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Abstract

Amap f:K — L is called gorojected embedding froih x BY if there is an embedding : K —
L x B suchthatf =m o F, wherer : L x BS — L is the projection. Amag :SP us? — S™isa
link mapif f£S? N £S89 =@. We apply projected embeddings to desuspending tiariant of link
maps and to embeddings of double covers into Euclidean space.
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Amap f: K — L is called gorojected embedding froth x B* if there is an embedding
F:K — L x B* such thatf =x o F, wherern : L x B* — L is the projection. A map
f:XuY — Zis alink mapif f(X) N f(Y)=@. In this paper we apply projected
embeddings to desuspending thénvariant of link maps (Theorem 1) and to embeddings
of double covers into Euclidean space (Theorem 3). For an introduction and motivation see
[9,14,12],[16, Question on p. 152], [17, §6], [22,2].

We shall work in the smooth category. LEew,, be the set of link maps§? u §9 — ™
which embedS? standardly in the PL category (note thaty embeddingS? — S™ is
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PL standard form > p + 3 [7]). LetA:EM},, — nq(S’"‘f’—l) be the linking coefficient.
A link concordancéetween link mapgo, f1:S” uS? — $™ is a link map

F:SP xITuS?"xI—-S"x1

such thatF'(x, 0) = fo(x) andF(x, 1) = f1(x). The link concordance does not necessarily
embedS? x I.

Theorem 1. Denotek =2p + 1 —m. The mapping = X*x: EM7, = 714 (SP) is alink
concordance invariant, provide%E + 1< m < 2p and the binomial coefficier( ";P> is
odd.

Clearly, ima = X*m,(S"~P~1) and 24+3-"q = ¥ is the well-knowna-invariant
[8,10], see also [19,21]. Thus Theorem 1 fob m — 1 together with examples of non-
surjectivity and non-injectivity of a non-stable suspension homomorphism gives examples
of non-surjectivity and non-injectivity of the-invariant. Theorem 1 is not interesting for
g <m — 2: for ¢ < m — 3 thea-invariant is a suspension of theinvariant, and for
g =m — 2 we have

ima =ker(h:m2,_1(S?) = Zp)) = ﬂzp(Sp+1) = nlf_l,

anda gives no more information than

Denote byL M’} the set of link maps” L S — $™, up to the link concordance. In [9,
14] an invarianta’: LM” — 74,4 +1(SPT1) was constructed such that?*2-"q’ = «
(note that the concordance invarianceXf = a’ follows analogously to Lemma 2 below,
sinceS? x I embeds intas™ x I x R¥+1 by general position).

The desuspension af given by Theorem 1 is stronger in the sense thlat: Ya
but weaker in the sense thatis defined only onEM?, not on LM7, . It would be
interesting to know iEMY;, in Theorem 1 can be replaced b1’} (we can approximate
the compositions? — §” — §™ x R¥ by embeddings, but it remains to prove that our
invariant will not depend on this approximation).

Form =2p > 6 andg < 3p — 6 Theorem 1 (with the invariant defined evenldv’) )
follows from [27, Proposition F], and was also stated without proof in [15]. Nezhinskij
outlined a geometric proof of this simplest case of Theorem 1 (without the restriction
g < 3p — 6 at the Alexandrov Session in 1999, but with the invariant defineEMﬁt; not

onLM>P). Our proof of Theorem 1 extends his ideas.

Proof of Theorem 1. Suppose that
F:SPxTuSTxI—S"xI

is a link concordance betwedt, F1: 571157 — §™ suchthatF'|s»»(0,1) is an embedding.
Since there existsomeproper framed immersioS” x I U S? x I — §™ x I, we may
assume by [6, 1.2.2], [1, Lemma 2] th&}» «; iS a general position framed immersion.

By general positionF|srx; has no triple points. Therefore by Lemma 2 below for
n = p + 1, there is an embedding

F:SP xT— 8" x1IxRF
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such thatr o F = F|srx;, where
78" x I xRE > 8" x [

is the projection.
We may assume that* x I x R ¢ Z*(5™ x I) close to the bas§” x I ¢ X*(S" x I).
Let F| si(sax ) = Z*Flsaxs. SinceF(SP x I) N F(S7 x I) =, it follows that

F:SP x TuXZH(81 x 1) — Dk (s™ x I)

is a link concordance, which embed® x I, betweenFy = X*Fy and F; = ¥ Fy.
ThereforeX*A(Fo) = A(Fo) = A(F1) = Z¥A(F1). O

Lemma 2. If the binomial coeﬁicien(";k> is odd, N is an n-manifold andf: N —

B%'~k is a proper general position framed immersion without triple points and such that
flan is an embedding, theyi is a projected embedding froB?*—* x Bk,

Proof. Let
A:{xean_k: |f_lx|>2} and A~={xeN: |f_lfx|>2}.

Thenf = flx: A — Ais adouble covering. Denote tﬁ/the line bundle associated with
the double coverf and letw1(f) € H*(A, Z>) be the first Stiefe-Whitney class of this
line bundle.

The normal bundle oft in B2'~ is isomorphic tan — k) & (n — k)f. Hence

B(A) = (1+wi(f))"™, so 0=i(4)= (" ; k) (wi(£))" = (wi(F))"

cf. [3, proof of proposition].

By general position dirdt = k. Hence it follows by Theorem 3(a) below thétis a
projected embedding from x B*. This implies thatf is a projected embedding from
B?—k x Bk,

Indeed, take a mag:A — B* such thatf x $:A — A x Bf is an embedding.
Take a Riemannian metric oM such that 1-neighborhodd of Z(f) in N is a tubular
neighborhood ofA in N. Letr:U — A be the projection of the normal bundle. Define
amapg:N — B¥ by g(x) =0 forx ¢ U andg(x) = (1 — dist(x, Z))g(r(x)) forxeU.
Thenf x g:N — N x B¥ is an embedding. O

Theorem 3. Let A be ak-manifold (closed or with boundany A its double cover and
pr: A — A the projection. Consider the following conditions
(E) there exists an equivariant mapg A — $5~1;
(P) pris a projected embedding from x B*;
(A) the compositiorﬁﬂ A C A x B is approximable by embeddings
(W) (wi(pn)’ =0€ H*(A, Z).
Then(E) < (P) = (A) = (W). Moreover,
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(@) if s =k, then(E) & (P) & (A) & (W);
(b) if 25 > k 4+ 3 and bothA and A are parallelizable, therE) < (P) < (A).

Note that in Theorem 3 (and belo@ and A are arbitrary manifolds, not necessarily
double point sets. By general position, all conditions of Theorem 3 hold fok.

The implications(P) = (A) and (E) = (W) are obvious and well known. To prove
(E) = (P, it suffices to observe that the map>pg:A~—> A x $~1is an embedding.
Note that the embedding prg has a trivial normal bundle.

To prove(P) = (E), take an embedding = Fy x F>: A— Ax B*suchthatro F = pr
and define an equivariant m@pZ—> 551 by
F2(x) — F2(—x)
|F2(x) — F2(—=x)|
To prove Theorem 3(a) it suffices to prove eith@) = (E) or (W) = (P). The
implication (W) = (E) is a folklore result from obstruction theory. For completeness,
we present below its proof which was kindly communicated to us by A. Volovikov. We
also sketch a geometric proof of the implicatio) = (P). The proofs of(A) = (W),

(W) = (P) and 5(b) below are based on the ideas of [26], [7, §11], [13], [1, proof of
Lemma 3], [18, 85]. Theorem 3 should be compared to [5,24].

The following remark improves [16, Theorem 2], [17, Hacon's remark in 86], see

also [11,25].

glx) =

Remark 4. The group Spitr) embeds into Euclidean space with a trivial normal bundle
in codimension

12—1+42, r=20(dimSpinr)=2%-1),
S =
1?+142, r=20+1(dimSpinr)=2%+1I).

Proof. Let A = SQ(r) and A = Spin(r). By [16, Theorem 1 and table on p. 154],
A embeds with trivial normal bundle in codimensipff:;—l], and hence in any greater
codimension.

By [16, lemma on p. 166], there is an equivariant rrgap&v—> $5-1. Now Remark 4
follows from the implication(E) = (P) of Theorem 3 (since the embedding obtained there
has a trivial normal bundle). O

Proof of (A) = (W) in Theorem 3. We need the following two facts. For a general
position immersionF : A — A x B*, e-close toi o pr, let

T (F)={x e A x B* |there arey, z € A such thaly, z| > 5¢, Fy= Fz=x]

be the ‘far away double points’ immersed submanifold.

It is proved analogously to [26], [7, 811] that the cl&8X F)] € Hy_s(A, Z2) does not
depend on homotopy df through mapsg-close toi o pr. It is proved analogously to [13]
that this class is dual tew1(pr))* (it suffices to prove this for the case whero F = pr).
This implies(A) = (W). O
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Sketch of the proof of (W) = (P) in Theorem 3(a). Fors = 1 the proof is obvious so
assume that > 2. We may assume that is connected. lfv1(pr) = 0, then there exists an
equivariant map3—> $9, hence(E) and(P) are true.

If wq(pr) #0, thenA is connected. Take a general position immersiam — A x B
such thatr o F = pr. Since[ X (F)] = (w1(pn)¥ = 0, it follows that the number of double
points of F is even. Ifk is even andA is orientable, then the algebraic number of double
points of F is zero by [20, Lemma 5]. Therefore, as in [1, proof of Lemma 3], we can
apply ‘projected version’ of the Whitney trick to eliminate double pointg'adind obtain
an embedding”’: A — A x B suchthatr o F=pr. O

Proof of (W) = (E) in Theorem 3(a). (A. Volovikoy We can assume without loss
of generality thatA is connected. LefZ, act onRF by multiplication with —1. An
equivariant mam~—> sk=1 exists if and only if there exists a non-zero section of the
bundleA x Zng — A. We will show that the unique obstruction class to defining a non-
zero section of this bundle is trivial and hence this bundle has a non-zero section.

If A has nonempty boundary, then it is easy to see that the obstruction class lies in the
zero group. Suppose further thatis closed.

First case: k is even The unique obstruction class to defining a non-zero section
lies in H*(A; Z) (coefficients in cohomology are not twisted sinkeis even). This
obstruction class reduced mod 2 equalgua (pn)* = 0 € H¥(A, Z»), i.e., vanishes. If
A is nonorientable, the# ¥ (A; Z) = Z, and the reduction is an isomorphism, hence the
obstruction class vanishes.

If A is orientable, therH*(A;Z) = Z and we obtain that the obstruction class is
represented by an even number (since its reduction mod 2 equals to zero). On the other
hand a non-zero obstruction class in any case kfodd or even) has order 2 by [20,
Lemma 5]. Hence the obstruction class also vanishes.

Second casek is odd In this case coefficients are twisted and we have the following
Smith—Richardson sequence

o> HY A 2) —> Hk(A~; Z) — Hk(A;Z) — 0.

This Smith—Richardson sequence (one of the two Smith—Richardson sequences) is induced
by the short coefficient sequence9Z — pr, Z — 7 — 0 of sheaves oves. HereZ is

the constant sheaf ovet (with Z as a fiber), prZ is the direct image of the constant
sheafZ over A andZ is a subsequent factor sheaf where the inclusion is defined on a fiber
asm — (m,m), m € Z.. Note thatH' (A; pr, Z) = H' (A 7).

It follows from this sequence tha*(A; Z) can be one of 07, or Z. Indeed, ifA is
not orientable, theriHX(A: Z) = Z,, henceH*(A; Z) is either 0 orZs. If A and A are
orientable, therH*(A; 2) = 7, becauseA — A is a double cover. In the remaining case
when A is orientable and! is not orientable we havB¥(A: Z) =7.

The obstruction class obviously vanishesHf (A; Z) = 0. If H¥(A;Z) = Z,, then
H"(A;Z) — H¥(A;Z) is an isomorphism and we see that the obstruction class also
vanishes. Finally, ifH*(A; Z) = Z, then the obstruction class again vanishes since the
nonzero obstruction class has order 2 by [20, Lemma 5].
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Proof Theorem 3(b). It suffices to provgA) = (E). We shall construct an equivariant
map XKA — Sks-1 |f k < 2(s — 1) — 1, then Theorem 2.5 of [4] implie&€). Consider
the natural action oZ, on A and denote it byx > —x. Since bothA and A are
parallelizable, there is a continuous fam{l§, : D¥ — A}.ca of embeddings such that
h,0=x andh_, = —h,.

Denote byi: A — A x B® the inclusion. LetF = F; x F2:A~—> A x B’ be an
embedding sufficiently close tbo pr. SinceF is close toi o pr, we may assume that
Flhx(%k) C h,(D¥). Therefore a marzb:A~ X %k — D¥ x B* is well-defined by the
formula¢(x,t) = (h;lFlhx(t), Foh,(2)) see [18, Fig. 4]. Sincé is an embedding, it
follows that¢ does not identify antipodegs, ) and(—x, —t). Extendg to

. A x Dk
DLl Y R
{Axt]|tedDk}
by

1
¢(xvt)v |t|<§l

Glx, 1] = t t t 1

Since ¢ (x, ﬁ) is close to(ﬁ,O), it follows that the new mam does not identify
antipodes. Hence we can obtain an equivariant g — S¥-1. g
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