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Abstract

Repovs, D., P.V. Semenov and E.V. §Eepin, On zero-dimensional Milutin maps and Michael
selections theorems, Topology and its Applications 54 (1993) 77-83.

We study the relationship among the three best known Michael’s theorems on the existence of
selections of lower semicontinuous muiti-valued maps: (A) the theorem for zero-dimensional
paracompact spaces; (B) the theorem for convex-valued maps on paracompact spaces; and (C)
the theorem for compact-valued selections.

We prove that the theorems (B) and (C) follow from theorem (A). This is a corollary of our
main theorem that every paracompact space is the image of a zero-dimensional paracompact
space under a Milutin map.
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1. Introduction

A map f: X — Y (possibly multi-valued) is called a selection of a multi-valued
map F: XY if for every x € X, f(x) c F(x). A multi-valued map F: XY is
said to be lower (respectively upper) semicontinuous if for every open subset GCY
of Y, the set {x € X | F(x) N G + @} (respectively {x € X | F(x) c G}) is open in X.

We begin by stating the three best known Michael’s theorems about the
existence of continuous single-valued selections of multi-valued lower semicontinu-
ous maps [1,3-7].
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Theorem 1.1 (The zero-dimensional theorem). Let X be a paracompact space with
dim X =0, M a complete metric space and F : X - M a lower semicontinuous map
with closed values. Then F admits a continuous single-valued selection.

Theorem 1.2 (The convex theorem). Let X be a paracompact space, B a Banach
space and F : X — B a lower semicontinuous map with closed convex values. Then F
admits a continuous single-valued selection.

Theorem 1.3 (The compact theorem). Let X be a paracompact space, M a complete
metric space and F : X = M be a lower semicontinuous map with closed values. Then
F admits an upper semicontinuous compact-valued selection, which admits a lower
semicontinuous compact-valued selection.

The main purpose of our paper is to show that Theorem 1.1 implies both
Theorems 1.2 and 1.3. This follows from our main result:

Theorem 1.4. Every paracompact space is the image of some zero-dimensional
paracompact space under some Milutin map.

Corollary 1.5. Theorem 1.1 implies both Theorems 1.2 and 1.3.

Corollary 1.6. Let X be a paracompact space, G an open subset of some Banach
space and F : X - G a lower semicontinuous map with convex closed (in G) values.
Then F admits a continuous selection.

Corollary 1.7. Let G = NG, where G, are open convex subsets of some Banach
space. Then any lower semicontinuous map from a paracompact space X into G with
convex closed (in G) values admits a continuous single-valued selection.

Remark. Nedev and Valov have announced an alternative proof of Corollary 1.6
[10]. For an alternative proof of Corollary 1.7 see [8].

In the special case, when the space X is compact, the proof is relatively simple
and it uses the so-called Milutin maps [9]. In the general case some additional
construction is needed. For metrizable spaces X, Theorem 1.4 was proved by
Coban [13]. (For related work see also [14].)

This paper was written during the first author’s visit to the Steklov Mathemati-
cal Institute in Moscow in 1991 on the basis of the long term agreement between
the Slovene Academy of Arts and Sciences and the Soviet Academy of Sciences
(1991-1995). The third author wishes to acknowledge the kind invitation by
Professor Jun-iti Nagata to present this paper at the 1991 Niigata Third Soviet-
Japanese Joint Symposium on Topology and the 27th Symposium on General
Topology.
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2. The compact case

Step 1. Let X be a compact space, M a complete metric spaceand F: X > M a
lower semicontinuous map with closed values. We may assume that X lies in the
cube 17 for some cardinal 7, where I denotes the interval 7 =10, 1). Let K: {0, 1}°
— ™ be any continuous map of the zero-dimensional space {0, 1}" onto the cube
I". Then K is a closed map and K~! is an upper semicontinuous map with
compact values. Let Y =K~ (X).

Then Y is a zero-dimensional compactum and by Theorem 1.1, the lower
semicontinuous map (F o K)|y:Y—> M admits a continuous selection ¢. The
formula f(x) = ¢(K~!(x)) defines an upper semicontinuous compact-valued selec-
tion f: f(x) c F(x), for every x € X.

M
o/ N\
X«—K—Y

M N
I (—I-(_ {O, 1)

Step 2. We begin by providing some preliminary information about averaging
operators. For a compact space X we denote by C(X) the Banach space of all
continuous functions on X with the sup-norm topology and by P(X) we denote
the space of all regular probability measures on X, equipped with the weak *-
topology; every u € P(X) is a continuous positive linear functional on C(X) with
n(ly) =1 ‘

A continuous map f: X — Y of a compact space X onto a compact space Y is
called a Milutin map if there exists a continuous map v:Y — P(X) such that
supp v, Cf~'(y), for every y €Y.

If f: X > Y is a Milutin map and v :Y - P(X) is the map associated with f, we
can define the so-called regular averaging operator A:C(X)— C(Y) by the for-
mula (A4¢Xy) =v,(¢), for every ¢ € C(X). Obviously, AP ° f)=4¢, for every
¥ € C(Y). As a consequence, C(X) is isomorphic to C(Y) @ Ker A.

It is well known that: (1) there exists a Milutin map of a Cantor set C onto the
interval I =[0,1] (see [11, Lemma (5.5)}); (2) every product of Milutin maps is again
a Milutin map (see [11, Proposition (4.7)]); and (3) if X and Y are compact metric
spaces and f: X =Y is a Milutin map then f~! admits a lower semicontinuous
compact-valued selection (see [2, Theorem (3.4)]).

We now use Step 1 for a Milutin map of the Cantor set C onto [ and consider
the restriction of the r-degree of a lower semicontinuous compact-valued selection
onto a compact X CI” then we obtain the desired lower semicontinuous compact-
valued selection. Next, we use Step 1 for this lower semicontinuous map and
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obtain an upper semicontinuous compact-valued selection. In this way, we have
proved that Theorem 1.1 implies Theorem 1.3, however, with the interchange of
lower and upper semicontinuity of selections. In order to prove precisely Theorem
1.3 we need more sophisticated techniques (see Section 3).

Step 3. Let X be a compact space, B a Banach space and F: X - B a lower
semicontinuous map with closed convex values. We may assume that X lies in /7
for some cardinal 7, where I =[0, 1], as before. Let M:C™ - I" be any Milutin
map of the zero-dimensional space C” onto the cube I, v be the map associated
with M, from I7 into P(C7), and let Y =M~ (X).

Then Y is a compact space, dim Y =0 and the composition (F - M)|y:Y— B
is a lower semicontinuous map with closed convex values. By Theorem 1.1, the
map F o M admits a continuous selection ¢:Y — B, ¢(y) € F(M(y)), for every
yeY.

We define a continuous map f: X — B by the following formula

10 = fM”(x)d)dvx'

Consider the diagram

B
¢
7N
X<—M-—Y
N N

P(CT) I ——C"

Recall that supp v, € M~ !(x). By the definition of f, we have that
f(x) econv{g(y)lyeM (x)} cF(x),

i.e., f is a selection of the lower semicontinuous map F. So, we have proved that
Theorem 1.1 implies Theorem 1.2.

If one uses a technique of Valov (see [12, Corollary (3.7)]) then the above
constructions can also be applied to the class of p-paracompact spaces X.

3. The general case

Step 1. Let w be a locally finite open covering of X, w ={G,}, c A(wy and let
e = {e,)s e 4y b€ a locally finite partition of the unity, inscribed into the cover w,
i.e., for every @ € A(w), supp e, C G,. In the direct product of X and the discrete
space A(w) we consider the following subspace X, ,

Xpe= {(X, a) e X X A(w)| x € supp ea}.
X

w,e

is called the closed graph of the covering {supp e,}, c 4.
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Next we consider the natural projection p,,,: X, . — X, given by p,, (x, @) =x,
for every (x, a) €X,,,. It's easy to see that p, . is a closed map. Because w is
locally finite, the preimages p_ !(x) are compact (in fact, they are finite sets). So,
the map p,, , is perfect and the space X, is paracompact.

We construct a regular averaging operator L for the map p=p,, in the
following natural way. Let f: X, — R be a bounded continuous function. Define
a function L;: X - R by (L Xx) =L, f(x, a)e,(x), for every x € X, where the
sum is taken over all a such that (x, @) €p~x). Then L; is bounded and
continuous, if f>0 then also L,> 0, and for any bounded continuous function
g : X - R we have that

Ly (x) = Lg(p(x, a))e,(x) =g(x) Leax) =g(x).

Therefore, L, is a regular averaging operator, i.e., p =p,, . is a Milutin map.
Step 2. Next we introduce the so-called pull-back operation for the map
Po.: X, .— X, over all pairs (w, e). More precisely, let 2 be the discrete set of all
locally finite coverings of X. For any w € {2 we pick a locally finite partition of
unity e inscribed into a cover . In the Cartesian product of X and the discrete

space I, . o A(w) we consider the following subspace

Xipc= {(x, {a(@)},en) €X X [T A(w)|x €supp e,

wel]
for every w € .(2}

and consider the natural projection p: X gc — X, given by p(x, {a(w)}, cp) =,
for every (x, {a(w)), < o)-

We omit the routine verification of the fact that the pull-back operation of a
perfect (Milutin) map gives a perfect (Milutin) map. So, we have that X, g is
paracompact and that the map p: X - — X is a Milutin map.

Step 3. It remains to prove that dim X .- =0. We prove that for any open
covering of the space X .- there exists an inscribed open pairwise disjoint
covering. We may assume that the original open covering consists of the basic open
sets (with respect to the topology induced by the topology of the Cartesian product
X XTI, e gA(w)).

First, we consider the local situation. Pick x € X and choose a finite collection
Vi,...,V, of basic open sets such that the collection {V;np~'(x)}, is the
covering of the compact space p~!(x). We have that forevery i=1, 2,...,n,

V= (Ux 1 B(w) x 1 4(0)) 0 Xirc,
wEF, w€&F,
for some finite set F; C {2, for some subsets B(w) CA(w), w € F;, and for some
neighbourhood U, of the point x.

We should remark that, in fact w = {G,}, < 4., is a locally finite covering of X
and that we may consider the index « as a closed set supp ¢, CG,.
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For every w € F;, there exists only a finite set of functions e(w),..., e, (@)
such that e(w) € B(w) and x € supp e,(w) C Gw), 1 <j < k().
We define “very small” neighbourhood of the point x € X:

n k(i)
W)= N {U.— n _an,-(w))
i= weF, \j=

Now, we consider the first basic open set V. For every w € F;, we pick some
element A(w) € {e|(w),..., e, (@)} and define the following basic open set V| , C
Vi

Viw= (W) % TT (@)} x TT 4(@)) 0 Xire.
weF), w&F,
Then the sets {V, ,}, are pairwise disjoint.

In the similar manner we define the sets {V,,},...,{V, ,} which are inscribed
into the sets V,,...,V,. The union of these sets makes up the pairwise disjoint
open covering of p~!(x), inscribed into the covering V,,...,V,.

Next, we consider the open covering {W(x)}, . x of X by the “small” neigh-
bourhoods W(x). Let w, be any locally finite open covering which refines the
covering {W(x)}, c x. Then w, € 2 and we may distinguish the above sets {V; ,(x)}
by using the wg-coordinate, i.c., let e,(w), ..., €;q(@,) be all indexes from A(wy)
such that x € supp e (wy) C G{(w,), for every 1 <j < k(0).

Then we may consider the following basic open subsets of set ¥, ,(x):

Vins= (W) x T (@)} x {iCwo)} x T A(@)) N Xirc.

w&FUawy

So the sets {V;, (x)} over all i, h, j, x form an open, pairwise disjoint covering of
Xipc

We remark that the map p constructed above is in fact an inductively open
map, i.e., the upper semicontinuous compact-valued map p~' admits a lower
semicontinuous compact-valued selection S. To construct such a selection § we
consider the class of all coverings of the paracompact space X by interiors of the
sets supp e,, a € A(w), w €, and afterwards we repeat the construction above
for this class. This proves that Theorem 1.1 indeed implies Theorem 1.3.
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