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Summary. We consider the following three classical examples of nonmetrizable compacta:
the 2-arrows space T, the lexicographical square L, and the double K, of K, where K is
an uncountable metric compactum. We study the Banach spaces of continuous functions
on these compacta and we express them vie more standard Banach spaces. We prove the
existence of a sufficiently large family of projectors whose images are isomorphic to the
whole space of functions. Such an existence yields the contractibility of the linear groups
of these Banach spaces of functions. For the space T the proof is based on the well-known
conditions of infinite divisibility and smallness of operator blocks. For the spaces L and
the double K2 we use different arguments to prove the contractibility of the linear groups.

1. Introduction. By theorem of A. A. Milyutin [8], for each uncountable
metric compactum K the Banach space C{K) of all continuous functions
f + K — R with the usual sup-norm metric is isomorphic to the Banach
space C'(D*) of all continuous functions f : D¥ — R defined on the Cantor
set D“, where D = {0,1}. The existence of such an isomorphism guarantees
in the space C(K) the existence of a sufficiently large family of projectors
whose images are isomorphic to the whole space C(K). For example, one
can consider in the space C(D¥) the projectors which are induced by the
restriction onto the subsets of the Cantor set, homeomorphic to the whole
Cantor set. Precisely, such a family of projectors was used in (3, 9] for a proof
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of the contractibility of the linear group GL(C(K)) of all isomorphisms of
the Banach space C(K), in the uniform topology.

For nonmetrizable compacta K, the problem of the isomorphic classifi-
cation of spaces C(K) is more complicated than in the metric case (see [12]).
The purpose of our paper is to investigate from this point of view the sim-
plest examples of nonmetrizable compacta: the so-called “two arrows” space
(T), the “lexicographic sphere” (L) and the “double of K" (K3) (see [1}).
There exists a principal distinction between these nonmetrizable compacta.
Any open subset of T" has a subset which is homeomorphic to the whole com-
pactum 7. However, such a herediterity does not hold in L or K,. Thus,
for the proof of contractibility of GL(C(T)) we shall use the approach of
([9}, Theorem 1) where the topological property of the contractibility of the
linear group of the Banach space was reduced to the geometrical properties
of that space, namely to the properties of the infinite divisibility (ID) and
the smallness of operator blocks (SB). For GL(C(L)) and for GL(C(K,))
we shall use some other construction in order to avoid the problems with
direct verification of the property SB.

The space C(T') has been considered in different papers on weak topology
in Banach spaces. For example, it is known that C(T') is not weakly com-
pactly generated (WCG) but nevertheless it admits an equivalent locally
uniform convex norm. Moreover, C(T') is not separable, but its conjugate
space has a countable total subset, etc. (see [2, 6, 13]). In order to check
the properties ID and SB for C(T') and to construct a suitable family of
projectors we exploit the existence of an isomorphism between C(T) and
some Banach space of functions on the unit interval I = [0,1]. We use the
convex structure of [ instead of using the zero-dimensionality of the Cantor
set D,

An analysis of the proof below shows that such an approach gives the
contractibility of GL(C(I)) without the Milyutin theorem and gives the
contractibility of GL(B) for some other Banach spaces of functions on 1.

THEOREM 1.1. The linear group GL(B) of all isomorphisms of a Banach
space B is contractible in the uniform topology in the following cases:

(a) B =C(T),

(b) B=C(L),

(c) B = C(K2) where K is any uncountable metric compactum.

Clearly, for B from Theorem 1.1 we obtain that the space &(B) of all

Fredholm operators is the classifying space for the K-theory of compact
metric spaces [4, 5].

2. Isomorphic types of C(T'), C(L), C(K3). We shall use the notation
co(I"; B) for the Banach space of all continuous mappings f : I’ — B from
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the discrete space I" which vanish “at infinity”, i.e. co(I;B) = {f: ' — B|
for any € > 0 the set {y € I' | ||f(7)|| > €} is finite}. Obviously, co(I'; B) is
isomorphic to co(|I"|; B), where |I'| is the cardinality of I'. For a countable
I" we put ¢o(N; B) = ¢o(B) and for B = R we put co(I'; R) = ¢o{I']. In the
space co[I'] we fix a notation e, for the mapping I" — B such that e, (a) =0
for a # v and e4(y) = 1. Finally, we define ¢ = |I| and C = C(I).

Let < be the usual linear ordering on the unit interval I and let < be
the lexicographical ordering on the Cartesian square 12, i.e.

(r,a) < (y,b) @ (z<y)V(z =y,a<bh).

It is well known [1] that I?, with the topology generated by such an ordering
~<, is a nonmetrizable compactum, called the “lexicographical square” L. The
space called “two arrows” T is the following closed subset of L:

T = 0,1} x {0,1}.

Finally, let K be a compactum and suppose that in the Cartesian product
K x {0,1} the following local basis of topology is introduced:

(i) any point (x,1) is an open set, for every z € K,

(i) if V(x) is an open neighbourhood of z € K then

V(z,0) = (V(z) x {0 U ((V(z) x {1}) \ (z,1))
is an open neighbourhood of the point (z,0) in K x {0,1}.

Then the “double of K”, denoted as Ko, is the product K x {0, 1},
endowed with the topology described above.

LEMMA 2.1. (a) The Banach space C(T) is isomorphic to the Banach
space C, = C.(I) of all functions f : I — R which are left continuous and
which have the right limit at every point x € I (We use the notation of
H. Corson [2]),

(b) the Banach space C(L) is isoporphic to the direct sum Cy @ co(c; C),

(c) The Banach space C(K3) is isoporphic to the direct sum C & colc] if
K is an uncountable metrizable compactum.

Proof. (a) Let for each f € C(T) and each z € I, fo(z) = f(z,0) and
fi(z) = f(z,1). Clearly, fo € C, and f; may be obtained from fy by setting
fi(z) = lim fo(t), as t — z + 0, i.e. f, is continuous from the right and has
the left limit at every point z € I. It is easy to check that the correspondence
f +— fo gives the desired isomorphism between C(T') and C,.

(b) Let R: C(L) — C(T) be the operator of restriction onto the subset
T C L and let E : C(T) — C(L) be the operator of the extension, i.e. for
each f € C(T) the function Ef coincides with f onto T and the function
Ef is linear over each vertical interval I; = {(z,t) | 0 < ¢ < 1}. Thus, for
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each f € C(L), we define Af = (Rf,f — E(Rf)). Then A is the desired
isomorphism between C(L) and C, & ¢o([0, 1}; C).

Linearity, injectivity and continuity of A are evident. Let us check that
g = f — E(Rf) is in fact in ¢o([0, 1}; C). Here, [0,1] denotes the horizontal
interval {(z,0) | 0 < z < 1}. By the construction, g is identically zero over
T and restrictions g|;, are elements of C(I;) = C. Suppose that, on the
contrary, for some £ > 0, there exists an infinite sequence {z,}, z, € [0, 1]
such that ||g,|| > €, where g, is the restriction of g onto the vertical interval
I, . Let z be the limit point of {z,} and G = G(z,0) U G(z,1), where
G(z,0) and G(z, 1) are basic neighbourhoods of the points (z,0) and (z,1)
in which the modulus of g is less than ¢. Then G contains one of the vertical
intervals I, , and thus contradicts the inequality ||g,|| > ¢ (see Figure).

(z.1)

T Gz, 1)

e o o e o m wm — e e e . = — = - —

(x,0)
G(z,0)

Figure

(c) We divide the proof into two steps. First, we prove that C(K,) is
isometric to the space Cs(K) of all functions on K with removable points
of discontinuity. Let f € C(K3) and fo = flxx{o}, f1lkx{1}- The topology
on K x {0} induced from K, coincides with the original metric topology
on K. Hence f, € C(K). Moreover, from the definition of topology on
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K, we obtain (see (ii) above) that limy_., f(y,1) = f(z,0), for every pair
of points z,y € K,  # y. Hence f; is a function with removable points
of discontinuity and fg is the “same” function with points of discontinuity
removed. Thus, the correspondence f +— f; gives the desired isometry. Next,
we prove that Cs(K) is isomorphic to C(K) & cof[K|]. To see this it is
sufficient to define the projector P : Cs(K) — Cs(K) by the formula

(PH)(z) = lim £(3)

and note that the kernel Ker P is isometric to co[|K|] and the image Im P
of this projector is isometric to C(K). Finally, we have that |K| = ¢ and by
Milyutin’s Theorem, C(K) is isomorphic to C. a

3. Proof of Theorem 1.1(a). Recall, that a Banach space X is said
to have the property of infinite divisibility (ID), ([9], Definition 1) if there
exists a series y_ P, of pairwise disjoint projectors P, : X — X such that:

(i) this series is unconditionally and pointwisely convergent to the iden-
tity operator id x,

(ii) there exist isomorphisms 7, : Im P,, — X for every n € N,

(iii) the operators of the “left” shift L = 34,7, 7, P, and the “right”
shift R = Zinﬂrgjlmi’n are continuous on X (here i : Im P, — X are
the identity inclusions),

(iv) for every continuous linear operator A : X — X the “diagonal”
operator A = 1,77 A7, P, is also continuous on X.

Recall also, that a Banach space X is said to have the property of small-
ness of operator blocks (SB) ([9], Definition 2), if for every £ > 0 and for
every compactum S of linear continuous operators in X, S C L(X), there
exist projectors P: X — X and @ : X — X such that:

(i) P and @ are disjoint, i.e. PQ = QP =0,

(i1) the images Im P and Im @ are isomorphic to the whole space X,

(iii) |PAQ) <€, forall A€ S.

It is easy to see that if one chooses projectors from some bounded (by
norm) set of operators then the property SB for finite sets {A;, A2,...,An}
C L(X) implies the property SB for any compactum S C L(X). In our
construction the norm of every projector will be at most 2. v

We shall use the following family of projectors in the space C, = C(T).
For each segment A C I and for each function f on I we set the function
Qaf equal to f outside the interior of the segment A and Qaf equal to
a linear function over A. Note that Qaf coincides with f at the ends of
A and hence Qaf is correctly defined as a linear function over A. Then
the function P f will be defined by Paf = f — Qaf- It is clear that the
support of the function P, f lies in A, that Q4 and P, are continuous linear
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projectors in Cr, ||Qall = 1, | Pall € 2, and that Q4 and P, are continuous
linear projectors in the closed subspace:

Crio = {f € C, | £(0) = £(1) = 0}

of the space C,.. Moreover, the image Im P4 of the projector P, is isomorphic
to C.,-,o.

LeMMA 3.1. (a) The Banach space Cyq is isomorphic to the Banach
space cp(Cro0),
(b) the Banach spaces C, and C, g are isomorphic.

Proof. (a) Let X = C,p and Y = ¢o(X). Then Y is isomorphic to
co(Y) and hence Y is infinitely divisible. Moreover, X is isomorphic to the
complementary subspace of Y (the inclusion as the first coordinate). By
the decomposition principle ([9], Lemma 7, (11}, Proposition 4) it suffices to
check the complement of Y in X in order to establish the existence of an
isomorphism between X and Y.

Let Ay, As,...,A,,... be a sequence of mutually disjoint segments in [
converging to the right end of I. Then for each function f € C, 4, the series
>~ Pa, f converges to some function ¢ = Pf € C, . Clearly, the image Im P
of the projector P is isomorphic to Y = ¢o(Cr o).

(b) Invoking (a) and once more the decomposition principle, it suffices
to check that C, and C, o are isomorphic to the complementary subspaces
of each other.

For each f € C}, weset Q f equal to a linear function on I which coincides
with f at the ends of I and put Pf = f — Qf. Then P : C, — C, is a
continuous projector and Im P = C,. .

Let A = (%, 2]. For each g € Cr o we put Rg equal to g over A and Rg
linear on [0, %] and on {%, 1]. Then R : C, o — C;p is a continuous projector
and the image Im R is isomorphic to C,(A) and hence to C,. O

The Mityagin’s theorem ([9], Theorem 1) states that the properties ID
and SB are sufficient for contractibility of linear groups GL. Here we really
need only one partial case of infinite divisibility. More precisely, we use
Lemma 8 from [9] which asserts that if X is isomorphic to £,(X), 1 < p <
oo, or X is isomorphic to ¢o(X), then X has the property ID. Thus, from
Lemmas 2.1 and 3.1 we get the following corollary.

COROLLARY 3.2. The spaces C(T'), C(L), C(K3) are infinitely divisible.

LEMMA 3.3. Let € > 0 and let A and V be subsegments of (0,1] such
that A C Int V. If for function f € C, the inequality ||Paf|| > € holds, then
there exists a subsegment o C I such that:

(1) oCIntV,
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(i1) flo has a constant sign,
(iii) |f(z)| > /2 for all z € w.

Proof. There exists £ € Int V such that
|f(z) - Qaf(z)| = |Paf(z)| > ¢,
because of inclusion supp (Paf) C A and the inequality ||Pa f|| > e.

If |f(z)! > €/2 then we can find the desired subsegment o using left-
continuity of f at the point z. If |f(z)] < €/2 then |Qaf(z)] > €/2 and
from the linearity of QA f over A we obtain that |Qaf| is more than ¢/2
at one of the ends of the segment A. However, at the ends of A function

Qaf coincides with f. Finally, we once more use the continuity from the
left of f. .0

LEMMA 3.4. The Banach space C, has the property SB.

Proof. Let ¢ > 0 and let {A;, A3,..., A} C L(C;). Pick a sequence

1, 41,49,...,4,, ... of mutually disjoint subsegments on interval (0, 1]
and choose any subsegment V; C Int V{. If for all 1 < 1 < m we have that
| Py, AiPa,ll <€

then the projectors P = Py, and @@ = P,4, give the property SB for the
given finite set of operators {4y, Az,..., A} C L(C,). In the opposite case,
there exists an index 1 < ¢(1) < m such that

”PV1A1'(1)PA1” Ze>ef2
This means that for some h € C, with ||h]| =1 we have
| Po, AiyPa, (R > €/2.

Apply Lemma 3.3 to the segments V; and V/{ and to the function Aiy(91),
where g; = Pa, (h) and hence ||g; |} < 2, supp (¢1) C A;. In this way we find
a subsegment o, such that

(i1) o1 C Int V1,

(iiy) A;(1)(91)lo, has a constant sign,

(ifiy) {A;y(g1)(z)| > €/4, for all z € n;.

We can always replace h with —h and hence we can assume that, in
addition

(iv1) A;0)(g1)(z) > e/4 for all T € o;.

Next, we pick subsegments V, and V), such that

V,CIntV, C V, C Int(o;) C oy

and we repeat the above procedure for the pair of projectors Py, and P,,.
In this way we find a subsegment oy such that:
(12) 0y C Int VIZ C o,
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(ivy) for some index 1 < 4(2) < m and for some function g; € C, with
llg2ll < 2 and supp(g2) C A3, the following inequality holds

Ai2)(92)(z) > e/4 forall z € o,.

Iterating such a procedure mN times we find some index, say #(0) €
{1,2,...,m} which is repeated at least NV times. Let

9= > o

ke{1,2,..., Nm}
i(k)=i(0)
Then ||g]] < 2 because we have, for every £ > 1, the inclusion supp (gx) C
Aj. By construction, we obtain

(Aiy(9))() =D _(Aio)(9x))(z) > N - (£/4)

for all z € o,y C --- C 02 C o;. To get a contradiction it is sufficient to
choose N so that N > (8/¢) - max{||A:]| : 1 < ¢ < m}. 0

Theorem 1.1(a) is a direct corollary of Lemma 3.4, Corollary 3.2 and
Mityagin’s Theorem. Let us formulate an abstract version of Theorem 1.1(a):

THEOREM 3.5. Let B be a closed subspace of Banach space of all bounded
functions on the unit interval I with sup-norm. Suppose that

(i) for each f € B and for each x € I, the function f is either left- or
right-continuous at the point T,

(i) for each f € B and each subsegment A C I, the function Pof € B,
loo.

Then GL(B) is contractible in the uniform topology.

4. Proof of Theorem 1.1(b) and (c). Let a Banach space B be iso-
morphic to a direct sum of Banach spaces X; and X5, B = X; @ X53. Then
any operator A € L(B) has the standard (2 x 2)-matrix representation

[All A12 ]
A21 A22

where A;; : X; — X; are linear continuous operators. We shall prove that
it is possible to find X; and X3 such that A;, = 0 for a given invertible
operator A and, moreover, such that A;; € GL(X}), A2 € GL(X,). Note
that the invertibility is essential here, which is in contrast with the properties
ID and SB which, in turn, are related to any operators from L(B). We start
from the case B = C @ co[['] = C(K3), i.e. from Theorem 1.1(c). As in
Section 2, we denote e, v € I', the standard y-th ort in the space ¢o[I], i.e.
ey(a) =0 for a # vy and e, (y) = 1.

S T T
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LEMMA 4.1. Suppose that A € L(C & co[I']), that I" is uncountable, and
that yy = Ajze,. Then [{y € I' | y, # 0} < Ro.

Proof. Suppose, on the contrary, that I'' = {y € I" | y, # 0} is un-
countable. We can assume that C C I, and hence in the set N of all coordi-
nate indices of elements of I, we have an uncountable family of nonempty
subsets; namely, the supports of y.,, v € I"'. Therefore, for some n € N and
some € > 0, there exists an uncountable I C I' such that y,(n) > ¢, for
all vy € I'" or y,(n) < —¢, for all y € I''. Let {vi,7v2,---,7%,--.} C I'".
Then

=3 (1/k) - eqn € coll

but A2z has +00 or —oo as the n-th coordinate. This is a contradiction. O

Note that Lemma 4.1 holds for any closed subspace of [, e.g. for the
space C, since any function f € C, is uniquely determined by its values at
the rational points.

LEMMA 4.2. Suppose that A € L(C ® ¢co[I]), that I" is uncountable and
that Agy is the corresponding matriz element of A. Then Ay s o (I’ x I')-
matrixz such that in each one of its columns and tn each one of its rows there
are at most countably many nonzero numbers.

Proof. Let a,, be the p-th coordinate of Ajse,. Then (a,,) is the
desired (I" x I')-matrix; p,7y € I'. In fact, Azzey € o[’} and hence in each
column there is at most a countable set of nonzero numbers. If for some
g € I' in the p-row of the matrix (a,,) there is an uncountable set of
nonzero numbers, then we can repeat the proof from Lemma 4.1 to obtain
a contradiction.

LEMMA 4.3. Under the hypothesis of Lemma 4.2 in the uncountable set
I’ there exists an equivalence relation ~ such that for any equivalence class
I
0 <N,
(ll) A22(C0[P]) C C()[F].
Proof. This is one of the variants of G. Neubauer’s construction [10].

Briefly, the (I" x I")-matrix Aj; may be divided into some diagonal operator
(Ro x Rg)-blocks so that all elements outside these blocks are zero.

LEMMA 4.4. Let B = C @ ¢o[I'] and A € GL(B). Then there erists an
at most countable subset Iy C I'" such that under the representation

B = (C ® co[l0]) ® co[I"\ [0]
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the operator A has the (2 x 2)-matriz (A;;) for which A;2 = 0, Ay €
GL(C@ Co[['()]), Ay € GL(CO[F \ F()])

Proof. Let I be a subset of I" from Lemma 4.1 and I'5; be the union
of all equivalence classes of all elements from I" under the equivalence re-
lation from Lemma 4.3. Then || < Ro and ¢o[I" \ [p;] is an A-invariant
subspace of the space B. Let Ay be the restriction of A onto co[I"\ I'p].
Invoking Lemma 4.3, A is the union of some diagonal A-invariant (Rg % Rg)-
blocks. We claim that at most countable set of these blocks are noninvertible
operators.

Suppose that, on the contrary, there are nonsurjective operators in some
uncountable set of these blocks. Then in the space co[I" \ Iy} there exists
an uncountable set of norm one elements with mutually disjoint supports,
which are images (under operator A) of some elements from the space C =
C@® {0} C B. However, then the inverse operator A~! maps the uncountable
set of norm one elements with mutually disjoint supports into C'\ {0} which
contradicts Lemma 4.1.

It is now sufficient to define Iy, as the union of all equivalence classes of
all elements from above “non-invertible” blocks and set Iy = I5, U T, 0O

Let us finish the proof of Theorem 1.1(c). First, we note that Lemma
4.4 holds for an arbitrary finite set of invertible operators A4,, As, ..., A, in
the space B = C @ ¢y[{']. Hence, Lemma 4.4 holds for each finite simplicial
complex S C GL(B). Now, the map

A 0
tAy Az

gives a homotopy H : S x [0,1) — GL(B) such that H|sx{;} = id|s and all
operators from H(S x {0}) have a diagonal form.

The contractibility of the linear groups of the spaces C & cy[[p] (which
is isomorphic to C) and ¢o[I" \ Iy] is a well-known fact [3, 10]. In this way,
we have proved that any finite simplicial complex in GL(B) can be shrunk
to the point {id|p}. Finally, we use two standard facts. The first one is the
following Milnor’s lemma:

= | | o<ecn

LEMMA 4.5 ([7}). Let A be a Banach algebra with a unit and G the group
of all its invertible elements. Then the following conditions are equivalent:

(a) All homotopy groups m,(G) are trivial, n € {0,1,2,...},

(b) G is contractible.

The second one asserts that each subcompactum of GL(B) can be ho-
motopically deformed (in GL(B)) into some finite simplicial complex see
([5], § 2, Lemma 1). Theorem 1.1(c) is thus proved, because one can put
A = GL(B). O
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The proof of Theorem 1.1(b) differs from the one above only in technical
details. In fact it suffices to check that:

(1) co(c,C) has a contractible linear group,

(2) C, ® co(C) = C, ® C has a contractible linear group.

The first statement follows from the contractibility of the linear group of
the space co(C) = C because of separability of C' which gives the possibility
to use Neubauer’s construction. To prove the second one we need to check
the property SB for the space B = C; & C. Let

Cr=ImP,®dImQ;®Im(l - P, - Q)

and
C= ImPQ @Isz @IIH(I - Pz - Qz)

where (P1,Q1) and (P, Q) are pairs of disjoint projectors. Then B =
C,dC =ImPImQ®Im(I-P—-Q), where P=Pi@®P,and Q = Q1 9Q-
and each operator A € L(B) has the (3 x 3)-matrix representation under
the triple of projectors (P,Q,I — P — (). Moreover, each block in such a
(3 x 3)-matrix representation has its own (2 x 2)-matrix representation. For
example, the block PA(Q) has the representation

PLAQy PAQ,
P,AQy PAQs |-

Next, one can modify the proof of Lemmas 3.3 and 3.4, and find disjoint
subsegments A;, Vi, A, and V3, such that for projectors P, = Pp,, Q, =
Py, P, = Pa,, Q2 = Py, the norms of the four operators Py AQ;, P, AQ,,
PyAQ, P,AQ, are less than a given positive ¢, (]

The referee suggested the following problem: for which classes of
C{K )-spaces would an analogous proof work? It seems to us that the class
of linear ordered compacta K with “sufficiently large” families of subcom-
pacta homeomorphic to K is suitable. However, at the moment we have no
positive answers. Hence, as a replacement we formulate the abstract version
of Theorem 1.1(b), (c).

THEOREM 4.6. Let By, B,, ..., B, be Banach spaces for which assertions
of Theorem 3.5 hold. Then GL(B; & By & ... ® B,,) is contractible in the
uniform topology.

THEOREM 4.7. Let By and By be Banach spaces for which assertions from
Theorem 3.5 hold and let I' be an uncountable set. Then GL(B1®co(| |, Bs))
15 contractible in the uniform topology.
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