in R?*. For n > 3, an interesting corollary of Theorem 2.1 (and for
n = 2 a separate result) is that every acyclic n-polyhedron is PL (if n = 2, Top) embeddable in
R2" (44, 19].

The Whitney trick, on which the proof of sufficiency in Theorem 2.1 for n > 2 is based, cannot
be performed for n = 2 [18, 21]. The sufficiency in Theorem 2.1 for the case n = 1 is a corollary of
the Kuratowski description of planar graphs.

However, Sarkaria has found a proof of this case based on the 1-dimensional Whitney trick [29].
He also asked if the sufficiency in Theorem 2.1 for the case n = 2 holds. Freedman, Krushkal and
Teichner constructed an example showing that it does not.

3. CONSTRUCTION OF THE FREEDMAN-KRUSHKAL-TEICHNER EXAMPLE

To illustrate one of the main ideas let us first construct Borromean rings (i.e., three circles
embedded into R® such that every pair of them is unlinked but the three of them together are
linked) using the non-commutativity of the fundamental group. In this section tilde does not
denote the deleted product.

Take two circles & and ¥ in R3 far away from one another. Embed in R® — (X U T) the
Figure Eight (i.e., the wedge of two circles) C such that the inclusion C ¢ R® — (2 U X) induces
an isomorphism of fundamental groups. Take generators a and b of 7 (C) = m (R — (S U %))
represented by the two (arbitrarily oriented) circles of the Figure Eight.

Consider a map S! — C C R® representing the element aba~'b~!. By general position, there
is an embedding f: S' — R® very close to this map. Then X, f), and f(S!) are Borromean rings.
In fact, £ and £ are unlinked by their definition. It is easy to take f so that ¥ and f(S!), & and
f(S?) are unlinked (the reason for this is that f induce the zero homomorphism of the 1-dimensional
homology groups). But f induces a nonzero homomorphism of the fundamental groups. Therefore
%, £ and f(S*) are linked together.

From the existence of Borromean rings one can deduce the following folklore counterexample to
the relative version of Theorem 2.1 for n = 2. Let K = D?uD?uD? A =9D?uU8D?udD?, and
A C §% = 8D* be the Borromean rings. Since all the three Borromean rings are linked, it follows
that the embedding A — dD* cannot be extended to an embedding K — D*. But the unlinkedness
of each pair of Borromean rings implies the vanishing of the relative Van Kampen obstruction to
this extension. This is clear, since the Van Kampen obstruction counts double intersections but
does not count triple intersections.

Now we are in a position to construct the Freedman-Krushkal-Teichner counterexample to
Theorem 2.1 for n = 2 [6]. Let P be the 2-skeleton of the 6-simplex minus the interior of a 2-
simplex from this 2-skeleton. Recall that P contains two disjoint spheres £? and £! such that for
each embedding P — R* these spheres link with a nonzero (actually, 1) linking number. Let P be

a copy of P. For a subset 4 C P we denote by A C P its copy.
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Embed P and P in X} standardly (i.e., so that both %2 and 52 are unknotted, £2 and %2 are
unlinked, and 2 and !, £2 and ! are standardly linked spheres) and far away from one another.
Take any point z € X! and push a finger from z to % to obtain an embedding PV P C R*.

Let C = X! v £! be a Figure Eight (with the base point z = Z). Then the inclusion C C
R* — (22 U £?) induces an isomorphism of the fundamental groups. Take generators a and b
of m1(C) represented by the two (arbitrarily oriented) circles of the Figure Eight. Take a map
h: S' — C representing the element aba=*b7!. Let K be the mapping cone of the composition of
h with the inclusion C C PV P (i.e., K = D?*Up. gp2c(P V P)).

Then K is nonembeddable into R* although v(K) = 0. For a detailed proof see [6]. The reason
for v(K) = 0 is that the Van Kampen obstruction preserves the homology property that aba 15671
is null-homologous and loses the homotopy property that aba=!67! is not null-homotopic.

Let us sketch the proof of nonembeddability of K into R*. Suppose to the contrary, that there
exists an embedding g: K — R?. If both =2 and g%? are unknotted in R?, then it follows from the
property of P that the map C — gC C R* — g(£2 U £2) induces a monomorphism of fundamental
groups. In general case this is proved using the Stallings theorem on central series of groups. But
the element aba~!b~!, which is nonzero in ;C, goes to a loop in R* ~ g(£20U%2), which is extendible
to g¢D? and hence null-homotopic. Contradiction.

The example of Borromean rings suggests that one can introduce an obstruction to (relative)
embeddability, analogous to Van Kampen’s, but deduced from triple (quadruple, .. .) intersections.
And that this obstruction is sufficient to embeddability, even when the Van Kampen obstruction
fails to be such. Although such obstructions can really be defined [23], they surprisingly give no
more information on the embeddability of a polyhedron into R™ (cf. Section 4).

4. THE DELETED PRODUCT OBSTRUCTION

Let K = {(z,y) € K x K | z # y} be the deleted product of K. An embedding f: K — R™
induces a map f: X — §™1, deﬁneilvby flz,y) = '%(%)):—Q% This map is equivariant with respect
to the involution t(z,y) = (y,z) on K and the antipodal involution @ on S™~!. The nonexistence
of an equivariant map K — S™1is the deleted product obstruction to embeddability of K into R™.
If K is a polyhedron with a triangulation T, then the simplicial deleted product of K (cf. Section 2)
is an equivariant retract of K, so we shall not distinguish between them.

The existence of an equivariant map K - Sm™1is equivalent to the existence of a cross-section
of the bundle g: K x S™!/(t x a) sy K /t. Here, the map g is defined by 9l(z,v), o] = [(z,v)].
So, if K is either a polyhedron or a smooth manifold, then obstruction theory can be applied.
In particular, the Van Kampen obstruction is just the first obstruction to the existence of such a
cross-section.

Theorem 4.1 {42, 10]. If an n-polyhedron K is TOP embeddable in R™, then there exists
an equivariant map P: K = S™1 Form > &"}'—u this condition is also sufficient for PL
embeddability. For each pair (m,n) such that 4 < m < ‘321‘- + 1, it s not sufficient (even for TOP
embeddability).

Theorem 4.1 has many corollaries [42]. For other proofs, see [13, 36] and, for a smooth case,
see [12].

The dimension restriction m > ﬂﬁ;—ll for the sufficiency in Theorem 4.1 is due to the Freuden-
thal Suspension theorem, the Penrose-Whitehead-Zeeman-Irwin Embedding theorem, the Zeeman
Unknotting theorem and the general position arguments.
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Using the approach of [13, §3, Proof of Proposition 1], it can perhaps be shown that the restric-
tion due to the Penroze-Whitehead-Zeeman-Irwin Embedding theorem is not essential. Torunczyk
and Spiez showed that the same is true for the Zeeman Unknotting theorem [38, 39].

Using Whitehead’s generalization (the so-called ‘hard part’) of the Freudenthal Suspension
theorem and the Whitehead higher-dimensional finger moves [8, §10], they also showed that the
restriction due to the Freudenthal Suspension theorem is not sharp [39], see also [4, 5, 32] (note
that the application of the higher-dimensional finger moves in this situation was first suggested by
Séepin).

This was the reason why, in 1992, Dranishnikov and Schepin suggested to the second author
to prove the sufficiency in Theorem 4.1 for m = 323 + 1. However, Segal and Spiez constructed a
counterexample, using the same higher-dimensional finger moves. They showed that for each pair
(m,n) such that 4 < m < 3 +1 (except for a finite number), the sufficiency is not true [33]. Their
example used a homotopy corollary of the Adams theorem on vector fields, and their exceptions
were caused by the Adams exceptions 1, 3, and 7.

Some of the exceptions were treated by the second author (cf. [31]) using finger moves, the
idea of [6], and the results of [33]. Subsequently, this construction was generalized independently
by Segal-Spiez and the second author to obtain a simplification of [33], which did not use the
Adams theorem, and therefore had no exceptions [40]. This example shows that the restriction
m > 3—(%1) is actually necessary, in general, for validity of the second part of the proof of sufficiency
in Theorem 4.1 (cf. [36]).

The examples of [33, 40] have a stronger property, which implies that, for 4 <m < %’l +1, even
the deleted product cube (or the p-fold deleted product) obstruction is insufficient for embeddability
of n-polyhedra in R™. This property is that K be quasi-embeddable in R™, i.e., for each ¢ > 0
there should exist a map f: K — R™ whose preimages are of a diameter of less than e.

This is a topological property (i.e., it does not depend on the metric of K), and for polyhedra A
it is equivalent to the following: For each triangulation of K there is a map f: K — R™ such that
fo N fr = @ for each disjoint simplexes ¢ and 7 of this triangulation. :

Clearly, quasi-embeddability of a polyhedron K in R™ implies v(K) = 0 for m = 2n, and
implies the existence of an equivariant map from the p-fold simplicial deleted product of K (which
is an equivariant retract of the genuine p-fold deleted product) to that of R™. Thus the Van
Kampen and the deleted product obstructions are actually obstructions to quasi-embeddability.
not embeddability. '

Problem 4.2. Suppose that K is any n-polyhedron and there ezists an equivariant map K —
S™=1 or else from the p-fold (simplicial) deleted product of K to that of R™. Is K then quasi-
embeddable into R™ (at least for m = 37" +1)?

It is interesting that, for PL manifolds, the dimensional restriction in Theorem 4.1 can be
weakened:

Theorem 4.3 [35, 37]. If N is any closed (3n — 2m + 2)-connected PL n-manifold, m —n > 3
and there exists an equivariant map N — S™=1 then there is a PL embedding of N into R™.

APPENDIX
BORROMEAN RINGS AND BOY IMMERSION

The following was proved in [1] (see also [2, 9]). Let hA: RP? — R® be a Boy immersion.
Fix any orientation on S* and on the double point (immersed) circle A of h. Take a small ball
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D3 C R® containing the triple point of immersion h; = h o r, where r: S - RP? is the standard
double covering. Let h: (52 — h71D3) — R® x R be a generic smooth map such that (r: R® x R —
R3)oh = h; and, for each two points z,y € S? —hf1D3, if hz = hy and hz > hy, then the following
three vectors form a positive basis of R® at the point hxz = hy: the orientation vector of A, the
normal vector to a small sheet of hi(S?) containing z, and the normal vector to a small sheet
of h1(S?) containing y. Then h| hTlaps 8D? x R form Borromean rings (after the identification

and :
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