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Abstract

We introduce the notion of an exact Milyutin mapping as a Milyutin mapping for which supports
of values of its associated map coincide with point-preimages. We prove that every open continuous
surjection between Polish spaces is an exact Milyutin mapping. For regular mappings we prove
that the measure of singletons in the preimages equals zero for some exact Milyutin mapping.
As a corollary, we obtain a proof of the local triviality of regular mappings with one-dimensional
(not necessary compact) polyhedral fibers and a new proof of the same result for compact fibers.
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1. Introduction

A continuous surjection f: X — Y between completely regular spaces X and Y is
said to be a Milyutin mapping [12,15] if there exists a continuous mapping v: Y — P(X)
such that for every point y € Y,

suppry C ' (y) (1.1
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where P(X) is the space of all probability measures with compact supports, endowed
with the usual weak topology (see [9]), which is induced by the natural embedding
of P(X) into the Cartesian power R€(X) where C'(X) is the space of all bounded
continuous real-valued functions on X. Here, the support supp i of the measure y is
defined as the intersection of all closed subsets F' C X such that u(B) = 0, for every
Borel set B C X\F. Mappings of such type are also regarded from a more general
descriptive set theory point of view. Namely, a map v:Y — P(X) is called a transition
kernel provided that for every Borel set B C X the map y — v, (B) is Borel measurable.
A map f:X — Y is said to be perfect statistic for a transition kernel v:Y — P(Y),
provided v, (f~!(y)) = 1 for each y € Y, see [4,5].
In our earlier paper [12] we proved the following result:

Theorem 1.1. Every paracompact space X is the image of some paracompact space
Xo of Lebesgue covering dimension dim Xy = 0, under a perfect Milyutin mapping
p: X() — X.

In the present paper we prove that for every continuous open surjection f: X — Y
between Polish spaces X and Y one can choose the map v:Y — P(X) so that the
inclusion in condition (1.1) can be replaced by the equality:

suppry = 7' (y). (1.2)

We shall call such f an exact Milyutin mapping. In the probability theory and statistics
an analog of exact Milyutin mapping is a well-known notion, a full perfect statistic. As
usual, a Polish space is a synonym for a separable completely metrizable space. Note,
that Theorem 1.1 remains valid if “paracompact” is replaced by “Polish” (see [1]). Our
main result states that each open continuous surjection f between Polish spaces is a full
perfect statistic for a suitable continuous transition kernel v.

Theorem 1.2. Every continuous open surjection f:X — Y between Polish spaces X
and Y is an exact Milyutin mapping.

Since the proof of Theorem 1.2 uses, in an essential way, the Michael selection the-
orem, our approach does not allow a straightforward generalization beyond the class of
completely metrizable spaces. The separability restriction is essential because of our use
of the existence of a probability measure whose support coincides with the whole space.

Also, we shall prove that sometimes it is possible to unify condition (1.2) with the
following condition:

vy({z}) =0, forallze ). (1.3)
We shall call such f an atomless exact Milyutin mapping.
Theorem 1.3. Every topologically regular mapping f: X — Y between Polish spaces

X and Y whose point-preimages are homeomorphic to a fixed Polish space without
isolated points is an atomless exact Milyutin mapping.
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We say that continuous surjection f: X — Y is topologically regular (completely
regular in [2]) if for every y € Y and € > 0, there is a § > 0 such that if d(y,y’) < ¢
then there is an e-homeomorphism from f~!'(y) onto f~!(3'), i.e., a homeomorphism
which moves points for a distance less than ¢.

Corollary 1.4. For every Polish space K there exists a continuous map j:exp K —
P(K) such that supp u(F) = F, for every subcompactum F C K.

Corollary 1.5. Every topologically regular mapping between Polish spaces whose preim-

ages are homeomorphic to a fixed compact one-dimensional polyhedron is a locally trivial
bundle.

Corollary 1.6. Every topologically regular mapping between Polish spaces whose preim-
ages are homeomorphic to the real line is a locally trivial bundle.

Corollary 1.5 generalizes the results of [11,13]: in [11] such a result was obtained
for fibers homeomorphic to a finite graph such that the order of each vertex is different
from two whereas in [13] such a result was proved for the compact case. We point out
that in Corollaries 1.5 and 1.6 there are no dimensional restrictions for the range of the
regular mapping. The authors wish to acknowledge the referee for several remarks and
observations.

2. The construction of

We shall describe the construction of the map v:Y — P(X) which satisfies condition
(1.2), i.e., such that suppr, = f~'(y). Consider the following main diagram:

i~lo(@xm)
—_—

A X
P4
0//
ﬂ // g
5 f
IXZ*WXXY
lpz 3% 2.0
A T Yy ———P(2)
P(X)
Here:

(1) Z = N*° is the space of irrational numbers.
(2) i: X — X x Y is an embedding which identifies X with the graph of the map f,
i.e., py oi= f, where py: X x Y — Y is the projection onto the second factor.
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(3) m is a Milyutin mapping of a zero-dimensional metric space Z onto Y and the
map s is associated to m, i.e., suppsy C m~(y), y € Y.

(4) For the construction of a pair of maps (m,s) in (3) one can use an embedding
Jj:Y — @ of Y into Hilbert cube ) and the standard Milyutin map mg:C — Q
of the Cantor set C onto Q (see [8,10]). It then suffices to define Z = m; ' (j(Y))
and m = my|z. Note that all point-preimages m~!(y), y € Y, are compact subsets
of Z.

(5) ¢ is an arbitrary continuous surjection of Z onto X and X is a probability measure
on Z whose support supp A coincides with Z on N such a measure clearly exists
while on Z = N one has to consider its countable power.

(6) p xm:I x Z — X xY is the Cartesian product of surjections ¢ and m and
A = (pxm)7(i{(X)), ie, A = {(t,2) | v(t) € f~'(m(2))}. Note that A
is closed in Z x Z since ¢(X) is closed in X x Y because of the openness
of f.

(7) 6 is a continuous selection of the lower semicontinuous multivalued map ©:Z x
Z — X, given by

o= {e®)}, if (,2) € 4,
Olt2) = {f"(m(z)), if (t,2) ¢ A.

Such a selection exists by Michael’s selection theorem [7], due to the O-
dimensionality of the space 7 x Z, completeness of values of © in X, closeness
of A, openness of the map f and the fact that on A the map (¢,z) — @(t) is a
selection of the map given by (¢, z) — f~!(m(z)).

(8) P(6): P(Z x Z) — P(X) is a map between the spaces of probability measures
which is induced by the map 6:7 x Z — X. Here, the value of the measure
[P(9)]p on the set B C X is by definition equal to u(f~'(B)), for every i €
P(I x Z).

(9) vy = P(B)[A ® sy], where A ® s, denotes the measure-product in P(Z x Z);
A € P(Z) has suppA =7 and s, € P(Z), y € Y, has supps, C m '(y) C Z
(see (3) and (5)).

3. Proof of Theorem 1.2

By construction, we have that [f o 6](t, 2) € f(f~!(m(2))) = m(2) = [mopz](t, 2),
i, fof® = mopz. Next, the continuity of the map v:Y — P(X) follows by the
continuity of the maps sly, A ® sy, 8 and the functoriality of P (see [3]).

Let’s verify that for every y € Y, suppv, C f~'(y). To this end we calculate the
value of the measure v, on the set B = f~!(y) C X. By definition, we have that

vy(B) = (P(O)A®sy])(B) = (A s,) (07" (' (1))
=(A®sy)(pz' (m™'(®)) = A @ s,)(T xm™'(y))
= A(D)sy (m ) = 1,
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since supps, C m~!(y), see (4). Therefore, the closed set f~!(y), has the property
that for every E C X\ f~!(y), the value of the measure v, on E is equal to zero, i.e.,
suppvy C f71(y).

Finally, let’s prove that supp v, = f~!(y), for every y € Y. This equality is equivalent
to the property of the measure v, that its value on every nonempty open subset of
preimage f~'(y) is positive. Let G C X be an open subset of the space X intersecting
the preimage f~'(y). Let’s check that the set #~'(G N f~!(y)) has a subset of type
U x m™!(y), for some nonempty open set U C Z. We obtain that

v (GNf ' @) = (PO s (GNHY) =R@s,] (07 (G f )
> @s,)(U xm™ (1)) = AU) - sy (m™" (1)) = \U) > 0,

because supp A = Z, see (5).

By (7) the map 6:Z x Z — X makes a continuous choice via (¢, z) from the sets
f~'(m(z)) and for pairs (t,z) € A and such a choice coincides with the point ((t).
So, fix y € Y and pick any z € G N f~'(y), t € o~ (z) C Z. For every z € m~'(y),
we have that (¢,z) € A and 6(¢,z) = ¢(t) = z. By the continuity of selection § at
the point (£, z), we can find an open rectangle neighborhood U x V = (U x V)(t, 2)
such that #(U x V) C G. By compactness of the preimage m~!(y), we can find a finite
cover of the set {t} x m~!(y) by such open rectangles {U; x V;}I,. Here, U; are
neighborhoods of the point ¢ € Z, {V;}_, is an open cover of the compactum m~'(y)
and 8(U; x V;) C G. Let us now verify that

(ﬂUi) xm™ ' (y) o (G ().
i=1

First, we have that

9(<ﬂ Ui) X m—‘(y)> - 9( Jui x w) CG.
i=1 i=1
Second, by the definition of the selection 6 (see (7)), for every

n

(t.2) e (ZLZJI Ui) x m™(y),

the value 0(t, 2) lies in the set f='(m(z)) = f~'(y), ie.,

9(( N Uz-) x m"(y)) c ).
=1
Thus we have checked the inclusion and this completes the proof of Theorem 1.2. O

Remark. Note, that there exists a direct way of calculating the value v, (B) of the
measure v, over a Borel set B C X. To do this one must:

(a) for a fixed z € m~!(y), find the preimage (0|74 (-}) ' (B) = B:;

(b) calculate the measure A(pz(B,)); and
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(c) evaluate the integral

/ /\(pI(BZ)) dsy.
zem=1(y)

4. Proof of Theorem 1.3

Step 1. We show that the case of an arbitrary Y can be reduced to the case dimY = 0.
Let us consider the following diagram:

XxZ O T—>—>X
1 lf
Z—"—Y —2>P(2Z) (4.1)
A v
P(T) P(X)

Here:
(1) The pair of maps (m, s) is as in (3) of Section 2.
(2) T={(z.2) € X x Z: f(x) =m(2)}; px and pz = p are projections onto the
factors. Clearly, Z and T are Polish spaces.
(3) dimZ = 0. Clearly the map p is an open surjection, and by hypothesis we can
find a continuous map \: Z — P(T') with properties (1.2) and (1.3), i.e.,

suppA, =p~'(2), forallz€ Z, and
A({(z,2)}) =0, forall (z,2) € p~'(2).

Now, for a fixed y € Y, we consider a Borel set B C f ~!(y) and for every z €
m~!(y), we consider the value \,(B,) € [0, 1] of the measure A, on the Borel subset
B; = {(z,2): x € B} of the preimage p~'(2). Then we put

v,(B) = / A.(B.)ds,.
)

If G is open in f~'(y), then G, is open in p~'(z), for any z € m~!(y) and hence
A:(G2) > 0. By the properties of the integral it follows that vy (G) > 0.

If B is a singleton in f~!(y), the B, is a singleton in p~'(z) and hence ,(B,) = 0.
So, vy(B) = 0. This completes the proof of Step 1. Note, that we have used only
openness of f, but not also the regularity of f.

Step 2. Let us prove Theorem 1.3 for zero-dimensional Polish spaces Y. Let C(IxY, X)
be the set of all continuous mappings from 7 x Y into X, endowed with the topology
of uniform convergence. Then C'(Z x Y, X) is a completely metrizable space. Let

S={seCTxY,X): s(ITx{y})=f"(y) forallye Y}
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As in the proof of Theorem 1.2 we can see that S is nonempty. Clearly, the space S of all
“fiberwise” mappings of Z x Y onto X is closed in C(Z x Y, X). Hence S is completely
metrizable space, too. For each s € S and each y € Y, let v} be the probability measure
on the fiber f~!(y), defined as follows:

vy(B) = Mpz[(slzx 1) (B)]),
where B is a Borel subset of X and A € P(Z), with supp A = Z. Clearly, supp(v;) =
f~Yy), forall y € Y, because s € S.

Now, we define a multivalued mapping H:Y — S as follows: for each y € Y, let
H(y) be the set of all mappings s € S such that the probability measure v; is atomless,
ie., vi({z}) = 0, for all z € f~'(y). Clearly, H(y) is a closed subset of S. For the
mapping H, Michael’s zero-dimensional selection theorem applies. Lower-semicontinuity
of H follows by standard methods [2] from the regularity of f. Some technical difficulties
arise, however, with the nonemptiness of H(y), y € Y. First, we represent the preimage
f~'(y) as an image Z x {y} under some surjection which induces an atomless measure
on f~!(y). Then we extend such a surjection to some element s € S in the same manner
as we constructed the map € in Section 2 above.

So, let h:Y — S be a continuous singlevalued selection of H, h, € H(y). Then the
map m:Z x Y — X, defined by

m(t,y) = hy(t,y)
gives the desired atomless exact mapping v: Y — P(X), according to the formula above,
ie.,
vy(B) = Mpz[(mlz.,1) 7 (B)]), B f7'(y).
Indeed, h, € S and hence

hy(Z x {y}) = ),

i.e., supp(vy) = f~'(B) and from h, € H(y) we conclude that v, is atomless. [J

5. Proofs of corollaries

Proof of Corollary 1.4. Recall that exp K is the family of all nonempty subcompacta
of the Polish space K, equipped with the Hausdorff distance topology with respect to
which exp K is a Polish space, too (see [6, Theorem (7.5)]). Apply Theorem 1.2 for the
spaces Y =exp K,

X ={(t,F): FcexpK, te F} CK xexpK

and for the map f:X — Y be the restriction of the projection p: K x exp K — exp K
onto the second factor. Then for every F € Y = exp K, we obtain a probability measure
u(K x exp K), continuously depending on F, whose support coincides with the set
f~Y(F). Clearly, under the projection of X onto the first factor of the product K xexp K,
the set f~!(X) is mapped homeomorphically precisely onto the set F'. Therefore, we
have constructed the desired mapping of exp K into P(KX). O



204 D. Repovs et al. / Topology and its Applications 81 (1997) 197-205

Proof of Corollary 1.5. For simplicity let us consider the case of the unit interval as
the fiber. Let yo € Y, let {co,do} be the endpoints of the preimage f~'(yo) and let
2¢9 = dist(co, dg) > 0. Find a é-neighborhood U = U(yg) such that for every y € U,
the preimages f~!(y) and f~!(y) are homeomorphic under some £yp-homeomorphism.
Then we can distinguish the endpoints of the preimages f~!(y), y € U. One of these
endpoints lies near ¢y and the other one lies near dyp. We denote these endpoints by c(y)
and d(y), respectively.
By Theorem 1.3, there exists a continuous map v: Y — P(X) such that

suppry = f'(y), yeY, (5.1)

and

v({z}) =0, zef'(y). (5.2)
Now, for every z € f~!(U) we put
¥(@) = (£(2), v5) ([e(f(2)),2])) € U x [0,1]

where we denoted with [c¢(f(z)), x| the part of the arc f~'(f(z)) between the points
¢(f(z)) and z. In order to prove the bijectivity of the map v : f~'(U) — U x [0, 1] it is
sufficient to observe that for a fixed y € U the map ¢, () = vy ([c(y), z]), vy : fHy) —
[0, 1], is monotone because the measure v, is a monotone function of sets. From (5.1)
we obtain that ¢, is strongly monotone, ie., if [c(y),z] C [e(y), 2],  # 2/, then
oy(z) < @(z'). From (5.2) we conclude that ¢, is in fact a continuous function and
hence ¢, is a bijection. Continuity of the map follows from the continuity of f, v and
C|U. O

For an arbitrary, compact one-dimensional polyhedron an argument, similar to the one
in [14], can be used.

Proof of Corollary 1.6. We repeat the idea of the previous proof. However, we start
from the points c(y), y € U(yo), which divide the point-preimages f~'(y) into two
“equal” parts. This means that f~!(y)\c(y) has exactly two connected components and
the values of measures v, at this components are equal to 1/2.

The existence of such an intermediate point c(y) follows from condition (5.2) of the
atomlessness of measures v, and the uniqueness of such points follows from condi-
tion (5.1) of exactness of measures v,. 0O
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