
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 129, Number 2, Pages 627–628
S 0002-9939(00)05972-4
Article electronically published on October 2, 2000

ON CONTRACTIBLE n-DIMENSIONAL COMPACTA,
NON-EMBEDDABLE INTO R2n
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Abstract. We present a very short proof of a well-known result, that for each
n there exists a contractible n-dimensional compactum, non-embeddable into
R2n.

We present a very short proof of the following well-known result, which answers a
question from [DD] and was first proved in [RSS, Corollary 1.5] (later an alternative
proof appeared in [KR]).

Theorem. For each n ≥ 1 there exists a contractible n-dimensional compactum
which does not embed into R2n.

We shall use a construction and an idea from [RSS] (see also [CRS, §4], [RS1]
and [RSSp]). However, instead of using the main result of [We], we shall apply its
corollary, to the effect that for every n there exists a contractible n-polyhedron X ,
for which there is no equivariant map X̃ → S2n−1. A simple proof of this corollary
was presented in [Sc, p. 223]. Our proof also makes it possible to avoid referring
to a (not difficult) result in [CF, Theorem 2.5] and [Hu].

Proof of Theorem. There exist a contractible n-polyhedron X and a map ϕ : S2n−1

→ X which does not identify antipodal points [Sc, p. 223]. (Notice that the map
ϕn = pn|∂(D2)n : ∂(D2)n → T n also has this property, where T is the triod and p
is the map defined in [KR, §2]. Indeed, ϕ1 does not identify antipodal points [KR,
§2], hence neither does ϕn.) Let X ′ = X × (0 ∪ { 1

k}) ∪ x × [0, 1], where x ∈ X .
Clearly, X ′ is contractible.

Suppose that there existed an embedding f : X ′ → R2n. Then we could define
a map ψ : S2n−1 → X × X by ψ(s) = (ϕ(s), ϕ(−s)). Since ϕ does not identify
antipodal points, it would follow that ψ(S2n−1) ∩ diagX = ∅. Hence the maps
g0 : ψ(S2n−1)→ S2n−1 and gk : X ×X → S2n−1 given by

g0(x, y) =
f(x, 0)− f(y, 0)
|f(x, 0)− f(y, 0)| and gk(x, y) =

f(x, 0)− f(y, 1
k )

|f(x, 0)− f(y, 1
k )|
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would be well-defined. The maps ψ, g0 and gk would be equivariant with respect
to involutions on ψ(S2n−1) ⊂ X ×X and S2n−1, exchanging factors and antipodal
points, respectively.

Since dist(ψ(S2n−1), diagX) > 0, it would follow that for sufficiently large k
and any point (x, y) ∈ ψ(S2n−1), the points g0(x, y) and gk(x, y) would be close
and hence could not be antipodal. Therefore g0 'eq gk|ψ(S2n−1). But gk|ψ(S2n−1)

extends to a contractible space X × X and therefore is null-homotopic. Hence
g0 : ψ(S2n−1)→ S2n−1 is null-homotopic. Thus the map g0 ◦ψ : S2n−1 → S2n−1 is
equivariant and null-homotopic, which contradicts the Borsuk-Ulam Theorem. So
X ′ cannot embed into R2n.

By attaching k-dimensional cells to X ′ we can make X ′ locally (k−1)-connected,
hence our compactum can even be made to be locally (n−1)-connected. This obser-
vation (due to R. J. Daverman) is interesting because the Borsuk Conjecture states
that every contractible locally n-connected n-dimensional compactum embeds into
R2n.
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