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1. THE PROBLEMS OF EMBEDDABILITY AND ISOTOPY

Many theorems in mathematics state that an abstractly defined space is necessarily a subspace of
some ‘concrete’ one. Such is e.g. Caley’s theorem on finite groups, theorem on compact Lie groups
(stating that they are virtual subgroups of GL (V). for some linear space V), Urysohn’s theorem
on normal spaces with countable basis, general position theorem for polyhedra, Menger—NGbeling-
Pontryagin’s theorem on compact spaces of finite dimension, Whitney’s theorem on smooth mani-
folds, Nash’s theorem on Riemann manifolds etc. For such embedding problem we may even go a
step further and study figures in a Euclidean space of fixed dimension.

Definition 1.1. A polyhedron X is said to be PL-embeddable in R™ if there is a PL homeo-
morphism f: X — R™ (which is called an embedding of X into R™).

Problem 1.2. Find conditions for a polyhedron P to be PL-embeddable in R™, for a given m.

Similar problem can be stated in the Top- or Diff-category. In this survey we shall work in the
PL-category, in particular, all maps will be assumed to be PL unless stated otherwise. We shall
also mention analogous results for the Diff- and Top-category. For the survey on Diff-embeddings,
immersions and isotopy see [1]. When m > 2dim P + 1, the polyhedron P is embeddable in R™,
by general position. In fact, P x I is embeddable in R™ [6]. We shall limit ourselves to describing
partial results on the problem 1.2 which is one of the goals of the present survey.

We can relax the injectivity condition in the definition of embedding in two (dual) ways. First,
a polyhedron X is said to be immersible in R™ if there are € > 0 and'a map f: X — R™ such that
f(z) # f(y), whenever dist (z,y) < €. Second, a polyhedron X is said to be quasi-embeddable in
R™ if for every € > 0 there is a map f: X' — R™ such that f(z) # f(y), whenever dist (z,y) > €.
These two concepts are used mostly in the Diff- and Top-category, respectively. Many results of
this survey have their parallels for immersability and quasi-embeddability but we shall not state

them.
Another interesting problem (and perhaps central to geometric topology) is how to determine

whether two given subpolyhedra of R™ are the same. Best known is the problem of classification

of knots in R3. More precisely:
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Definition 1.3. Two embeddings f,g: X < R™ of a polyhedron X are said to be isotopic if
there exists an embedding F: X x I = R™ x I (which is called an isotopy) such that F(X x {t}) C
C R™ x {t} for every t € I and F(z,0) = f(z), F(z,1) = g(z).

Problem 1.4. Find conditions for embeddings f, g of a polyhedron X into R™ to be isotopic.

When m > 2dim P + 2, every two embeddings of a polyhedron P in R™ are isotopic by general
position. The second aim of this survey is to describe partial results concerning the problem of
isotopy.

Evidently, isotopy is an equivalence relation on the set of embeddings of X in R™. It is the
strongest among known equivalence relations between embeddings such as isoposition, concordance,
bordance, etc. Two embeddings f,g:X — R™ of a polyhedron X are said to be (orientation
preserving) isopositioned if there is an (orientation preserving) homeomorphism h:R™ — R™ such
that ho f = g. By Alexander-Guggenheim theorem [7], orientation preserving isoposition is
equivalent to an isotopy. Two embeddings f, g: X — R™ of a polyhedron X are said to be concordant
if there is an embedding F: X x I — R™ x I (which is called a concordance) such that F(X x {t}) C
C R™ x {t} fort = 0 and t = 1. A surprising result of Lickorish and Hudson says that for
m — dim X > 3 concordance implies isotopy (in PL- and Diff-category) [5, 4]. Thus the problem of
isotopy can be reduced to the relativized problem of embedda.bility. Note that this is not the case

in codimension one or two.
Problems of embeddability and isotopy can be generalized from R™ to an arbitrary space Y.

Cases when Y is a manifold or is a product of trees have been studied most widely [8, th. 4.6 and
remark; 3, 9, 2]. In Secs. 2-6 of this survey we present necessary conditions for embeddability and
isotopy and formulate sufficency theorems for these conditions. In Secs. 7-8 we briefly describe two
important ideas of geometric topology, which can be applied to prove these sufficiency theorems.
In Sec. 9 we give controlled and mapping versions of this theory, which are motivated by studies of
embeddability of compacta.

2. PROHIBITED SUBPOLYHEDRA

If some subpolyhedron of a polyhedron X is not embeddable in R™ then X is not embeddable
in R™. Also, if f and g are embeddings of a polyhedron X in R™ such that their restrictions onto
some subpolyhedron of X are not isotopic, then f and g are not isotopic. A natural idea is to
try to put together a list of ‘prohibited’ polyhedra (or a list of ‘prohibited’ pairs of non-isotopic
embeddings) such that X is embeddable in R™ if X does not contain any of these ‘prohibited’
subpolyhedra (respectively, two embeddings are isotopic if they do not contain any ‘prohibited’
pair).

Theorem 2.1 [15]. A graph (i.e., a 1-dimensional polyhedron) is embeddable in R? if and only
if it does not contain a subgraph homeomorphic to Ky or K33 (Fig. 1).

Theorem 2.2 (17, 14]. A 2-dimensional polyhedron is embeddable in S? if an only if it does
not contain Ks, K33 or T2 (Fig. 1).

Theorem 2.3 [12]. A Peano continuum is embeddable in S? if and only if it does not contain
K5, K3,3, Cl or Cz (Fig. 1). ’

Theorem 2.4 [18]. Two embeddings f,g: K — R? of a graph (or even Peanian continuum)
K are isotopic if and only if K does not contain T! or S! such that the pairs {flp:,glm} or
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{fls1.9ls1} are as shown on Fig. 2.

Simple proofs of Kuratowski criterion appear even nowadays [22, 16]. For the description of
continua, basically embeddable in R?, in terms of prohibited subpolyhedra, see [21]. There are
many other graph planarity criteria. Some of them are lower dimensional analogues of criteria of
embeddability to be discussed below. A list of prohibited subgraphs for embeddability of K in RP?
contains 103 graphs [13]. Even the existence of such a finite list for arbitrary surface has a very
long proof [10, 19]. Such a list is infinite for embeddability into R?™ when m > 2 [20]. Thus we
have to consider another necessary conditions to embeddability.

3. COMPLEMENTS

Suppose that a polyhedron X is embedded in R™. The study of properties of R™\ X in terms of
those of X will then give necessary conditions for X to be embeddable in such an R™. This method
can be traced back to early works of Alexander. Let us, for example, verify the nonplanarity of

K33. The Alexander duality for graphs in R? is just the Euler formula V — E + F = 2. For K33
we have V =6, E = 9. If K33 C R? then 4F < 2F (since every face has at least four edges in its

boundary). Hence V — E + F < 1.5, which is a contradiction.
In general, it follows from the Alexander duality theorem that Betti numbers satisfy b™(X) =

b~!(R™ \ X) = 0. This gives a necessary condition for X to be embeddable in R™. Using this
method Hantzsche obtained conditions in terms of Betti numbers and torsion numbers for a closed
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(m — 1)-manifold X to be embeddable in R™, by studying duality between homology groups of X
and R™ \ X. Similarly, by studying the duality between the cohomology rings of X and R™\ X
Hopf proved that X = RP™! is not embeddable in R™ [28]. In the same manner Thom obtained
conditions in terms of cohomology ring of X for a closed (m — 1)-manifold X to be embeddable in
R™ [35]. Peterson studied the duality between cohomology operations in X and S™ \ X and gave
some interesting embeddability theorems.

The idea of complement is also applicable to the problem of isotopy. If f,g: X < R™ are
isotopic embeddings then R™\ f(X) and R™\ g(X) are homeomorphic. This idea was first applied
by Alexander to knots S! C S3 in 1910’s. For example, using Van Kampen theorem on the
fundamental group of the union, we obtain that m1(S3\ (trefoil knot)) = (z,y | zyr = yzy) = =.
Evidently, m;(S3\ (trivial knot)) = Z. The first idea to distinguish between 7 and Z is to look on
n/[r,x]. But it turns out that x/[x,n] = Z. Perhaps Alexander, trying so to distinguish knots,
observed that r/[r,x] = Z for fundamental group = of the complement to a knot, which lead him
to discovery of his duality theorem. To distinguish between trefoil knot and trivial knot one can
construct a non-trivial homomorphism © — S3, defined by z — (12), y — (23). Hence 7 is not
abelian and not-isomorphic to Z. The theory of knots S C §3 (or more generally, S™ C $™t?) is
too extensive to be included in this survey. This theory is in fact based on the following criterion:

Theorem 3.1 [32, 29, 92] (see also [27]). A (Diff, or PL-locally flat, or Top-locally flat) em-
bedding S™ C S™*? is (Diff, or PL, or Top) unknotted if and only if S™*2\ S™ is homotopically
equivalent to S'. Here n # 2 (for PL- and Diff-category even n # 3). Forn =1, (§"*t?\ S") ~ S!
is equivalent to m(S™*?\ §™) = Z.

A (PL or Top)-embedding S® C S™ is said to be (PL or Top)-locally flat, if every point of
S™ has a neighborhood U in S™ such that (U, U N S™) = (B® x B™ ", B" x 0) (PL- or Top-
homeomorphism, resp.). Local flatness assumption in Top category is necessary in order to rule
out wild embeddings, which were first constructed by Antoine in 1920 and Alexander in 1923 [24],
using the same complement idea. For references see [33]. Alexander constructed his example while
studying the knots in codimension 1. The well-known Jordan theorem, first proved by Brouwer,
states that every S™, contained in S™*1, splits S™*! into two components. It is easy to prove the
‘analogue’ of criterion 3.1: S™ C S™*! is unknotted if and only if the closures of these components
are balls. In 1912 Schonflies proved that every S C S? is unknotted. Thus, unknottedness

S™ € S™t1 is called ‘Schénflies theorem’ or ‘problem’. In 1921 Alexander announced that he has
proved Schonflies theorem for arbitrary n. However, in 1923 he found a counterexample — the
celebrated Horned sphere. The conjecture was then modified by adding a local flatness condition

to the embedding S™ C S™t1.
Theorem 3.2 [26, 30, 31, 34, 25, 7] . Every Top-locally flat or PL-locally flat or Diff-embedding
5™ C S™*1 is unknotted in respective category (n # 3 for Diff- and PL-category).

Note that Brown’s elegant short proof was a beginning of theory of ‘cellular sets’, which is now
an important branch of geometric topology. The PL-Shdenflies theorem is true for n € {1, 2} [23]
and is an outstanding unsolved problem for n > 3 [7].
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4. NEIGHBORHOODS

The local flatness assumption in Sec. 3 leads to another idea in studying embeddings. Instead
of considering relations between X and R™ \ X we can consider relations between X and its
neighborhoods in R™. This method seems to have been first introduced by Whitney in Diff-category.
Whitney created a theory of sphere-bundles and introduced the so-called Stiefel-Whitney classes

k € H*(X,Z,) and the dual Stiefel-Whitney classes w* € H™ %(M, Z,) of a differential manifold
X which have played an important role in topology and differential geometry. The notion of Stiefel-
Whitney classes was generalized by Pontryagin who introduced characteristic classes of differential
manifolds among which, besides the Stiefel-Whitney classes, the most important ones are so-called
Pontryagin classes p** € H**(X,Z) and their dual 3** € H* 4(X,Z). As far as the embedding
problem is concerned, we have the following classical theorem:

Theorem 4.1 (42, 39]. If an n-dimensional Diff-manifold M is embeddable in R™, then
B*(M) =0 for k > m —n and p*(M) =0 for 2k > m — n.

Taking the same principle at a basis, Thom derived the following from the study of Steenrod
squares in X and those in its neighborhood in R™:

Theorem 4.2 [40]. For a locally contractible compactum X, to be embeddable in R™, it is
necessary that Sm‘H'(X, Zy) =0 for r +2i > m, where Sm': H"(X,Z;) - H™(X,Z,) are certain
homomorphisms determined by the Steenrod squares by 3 ;4 -k Sm*Sq’ = 8.

The same principle has also been applied in Diff-geometry, e.g. by Massey who studied the
cohomological rings of the tubes around a manifold M embedded in an Euclidean space and al-
so by Atiyah who studied these tubes considered as elements in K(M). Note that this idea of
‘neighborhood’ is also applicable in studying of immersions. Since normal bundles for different
embeddings of manifold X in R™ are stably equivalent, this idea is hardly applicable to studying
of isotopy. For a closely related concept of thickability and thickenings see [41, 36-38].

5. VAN KAMPEN’S OBSTRUCTION

Van Kampen took up the problem of the embeddability of an n-dimensional polyhedron K in
R?", Consider a general position map f: K — R?". Such an f has only finitely many double points,
all contained in the interiors of n-simplices of K. From the study of such double points we can
derive certain obstruction to embeddability of K in R?", independent on f. Let us prove as an
example that K3 is not planar. Take a general position map f: K5 — R?, as above. Let 9(f) be the
sum mod 2 of the numbers |f(c) N f(7)| of intersection points of f-images f(o) and f(r), for all
non-ordered pairs {o, 7} of disjoint edges of K5. For the map f, shown on Fig. 1, 9(f) = 1. Every
general position map f: K5 — R? can be transformed to any other such map g: Ks — R? through
isotopies of R? and operations, shown on Fig. 3. Since for each edge of K5 with vertices a, b, the
graph K5\ {a, b}, obtained by deleting from Ky vertices a, b and interiors of incident to their edges,
is a circle, it follows that J(f) is invariant under these transformations. Therefore 9(f) = 1 for
each general position map f: K5 — R? and hence K is not planar.

This construction can be generalized to arbitrary graphs as follows. For any general A position
map f: K — R? and disjoint edges 0,7 of K let 97(c,7) = |f(0) N f(r)] mod 2. Then ¥ €
C’f(?(', Z,), where K = U{e x T € K x K| onT = @}. This 9; is invariant under isotopy of R?
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and perturbation of f shown on Fig. 3a. Perturbation of f, shown on Fig. 3b, adds to ¥; the
coboundary of the elementary symmetric cochain, which is 1 on v X # and § x v, and 0 elsewhere.
Therefore its equivalence class 9(K) € H2(K,Z,) does not depend on f. This is Van Kampen
obstruction for embeddability of K in R?: it is clear that for all planar graphs K one has 9(K) = 0.
A Z-analogue of 9(K) is constructed as follows. Fix an orientation of R? and for any general position
map f: K — R? and any two disjoint oriented o, 7 of K, count an intersection as +1, when the
orientation of f(o) followed by that of f(r) agrees with that of R?, and as —1 otherwise. Then
9(K) € H2(K,Z) is the class of the cocycle 9;(K) which counts the intersection of f(o) and f(r)
algebraically in this fashion. Analogously one defines Van Kampen obstruction 9(K) € H2*(K, Z)
to embeddability of an n-dimensional polyhedron K in R?". From its definition we see that the
cochain 9 1(K) associated to a general position map f: K — R%" serves somewhat as a measure of
the deviation of f from embedding. So it is natural to suggest that the vanishing of #(K) implies
the possibility of removing the singularities so that condition 5(1( ) = 0 will be not only necessary,
but also sufficient for K to be embeddable in R2".

Theorem 5.1 {46, 49, 52, 48, 44]. For a finite n-dimensional polyhedron K to be embeddable
in R?" it is necessary that 5(1{) = 0. For n # 2 it is also sufficient, for n = 2 it is not.

Theorem 5.2 [46, 43]. Any n-dimensional PL- or Diff-manifold is PL- or Diff-embeddable
in R?",

Theorem 5.3 [52, 47], see also [45]. Every acyclic n-polyhedron is PL (if n = 2 Top)-
embeddable in R?".

Whitney and Pontryagin considered the problem of embeddability in Diff-category, based on
somewhat the same method of ‘obstructions’. If f: M — R™ is a general position differentiable
map of a differentiable n-dimensional manifold M, then, in general, singularities will occur. These
singularities carry certain cycles whose dual cohomology classes are independent of f and will

hereafter be called characteristic classes of the manifold. Among them we have the Stiefel-Whitney
classes and Pontryagin classes already mentioned in Sec. 4. As it was pointed out by Shapiro, one

can construct ‘second obstruction’ to embeddability of K in R2*~1, when 5(K ) = 0 (and hence
K is embeddable in R?", provided n > 2), etc. Analogously, one can construct difference element
u(f) € H2*(K,Z) of an embedding f: K <+ R?™*!, and prove:

Theorem 5.4. (a) ([73])) Two embeddings f, g: K — R?"+! of an n-dimensional polyhedron K
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are isotopic if and only if u(f) = u(g), provided n > 2.
(b) ([50])) Two embeddings f,g: K — R3 of a graph K are homologous if and only if u(f) = u(g).

6. THE DELETED PRODUCT CONDITION

The deleted product necessary condition for embeddability and isotopy is application of general
mathematical idea of complements of diagonals. It was introduced by Lefschetz and Borsuk, and
has played pervasive role in several branches of mathematics ever since [70]. Useful and interesting
consequences of this method arise through an analysis of the complements of diagonals viewed
through the eyes of cohomology groups. In particular, obstructions of Secs. 2-5 can be deduced

from the deleted product necessary condition in a purely algebraic way [73].
To illustrate the main idea let us prove that S™ is not embeddable into R™. If, on the contrary,

f: 8™ = R" is an embedding, define a map f:8™ = §™1 by f(z) = “5{3%%:—:}" “Here by —z we
denote the antipode of the point z € S™. Since f is embedding, f is well-defined. Evidently, f is
equivariant with respect to antipodal involutions on S™ and on S, This is a contradiciton (since
fl gn-1 is then an inessential equivariant map), hence S™ is not embeddable in R™.

To generalize this proof, let us introduce X = {(z,y) € X x X| z # y} — the deleted product
of X. An embedding f: X — R™ then induces a natural map f: X — S™~1, defined by f(z,y) =
ﬁ%ﬁ-’. This map is equivariant with respect to the involution (z,y) & (y,z) on X and the
antipodal involution on S™~1, The existence of an equivariant map X = S™1is called the deleted
product necessary condition for embeddability of X in R™. If X is a polyhedron with a triangulation
T,let T = U{o x T xT xT| 0Nt = @} be the simplicial deleted product of X . Since T is equivariant
retract of X [63], the deleted product condition is equivalent to the existence of an equivariant map
T — §™-1.

Taking into account that the injectivity of the map f has already been applied in defining the
map f, we are naturally led to conjecture that the continuity of the map f would imply something

more than the mere continuity of the map f. Then the ‘homotopic’ methods applied to f would
give essential informations about the embeddability of X in R™. It turns out that this is indeed

the case. As it was pointed out by Haefliger, the existence of an equivariant map X o Ss™1is

~ -1 ~
equivalent to the existence of a cross-section of the bundle X x S™~1/(t x a) S% X /t. Here t is the

involution (z,y) < (y,z) on X and a is the antipodal involution on S™~!, the map g is defined by
[(z,y),e] = [(z,y)]. Soif X is a polyhedron or differentiable manifold, then methods of obstruction
theory can be applied. In particular, Van Kampen obstruction is just the first obstruction to the
existence of such a cross-section.

The deleted product condition to isotopy is constructed as follows. If f, g: X — R™ are isotopic
embeddings and F: X x I — R™ is an isotopy between them, then the map &: X x I — S™~1,

defined by ®(z,y,t) = £ :': :F z': is an equivariant homotopy between f and §. So, the deleted

product condition for isotopness of f and g is homotopness of fa.nd g. This condition is equivalent
to equivalence of Haefliger’s cross-sections above.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS  Vol. 212 1996




170 REPOVS, SKOPENKOV

Theorem 6.1 [58, 72]. (a) An n-dimensional polyhedron (resp. Diff-manifold) X is PL (resp.
Diff)-embeddable in R™ if and only if there ezists an equivariant map $:X - sm-1, provided
m > QL";—I)- Moreover, for every such ® there ezists an embedding f: X < R™ such that f ~ .

(b) Two PL (resp. Diff)-embeddings f,g: X < R™ of an n-dimensional polyhedron (resp. Diff-
manifold) X are PL (resp. Diff)-isotopic if and only if f is equivariantly homotopic to §, provided
m> %ﬂ + 2. »

Theorem 6.2 [68]. A closed PL- or Diff-n-manifold X is embeddable in R™ if and only if
there ezists an equivariant map ®: X — S™-1, provided either

(@ m=3L+1;or

(b) X is simply connected and m = 3L, or

(c) X is 2-connected and m = 3.

Theorem 6.3. (a) ([58, 72, 68]) Suppose that m > n+3, m > 3% and M és homologically
(for m < 3L, homotopically) (2n — m — 1)-connected PL- or Diff-n-manifold. Then M is PL- or
Diff-embeddable in R™ if and only if Wm_n(M) = 0.

(b) (corollary of [64]) Every n-dimensional homological sphere is embeddable in R™*+! (if n # 3,
then PL or Diff, if n = 3 only Top).

(c) ([66]) Let n > 5 be an integer, n £ 1(8). Let M be a closed differential (n — 1)-connected 2n-
manifold. If n is even and M is m-manifold, or n is odd and Arf M = 0, then M is Top-embeddable

into R2*+1,
Theorem 6.4 [58,72]. (a) If m > 3(221'—1-)- and M is a closed orientable homologically (2n—m)-

connected n-manifold (PL or Diff), then PL (or Diff)-isotopic classes of M in R™ are in 1-1
correspondence to:

H™""1(M,Z), m—n even,
H™"1(M,Z,;), m—n odd.

(b) If n # 2 and M is a closed non-orientable connected n-manifold (PL or Diff), then (PL or

Diff)-isotopic classes of M in R?™ are in 1-1 correspondence to:

H™Y(M - pt,Z)/2H" (M, Z), n even,
HY(M - pt,Z,), n odd.

Theorem 6.5 [72, 71, 60, 61]. Every closed (if n = 2%, orientable) n-manifold (PL or Diff) is
(PL or Diff)-embeddable in R?"1.

A well known conjecture is that every closed n-manifold is embeddable into R¥*—a(r)+1 where
n=25 4. . +2%m and k; < ... < kg (cf. [65, 53]).

Note that from Haefliger’s example of Diff-knots S4%~1 C S6* it follows that the relative version

of Theorem 6.1(a) does not hold for (m,n) = (6k + 1,4k). It follows from Theorem 6.1(a) that
PL embeddability of an n-polyhedron X in R™ does not depend on PL-structures on X, when

m > -3—("—;'-9- Theorem 6.1(a) can be applied to calculate the minimal dimension m, such that
a polyhedron, which is the product of graphs, is embeddable in R™ [55]. For another corollary
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see [6, Theorem 1.3] (there is a direct proof [62] under weaker assumptions on X and a stronger

assumption that X x I embeds in R™+1).
For embeddings of compacta in R? we have the following corollaries of theorems 2.3, 2.4:
Theorem 6.8. (a) ([67]) A peanian continuum K is embeddable in R? if and only if there

ezists an equivariant map K — S';
(b) ([73]) Two embeddings f, g: K — R? of a peanian compactum K are isotopic if and only if

maps f and g are equivariantly homotopic.

7. WHITNEY TRICK

Van Kampen published a proof of sufficiency of Theorem 5.1 in the case n > 2 but a fatal
mistake destroyed his argument and the question remained open until much later. However, his
technique suffices to prove Theorem 5.2 in the PL-case. '

Whitney proved that the singularities of a general position Diff-map f: K — R%" from a Diff n-
manifold M will consist of an even number of isolated points. The device to remove them pair by pair
has led Whitney to a proof of Theorem 5.2 in Diff-category. Since then, Whitney trick has be-
come an important toolin several branches of geometric topology. To illustrate the idea, let us com-
plete Whitney’s proof of Theorem 5.2. Take points zy, y;, z2,y2 in M such that f(z;) = f(z2),
f(n1) = f(y2) and that these double points have ‘opposite signs’ (Fig. 4). Join z; to y; and z; to y,
by arcs {; and l;. By general position (n > 2), we may assume that f|;, and f|;, are embed-
dings and that !; and I3 do not contain other double points of f. Since 2n > 4, we can embed a 2-
disk D in R?" so that 3D = f(l;) U f(l2). Since n > 3, then, by general position, we may as-
sume that DN f(M) = dD. Such adisk D is called Whitney’s disk. We can move f-image of a reg-
ular neighborhood of {; in M along D so as to ‘cancel’ double points f(z1) = f(z2) and f(y1) =
f(y2). Whitney trick may also be used to remove the singularities occuring in a general po-
sition map f: K — R2" of an n-polyhedron K for n # 2 thus filling the gap in the origi-
nal proof of Van Kampen.

Note that for n = 2 one cannot made such a construction [75). The proof of Theorem 6.1(a) in
the PL-case is based on generalizations of the Whitney trick and Van Kampen’s construction. For
a shorter proof of the latter without application of the Freudenthal theorem see [67] (for controlled

version see [109]). The dimension restriction m > 1&;_—1) is due to the use of the Freudenthal

suspension theorem and general position arguments. Using Whitehead’s generalization (‘hard part’)
of the Freudenthal theorem and higher-dimensional finger moves (cf. [74, 76]), it can be showed
that the restriction due to the former is essential.

Theorem 7.1 (77,44, 67). For every pair (m,n) of integers such that m < ﬂ%ﬂ and (m,n) ¢
{(3,2), (3,3), (10,6), (11,7), (12,8), (22,14), (23,15), (24,16)}, there ezxist an n-dimensional

polyhedron P, non-embeddable (even topologically!) in R™, and an equivariant map ®: P — S™-1.

8. ENGULFING

To illustrate the idea of engulfing and its application to embeddings, let us prove that for n > 3,
an n-dimensional connected PL-manifold M is embeddable into R?". Take a general position map
f:M — R?®  Then f has only double points. Denote them by z1,y1,---,Zn,y¥n. We have that
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f(zi) = f(y) and f is an embedding outside {z1,¥1,...,2Zn,yn}. To ‘kill’ z; and y,, take an arc
1 C M, joining z; to y; and non-intersecting others z;, y;. Then f(l) is a circle in R?". Take a 2-disk
D C R?" such that 8D = f(l). By general position, DN f(M) = f(I). Take a regular neighborhood
of lin M. It is an n-ball. The embedding f:3(f~!(B)) — 8B can be extended-conically to an
embedding fi: f~1(B) — B, agreeing with f on 8(f~!(B)). Making such modifications for each
i=1,...,n, we ‘kill’ all z;, y; and obtain an embedding of M into R?".

Theorem 8.1. (a) ([93, 92, 79]) Any PL (Top, locally flat)-embedding S™ C S™ is PL (Top)-
unknotted if m — n > 3.

(b) ([57, 58]) Any Diff-embedding S™ C S™ is Diff-unknotted if m > ﬂl;—l-)- There ezist Diff-
knots S¥*-1 c §6k.

Theorem 8.2 [90, 88]. (a) If m —n > 3, then every (2n — m)-connected closed PL-n-manifold

ts PL-embeddable in R™.
(b) If m—n > 3, then every two embeddings of a (2n — m + 1)-connected closed PL-n-manifold

into R™ are isotopic.

PL-case of Theorem 8.1(a) is a corollary of (8.2)(b). The transition from m > 3243 o > 32%2
in the proof of Theorem 8.2(a) in [90] was in fact the first step of induction. This induction was
accomplished to m > n + 3 by Irwin. Note that if m < 32t2 then a (2n — m)-connected closed
n-manifold is a homotopy sphere, hence a PL-sphere when n > 5. Next generalizations were
made in [86, 87, 80]. In fact, Irwin, Hudson and Gordon proved more general theorems: they
considered embeddings of bounded manifold into a bounded manifold. Therefore the existence of

an embedding, homotopic to given map f, is the stronger property than mere embeddability. This
property is used in surgery. The obstruction theory, arising from Hudson theorem, was developed

in [89].

9. APPROXIMABILITY BY EMBEDDINGS

A possible method of studying embeddability of compacta is by decomposing them into inverse
limits [111, 113, 106). Roughly speaking, the embeddability of compacta is reduced to the em-
beddability of PL maps between polyhedra. A map f: K — M is said to be embeddable in R™ if
there exists an embedding ¥: M — R™ for which ¥ o f is aproximable by embeddings (this notion
differs slightly from [111, 113]). Examples [113] show that this notion is rather geometric and is
also interesting in itself. The following theorem is a controlled version of Theorem 6.1(a) and the
polyhedral version of [103, 116]. Its corollary is a criterion for embeddability of maps in R™ (which
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is the mapping version of Theorem 6.1(a)).
Theorem 9.1 [109]. Suppose that f: K — R™ is a PL-map of an n-dimensional finite polyhed-
ron K into R™. If f is aprozimable by (PL or Top)-embeddings then there ezists an equivariant

homotopical eztension o: K - §m-1 of the map f: K/ - S™=1, where f(z,y) = ﬂ'ﬁ%ﬂ'ﬂ and
Kf = {(z,y) € K x K| f(z) # f(y)}. Form > 1(%1)- this condition is also sufficient.

Corollary 9.2 [109]. Suppose that f: K — M is a PL-map between finite polyhedra K and
M such that dim K < n and dim M < n. If f is embeddable in R™ then there ezist equivariant

maps &: K — S™1 and ¥: M — S™-1 such that ¥ o f is equivariantly homotopic to ®|z,, where

f(z, y) = (f(z), f(y)). Form > 1("2—“)- this condition is also sufficient.

This necessary condition is equivalent to the one actually stated in [115]: 0 € R™ must be an
inessential point of the map f: K? = R™, defined by f(z,y) = f(z) — f(y). For another (simple)
criterion for aproximability of maps by embeddings see [114]. .

For a triangulation T of K, let T = U{fo xr € TxT|oNrt=0}and T/ = U{o x 7 €
€ T?| f(o) N f(r) = @}. Since (T,T) is an equivariant retract of (K, K’) we can replace in
Theorem 9.1 K by T and K/ by T/, for sufficiently small T [63]. This is convenient in applications.

The proof of necessity of Theorem 9.1 is easy. Take a triangulation T of K such that f|, is linear
for each o € T. Take € < 1 min{dist (f(o), f(r)}| f(¢) N f(r) = @} and any embedd ¢: K — R™,
e-close to f. Then for (z,y) € T/, #(z,y) and f(z,y) are not antipodal points of S™~1. Hence
Plgy = f and so @ is the required homotopical extension.

Let us construct for m = 2n a cohomological obstruction 9(f) € HZ" (T, T7) to approximability
of an arbitrary PL-map f: K — R?®"™ by embeddings. Take a general position map g: K — R?",
sufficiently close to f. Fix an orientation of R?" for any two disjoint oriented edges ¢ and 7 of T,
count an intersection where the orientation of g(o) followed from that of g(r) agrees with that
of R*™ as +1, and —1 otherwise. Then 9(f) is the class of the cocycle 9,(f)(o,7) which counts in
this fasion algebraically the intersection of g(o) and g(7). If f maps all K to a point, then #(f) is
the van Kampen obstruction to embeddability of K in R3" [46, 48].

Theorem 9.3 [109). If f is approzimable by embeddings, then 9(f) = 0. For n > 2 this
condition is also sufficient, for n < 2 it is not.

Theorem 9.4. (a) [95]. Ifn > 4,n # 7, then every map f:S™ — S™ is embeddable in R*".
Forn = 1,3,7 there is a map f:S™ — S™, non-embeddable in R*".

(b) [104]. For n > 2 every map f:T™ — T™ between n-dimensional tori is embeddable in R?".

Example 9.5 [109]. (2) Let K = S! and f:S' — S! C R? be a composition of a degree 3
map and an embedding. Then f is not approximable by embeddings. However, 9(f) = 0 and there
exists an equivariant map ®: K — S! such that ®|;, is equivariantly homotopic to f

(b) Maps f: K — I C R? on Fig. 5 are not approximable by embeddings (9(f) # 0). However,
there exists an equivariant map ®: K — S* such that ®|, is equivariantly homotopic to f

Example 9.8 [67]. The 3-adic solenoid L is not embeddable in R2, however there exists an
equivariant map £ — S! (Fig. 5).
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It is well-known that the plane R? does not contain uncountably many pa.irwfse disjoint triods
[107). This result has been generalized in various directions [96, 98, 99, 108, 112, 117]. From
Theorem 9.1 follows a strengthening of [117] and [99], which is partial answer to [100, p. 430]).

Let X, = {(z,y) € X?| dist (z,y) > €} be the e-deleted product of X. Consider the involution

t(z,y) = (y, z) on X,. Following [105] and [102], define the span and the symmetric span of X as
follows:

oX = sup{e > 0] there is a subcontinuum Z C X, such that pr,(Z) = pry(2)},
sX = sup{e > 0] there is a subcontinuum Z C X, such that Z = ¢t(Z)}.

Corollary 9.7 [110] (compare [97, 1.1.2; 108, I, Theorem 2.6]). If plane contains an un-
countable collection of disjoint copies of a tree-like continuum X (or even a product of X with a
convergent sequence), then sX = 0. Moreover, if these copies are obtained by parallel transfers
from one another, then c X = 0.

For a discussion of problems on graphs, arising from the above considerations, see [101].

REFERENCES

1. Gitler, S., Imbeddings and Immersions of Manifolds, Preprint, 1971.

2. Gillman, D., Matveev, S.V., and Rolfsen, D., Collapsing and Reconstruction of Manifolods, Contemp. Math.,
1994, vol. 164, pp. 35-39.

3. Gillman, D. and Rolfsen, D., 3-Manifolds Embed in Small 3-Complexes, Intern. J. Math., 1992, vol. 3, pp. 179~
183.

4. Hudson, J.F.P., Concordance, Isotopy and Diffeotopy, Ann. Math. Ser. 8, 1970, vol. 91, no. 3, pp. 425-448.
§. Lickorish, W.B.R., The Piecewise Linear Unknotting of Cones, Topology, 1965, vol. 4, pp. 67-91.

6. Repovs, D., Skopenkov, A.B., and Scepin, E.V., On Embeddability of X x I into Euclidean Space, Houston
J. Math., 1995, vol. 21, pp. 199-204.

7. Rourke, C.P. and Sanderson, B.J., Introduction to Piecewise-Linear Tolpology, Ergebn. Math., Berlin: Springer,
1972, vol. 69. .

8. Sternfeld, Y., Hilbert’s 13th Problem and Dimension, Lect. Notes Math., 1989, vol. 1376, pp. 1-49.

9. Zhongmou, L., Every 3-Manifold with Boundary Embeds in Triod x Triod x I, Proc. Amer. Math. Soc., 1994,
vol. 122, no. 2, pp. 575-579.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 212 1996




10.

11.

12.

13.

14,

15.
16.
17.

18.

19.

20.
21.
22.
23.

24.

25.
26.
27.

28.

29,
30.
31.
32.

33.
34.

35.
36.

37.

38.

39.
40.

41.

EMBEDDABILITY AND ISOTOPY OF POLYHEDRA 175

Archdeacon, D. and Huneke, P., A Kuratowski Theorem for Non-Orientable Surfaces, J. Comb. Theory, B, 1989,
vol. 46, pp. 173-231. _

Claytor, S., Topological Immersions of Peanian Continua in a Spherical Surface, Ann. Math. Ser. 2, 1934, vol. 35,
pp. 809-835.

Claytor, S., Peanian Continua not Embeddable in a Spherical Surface, Ann. Math. Ser. 2, 1937, vol. 38,
pp. 631-646.

Glover, H.H., Huneke, J.P., and Wang, C.S., 103 Graphs that are Irreducible for the Projective Plane, J. Comb.
Theory, 1979, vol. 27, no. 3, pp. 332-370.

Halin, R. and Jung, H.A., Karakterisierung der komplexe der Ebene und der 2-Sphare, Arch. Math., 1964, vol. 15,
pp. 466—469. :

Kuratowski, K., Sur le problemes des courbes gauche en topologie, Fund. Math., 1930, vol. 15, pp. 271-283.
Makarychev, Yu., A Short Proof of Kuratowski’s Graph Planarity Criterion, J. Graph Theory, To appear.
Mardesié, S. and Segal, J., A Note on Polyhedra Embeddable in the Plane, Duke Math. J., 1966, vol. 33,
pp. 633-638.

MakLane, S. and Adkisson, V.W., Extensions of Homeomorphisms on the Spheres, Michigan Lect. Topol. Ann
Arbor, 1941, pp. 223-230. .

Robertson, N. and Seymour, P.D., Graph Minors VIII, A Kuratowski Graph Theorem for General Surfaces,
J. Comb. Theory, B, 1990, vol. 48, pp. 255-288.

Sarkaria, K.S., Kuratowski Complexes, Topology, 1991, vol. 30, pp. 67-76.

Skopenkov, A., A Description of Continua Basically Embeddable in R?, Topol. Appl., 1995, vol. 65, pp. 29-48.
Thomassen, C., Kuratowski’s Theorem, J. Graph. Theory, 1981, vol. 5, pp. 225-242.

Alexander, J.W., On the Subdivision of 3-Space by Polyhedron, Proc. Nat. Acad. Sci. USA, 1924, vol. 10,
pp. 6-8.

Alexander, J.W., An Example of a Simply Connected Surface Bounding a Region which is not Simply Connected,
Proc. Nat. Acad. Sci. USA, 1924, vol. 10, pp. 8-10.

Barden, D., Simply-Connected Five-Manifolds, Ann. Math., 1965, vol. 82, pp. 365-385.

Brown, M., A Proof of the Generalized Schoenflies Theorem, Bull. Amer. Math. Soc., 1960, vol. 66, pp. 7T4-76.
Gluck, H., The Embedding of Two-Spheres in the Four-Sphere, Trans. Amer. Math. Soc., 1962, vol. 104, no. 2,
pp. 308-333.

Hopf, H., Systeme symmetrischen Bilinearformen und euclidische Modelle der Projectiven Riumen, Vierteljahr.
Naturforsh. Ges., Zirich, 1940, vol. 85, pp. 165-178.

Levine, J., Unknotting Spheres in Codimension 2, Topology, 1965, vol. 4, pp. 9-16.

Mazur, B., On Embeddings of Spheres, Bull. Amer. Math. Soc., 1959, vol. 65, pp. 91-94.

Morse, M., A Reduction of the Schoenflies Extension Problem, Bull. Amer. Math. Soc., 1960, vol. 66, pp. 113-117.
Papakyriakopoulos, C.D., Dehn’s Lemma and the Asphericity of Knots, Ann. Math. Ser. 2, 1957, vol. 66,
pp. 1-26.

Rushing, T.B., Topological Embeddings, New York: Acad. Press, 1973.

Smale, S., Generalized Poincare’s Conjecture in Dimensions Greater than 4, Ann. Math. Ser. 2, 1961, vol. 74,
pp. 391-466.

Thom, R., Une théorie intrinseque des puissances de Steenrod, Collog. Topol., Strassbourg, 1951.

Brodsky, N., Repovs, D., and Skopenkov, A., On Existence and Classification of 3-Thickenings of 2-Polyhedra,
Preprint, Univ. Ljubljana, 1995.

Lickorish, W.B.R. and Siebenmann, L.C., Regular Neighborhoods and the Stable Range, Trans. Amer. Math.
Soc., 1969, vol. 139, pp. 207-230.

Neuwirth, L., An Algorithm for the Construction of 3-Manifolds from 2-Complexes, Proc. Cambridge Phil. Soc.,
1968, vol. 64, pp. 603-613.

Pontryagin, L.S., Characteristic Cycles of Smooth Manifolds, Dokl. AN SSSR, 1942, vol. 35, no. 2, pp. 35-39.

Thom, R., Espaces fibres en spheres et carres de Steenrod, Ann. Sci. Ecole Norm. Super., 1952, vol. 69,
pp. 109-181.

Wall, C.T.C., Classification Problems in Differential Topology, IV, Thickenings, Topology, 1966, vol. 5, pp. 73-94.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS  Vol. 212 1996




176 REPOVS, SKOPENKOV

42. Whitney, H., Differentiable Manifolds in Euclidean Space, Proc. Nat. Acad. Sci. USA, 1935, vol. 21, no. 7,
pPp. 462-464.

43. Whitney, H., The Self-Intersections of a Smooth n-Manifolds in 2n-Spa.ce, Ann. Math. Ser. 2, 1944, vol. 45,
PP- 220-246.

44. Freedman, M.H., Krushkal, V.S., and Teichner, P., Van Kampen’s Embedding Obstruction is Incomplete for
2-Complexes in ]R‘ Math. Res. Lett 1994, vol. 1, pp. 167-176.

45. Horvatic, K., On Embedding Polyhedra and Manifolds, Trans. Amer. Math. Soc., 1971, vol. 157, pp. 417-436.
46. Van Kampen, E.R., Komplexe in euclidische Riumen, Abb. Math. Sem., Hamburg, 1932. vol. 9, pp. 72-78.
47. Kirby, R., 4-Manifold Problems, Contemp. Math., 1984, vol. 35, pp. 513-528.

48. Sarkaria, K.S., A One-Dimensional Whitney Trick and Kuratowski’s Graph Planarity Criterion, Israel J. Math.,
1991, vol. 73, pp. 79-89.

49. Shapiro, A., Obstructions to the Embedding of a Complex in a Euclidean Space, I, The First Obstruction, Ann.
Math. Ser. 2, 1957, vol. 66, pp. 256-269.

50. Taniyama, K., Homology Classification of Spatial Embeddings of a Graph, Topol Appl., 1995, vol. 65,
PpP. 205-228.

51. Weber, C., Deux remarques sur les plongements d’un AR dans un éspace Euchdlen, Bull.: Polish Acad. Sci.,
1968, vol. 16, pp. 851-855.

52. Wu, W.T., On the Realization of Complexes in a Euclidean Spa.cc I, I1, I1I, Sci. Sinica, 1958, vol. 7, pp. 251-297,
365-387; 1959 vol. 8, pp. 133-150.

53. Cohen, R.L., The Immersion Conjecture for Differentiable Mamfolds, Ann. Math., 1965, vol. 82, pp. 237-328.

54. Fuks, D.B. and Shvarts, A.S., Cyclic Powers of Polyhedrons and Embedding Problem, Dokl. AN SSSR, 1959,
vol. 125, pp. 285-288.

55. Galecki, M.A., On Embeddability of CW-Complexes in Euclidean Space, Preprint, Univ. Wroclaw, 1992.

56. Gluck, H., Geometric Characterisation of Differentiable Manifolds in Euclidean Space. II, chh:gan Math. J.,
1968, vol. 15, no. 1, pp. 33-50.

57. Haefliger, A., Knotted (4k — 1)-Spheres in 6k-Space, Ann. Math. Ser. 2, 1962, vol. 75, pp. 452-466.

58. Haefliger, A., Plongements differentiables dans le domain stable, Comment. Math. Helv., 1962-63, vol. 36,
pp. 155-176.

59. Harris, L.S., Intersections and Embeddings of Polyhedra, Topology, 1969, vol. 8, pp. 1-26.

60. Hirsch, M.W., The Embedding of Bounding Manifold in Euclidean Space, Ann. Math. Ser. 2, 1961, vol. 74,
pp. 494-497.

61. Hirsch, M.W., On Embedding 4-Manifolds in R’, Proc. Cambridge Phil. Soc., 1965, vol. 61.

62. Hirsch, M.W., Embeddings and Compressions of Polyhedra and Smooth Manifolds, Topology, 1966, vol. 4, no. 4,
pp- 361-369.
63. Hu, S.-T., Isotopy Invariants of Topological Spaces, Proc. Roy. Soc., A, London, 1960, vol. 255, pp. 331-366.

64. Kervaire, M.A., Smooth Homotopy Spheres and their Fundamental Groups, Trans. Amer. Math. Soc., 1969,
vol. 144, pp. 67-72.

65. Lannes, J., La conjecture des immersions, Astérisque, 1982, vol. 92/93, pp. 331-346.

66. Minkus, J., On Embeddings of Highly Connected Manifolds, Trans. Amer. Math. Soc., 1965, vol. 115,
pp. 525-540.

67. Skopenkov, A.B., About Criterion of Put-In Square for Embeddability in R™, Preprint, Moscow: Mosk. Gos.
Univ., 1995.

68. Skopenkov, A.B., About Criterion of Put-In Square for Embeddability of Manifolds in R™, Preprint, Moscow:
Mosk. Gos. Univ., 1995.

69. Sziics, A., The Gromov-Eliashberg Proof of Haefliger’s Theorem, Stud. Sci. Math. Hung., 1982, vol. 17,
pp- 303-318.

70. Vassiliev, V.A., Complements of Discriminants of Smooth Maps: Topology and Applications, Providence (RI):
Amer. Math. Soc., 1992.

71. Wall, C.T.C., All 3-Manifolds Imbed in 5-Space, Bull. Amer. Math. Soc., 1965, vol. 71, pp. 490-503.
72. Weber, C., Plongements de polyédres dans le domain metastable, Comment. Math. Helv., 1967, vol. 42, pp. 1-27.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS  Vol. 212 1996




73.

74.
75.

76.
77.

78.

79.
80.

81.
82.
83.
84.
85.

86.

87.
88.

89,

90.

91.

92.

93.
94.

95.
96.

97.

98.

99.

100.

101.

102.

103.

104.

105.
106.

EMBEDDABILITY AND ISOTOPY OF POLYHEDRA 177

Wu, W.T., A Theory of Embedding, Immersion and Isotopy of Polytopes in an Euclidean Space, Peking: Sci.
Press, 1965.

Freedman, M.H. and Quinn, F.S., Topology of 4-Manifolds, Princeton: Univ. Press, 1990.

Kervaire, A. and Milnor, J.W., On 2-Spheres in 4-Manifolds, Proc. Nat. Acad. Sci. USA, 1961, vol. 47, pp. 1651-
1657.

Kirby, R.C., The Topology of 4-Manifolds, Lect. Notes Math., 1989, vol. 1374,

Segal, J. and Spiez, S., Quasi Embeddings and Embeddings of Polyhedra in R™, Topol. Appl., 1992, vol. 45,
pp- 275-282.

Weber, C., L'elimination des point doubles dans le cas combinatoire, Comment. Math. Helv., 1966, vol. 41,
pPp. 179-182.

Gluck, H., Unknotting S! in S*, Bull. Amer. Math. Soc., 1963, vol. 69, no. 1, pp. 91-94.

Gordon, C.M.A., Embeddings of PL-Manifolds with Boundary, Proc. Cambridge Phil. Soc., 1972, vol. 72, pp. 21~
25.

Hacon, D.D.J., Embeddings of S? in S x §7 in the Metastable Range, Topology, 1968, vol. 7, pp. 1-10.
Haefliger, A., Differentiable Embeddings of S™ in S for ¢ > 2, Ann. Math. Ser. 2, 1966, vol. 83, pp. 402-436.
Hirsch, M.W. and Zeeman, E.C., Engulfing, Bull. Amer. Math. Soc., 1966, vol. 72, no. 1, pt+1, pp. 113-115.
Hudson, J.F.P., Knotted Tori, Topology, 1963, vol. 2, pp. 11-22. -

Hudson, J.F.P., Non-Embedding Theorem, Topology, 1963, vol. 2, pp. 123-128.

Hudson, J.F.P., PL Embeddings, Ann. Math. Ser. 2, 1967, vol. 85‘, no. 1, pp. 1-31.

Hudson, J.F.P., Embeddings of Bounded Manifolds, Proc. Cambridge Phil. Soc., 1972, vol. 72, pp. 11-20.
Irwin, M.C., Embeddings of Polyhedral Manifolds, Ann. Math. Ser. 2, 1965, vol. 82, pp. 1-14.

Kearton, C., Obstructions to Embeddings and Isotopy in the Metastable Range, Math. Ann., 1979, vol. 243,
pp- 103-113.

Penrose, R., Whitehead, J.H.C., and Zeeman, E.C., Embeddings of Manifolds in a Euclidean Spa.ce, Ann. Math.
Ser. 2, 1961, vol. 73, pp. 613—623

Stallings, J., The Piecewize-Linear Structure of Euclidean Space, Proc. Cambridge Phil. Soc., 1962, vol. 58,
pp. 481-488. )

Stallings, J., On Topologically Unknotted Spheres, Ann. Math. Ser. 2, 1963, vol. 77, pp. 490-503.

Zeeman, E.C., Unknotting Spheres, Ann. Math. Ser. 2, 1960, vol. 72, pp. 350-360.

Zeeman, E.C., Unknotting Combinatorial Balls, Ann. Math. Ser. £, 1963, vol. 78, pp. 501-526.

Akhmet’ev, P.O., About Smooth Realization of Mappings of n-Sphere, Preprint, Moscow: MIRAN, 1994.
Anderson, R.D., Continuous Collections of Continuous Curves, Duke Math. J., 1954, vol. 21, pp. 363-367.

Arnold, V.I., Obyknovennye differentsial’'nye uravneniya (Ordinary Differential Equations), Moscow: Nauka,
1971.

Baker, B.J. and Laidacker, M., Embedding Uncountably Many Mutually Exclusive Continua into Euclidean
Space, Canad. Math. Bull., 1989, vol. 32, pp. 207-214.

Burgess, C.E., Collections and Sequences of Continua in the Plane. I, II, Pacif. J. Math., 1955, vol. 5, pp. 325-333;
1961, vol. 11, pp. 447-454.

Cook, H., Ingram, W.T., and Lelek, A., Eleven Annotated Problems about Continua, Open problems in topology,
van J. Mill, Reed, G.M., Eds., Amsterdam: North-Holland, 1990.

Cavicchioli, A., Repovs, D., and Skopenkov, A.B., Open Problems on Graphs, Arising from Geometric Topology,
Preprint, Univ. Ljubljana, 1995.

Davis, J.F., The Equivalence of Zero Span and Zero Semispan, Proc. Amer. Math. Soc., 1984, vol. 90, pp. 133-
138.

Dranisnikov, A.N., Repovs, D., and Séepin, E.V., On Intersection of Compacta of Complementary Dimension
in Euclidean Space, Topol. Appl., 1991, vol. 38, pp. 237-253.

Keesling, J. and Wilson, D.C., Embedding T"-Like Continua in Euclidean Space, Topol. Appl., 1985, vol. 21,
PP. 241-249.

Lelek, A., Disjoint Mappings and the Span of the Spaces, Fund. Math., 1964, vol. 55, pp. 199-214.
McCord, M.C., Embedding P-Like Compacta in Manifolds, Canad. J. Math., 1967, vol. 19, pp. 321-332.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS  Vol. 212 1996




178

REPOVS, SKOPENKOV

107. Moore, R.L., Concerning Triods in the Plane and in the Junction Points of Plane Continua, Proc. Nat. Acad.

108.

109.

110.

111.

112.

113.
114.

115.
116.

117.

Sei. USA, 1928 vol. 14, pp. 85-88.

Overstegen, L. and Tymchatyn, E.D., Plane Strips and the Span of Contmua.. I, I, Houston J. Math., 1982,
vol. 8, pp. 126-142; 1984, vol. 10, pp. 255-266.

Repovs, D. and Skopenkov, A.B., A Deleted Product Criterion for Approximability of a Map by Embeddings,
Preprint, Univ. Ljubljana, 1995. '

Repovs, D., Skopenkov, A.B., and Szepin, E.V., On Uncountable Collections of Continua and their Span, Collog.
Math., 1995, vol. 69, no. 2, pp. 289-296.

Shchepin, E.V. and Shtan’ko, M.A., Spectral Criterion of Embeddability of Compacta in Euclidean Space,
Trudy Leningradskoi Mezhdunarodnoi Topologicheskoi Konferentsii (Proceedings of the Leningrad International
Topologycal Conference), Leningrad: Nauka, 1983, pp. 135-142.

Sieklucki, K., A Generalization of a Theorem of K. Borsuk Concerning Dimensions of ANR Sets, Bull. Akad.
Polon. Sci., 1962, vol. 10, pp. 433-436; Erratum, 1964, vol. 12.

Sieklucki, K., Realization of Mappings, Fund. Math., 1969, vol. 65, pp. 325-343.

Skopenkov, A.B., Geometrical Proof of Noivirt’s Theorem about Thickenning of 2-Dimension Polyhedra, Mat.
Zametki, 1994, vol. 56, no. 2, pp. 94-98 (Engl. transl.: Math. Notes, 1996, vol. 58).

Spiez, S. and Torutizyk, H., Moving Compacta in R™ apart, Topol. Appl., 1991, vol. 41, pp’ 193-204.
Spiez, S., Imbeddings in R*™ of m-Dimensional Compacta with dim (X x X) < 2m, Fund. Math., 1990, vol. 134,
pp. 105-115.

Young, G.S. Jr., A Generalization of Moore’s Theorem on Sunple Triods, Bull. Amer. Math. Soc., 1944, vol. 5,
pp. T14.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 212 1996




